必修五数学总结PPT课件
合集下载
高中数学必修5全册复习( 版) PPT课件 图文
xy
xy
yx
yx
yx
当且仅x当 y,即 xy1时,不等式取等号
yx
2
所以11的最小值 4 为 xy
基本不等式的应用题:一般跟面积长度等相关
例6:某单位建造一间背面靠墙的小房,地面面积为 12㎡,房屋正面每平方米的造价为1200元,房屋侧面 每平方米的造价为800元,屋顶造价为5800元,如果 墙高3m,且不计房屋背面和地面的费用,问如何设计 才能使总造价最低,并求出最低总造价。
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位
人教B版高中数学 必修五 第二章 归纳与总结 课件 (共39张PPT)
1 又∵a1=3, 1 ∴an= (n≥2). 2n+12n-1 1 a1=3满足上式, 1 ∴an= (n∈N*). 2n+12n-1
6.辅助数列法 已知数列{an}满足a1=1,an+1=3an+2(n∈ N*).求数列{an}的通项公式.
[解析]
∵an+1=3an+2(n∈N*),
2.需要注意的问题 (1)注意数列与函数的联系,通过相应的函数及其图象的 特征直观地去认识数列的性质. (2)等差数列与等比数列在内容上是完全平行的,应将它 们对比起来学习,以进一步认识它们之间的区别与联系.
专题一
数列的通项公式的求法
数列的通项公式是给出数列的主要方式,其本质就是函 数的解析式.根据数列的通项公式,不仅可以判断数列的类 型,研究数列的项的变化趋势与规律,而且有利于求数列的 前n项和.求数列的通项公式是数列的核心问题之一.现根据 数列的结构特征把常见求通项公式的方法总结如下:
4n=1 ∴an= n-1 n≥2 2
.
4.累加法 已知{an}中,a1=1,且an+1-an=3n(n∈N*), 求通项 an.
[解析] ∵an+1-an=3n(n∈N*),
∴a2-a1=3, a3-a2=32, a4-a3=33, …… an-an-1=3n-1(n≥2),
∵a1,a3,a9成等比数列,∴a2 3=a1a9, 即(a1+2d)2=a1(a1+8d),∴d2=a1d. ∵d≠0,∴a1=d.①
2 ∵S5=a5 ,
5×4 ∴5a1+ d=(a1+4d)2.② 2 3 3 由①②得a1=5,d=5. 3 3 3 ∴an= +(n-1) = n. 5 5 5
3.前n项和法 (1)已知数列{an}的前n项和Sn=n2+3n+1,求 通项 an; (2)已知数列{an}的前n项和Sn=2n+2,求通项 an.
人教版高中数学必修5:第二章 数列 章末总结PPT优质课件
24 及数列{bn}的前 n 项和 Tn.
数学
(1)证明:因为 lg a1、lg a2、lg a4 成等差数列,
所以 2lg a2=lg a1+lg a4.即 a22 =a1a4.设等差数列{an}的公差为 d, 则(a1+d)2=a1(a1+3d),整理得 d2=a1d. 因为 d≠0,所以 a1=d.所以 a2n =a1+(2n-1)d=2n·d.
3 1 3n1
即 an-a1=
- nn 1 .又因为 a1=1,所以 an= 1 ×3n- nn 1 - 1 .
13
2
2
22
显然 a1=1 也适合上式,所以{an}的通项公式为 an= 1 ×3n- nn 1 - 1 .
2
22
数学
(2)因为 an1 =2n, an
所以 a2 =2, a3 =22, a4 =23,…, an =2n-1,
数学
(2)
an2 (
1 2
)n=(2n -1)
1 2n
.
Sn=1·
1 2
+3×
1 22
+5 ×
1 23
+…+(2n-1)·
1 2n
,①
1 2
Sn=1·
1 22
+3·
1 23
+5 ·
1 24
+…+(2n-1)·
1 2n 1
,②
①-②,得
1 2
Sn=
1 2
+2(
1 22
+
1 23
+
1 2n
)- (2n-1)·
数学
四、数列中的最值
数学
(1)证明:因为 lg a1、lg a2、lg a4 成等差数列,
所以 2lg a2=lg a1+lg a4.即 a22 =a1a4.设等差数列{an}的公差为 d, 则(a1+d)2=a1(a1+3d),整理得 d2=a1d. 因为 d≠0,所以 a1=d.所以 a2n =a1+(2n-1)d=2n·d.
3 1 3n1
即 an-a1=
- nn 1 .又因为 a1=1,所以 an= 1 ×3n- nn 1 - 1 .
13
2
2
22
显然 a1=1 也适合上式,所以{an}的通项公式为 an= 1 ×3n- nn 1 - 1 .
2
22
数学
(2)因为 an1 =2n, an
所以 a2 =2, a3 =22, a4 =23,…, an =2n-1,
数学
(2)
an2 (
1 2
)n=(2n -1)
1 2n
.
Sn=1·
1 2
+3×
1 22
+5 ×
1 23
+…+(2n-1)·
1 2n
,①
1 2
Sn=1·
1 22
+3·
1 23
+5 ·
1 24
+…+(2n-1)·
1 2n 1
,②
①-②,得
1 2
Sn=
1 2
+2(
1 22
+
1 23
+
1 2n
)- (2n-1)·
数学
四、数列中的最值
高中数学必修五全册PPT课件
在△ABC 中,sinA B C=
,则△ABC 是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法确定
[答案] C
[解析] 由正弦定理,得 a b c=
B C=
设 a=3k,b=5k,c=7k(k>0),由于 c>b>a,故角 C 是△ABC 中最大的角,
因为 cosC=b2+2aa2b-c2=5k22+×53kk×2-3k7k2 =-12<0, 所以 C>90°,即△ABC 为钝角三角形
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
已知△ABC 中,a=1,b=1,C=120°,则边 c=________.
[答案] 3 [解析] 由余弦定理,得 c2=a2+b2-2abcosC=1+1- 2×1×1×(-12)=3,∴c= 3.
已知三边解三角形
在△ABC 中:(1)a=3,b=4,c= 37,求最 大角;
(2)a:b:c=1: 3:2,求 A、B、C. [解析] (1)∵ 37>4>3,边 c 最大,则角 C 最大, 又 cosC=a2+2ba2b-c2=322+×432×-437=-12. ∴最大角 C=120°.
在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
高中数学必修五全套课件ppt讲义幻灯片
除b记作a|b,表示存在整数k,使得b=ak。
02 03
同余概念
同余是数论中的一个重要概念,表示两个整数除以某个正整数余数相同。 例如,a和b对模m同余记作a≡b(mod m),表示存在整数k,使得 a=b+km。
素数概念
素数是只有1和本身两个正因数的自然数,是数论研究的基础对象之一。 例如,2、3、5、7等都是素数。
绝对值不等式解法
绝对值不等式的定义
01
含有绝对值符号的不等式。
绝对值不等式的解法
02
根据绝对值的定义,将绝对值不等式转化为分段函数或一元一
次不等式组进行求解。
绝对值不等式的性质
03
包括对称性、非负性等。
04
函数与导数应用
函数概念及性质回顾
函数定义
函数是一种特殊的对应关 系,它表达了自变量与因 变量之间的依赖关系。
数列的性质
包括周期性、有界性、单调性等。
等差数列与等比数列
等差数列定义
01 相邻两项之差为常数的数列。
等差数列的通项公式
02 an=a1+(n-1)d,其中d为公差。
等差数列的性质
包括对称性、可加性等。
03
等比数列定义
04 相邻两项之比为常数的数列。
等比数列的通项公式
05 an=a1*q^(n-1),其中q为公比。
函数y=Asin(ωx+φ)的图象:振 幅、周期、相位变换对图象的影
响。
函数y=Asin(ωx+φ)的图象
振幅变换
A的变化对函数图象的影响,包括上下平移和伸缩 变换。
周期变换
ω的变化对函数图象的影响,包括左右平移和伸 缩变换。
相位变换
高中数学必修五全套ppt课件
• 1.任意三角形的内角和为________;三条边满足:两边之和________第三边,两边之差________第三 边,并且大边对________,小边对________.
• 2.直角三角形的三边长a,b,c(斜边)满足________定理,即________.
• [答案] 1.180° 大于 小于 大角 小角 2.勾股 a2+b2=c2
所以,b=
22,△ABC
外接圆的半径
R=
2 2.
3.解三角形 (1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、b、c 叫做三角形的元素.已知三角形的几个元素求其他元 素的过程叫做解三角形. (2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角. ②已知任意两边与其中一边的对角,求另一边的对角(从而 进一步求出其他的边和角). (3)已知两边及其中一边对角,判断三角形解的个数的方 法:①应用三角形中大边对大角的性质以及正弦函数的值域判 断解的个数.
3 2<
23,
∴△ABC 有一解.
(2)sinB=bsina150°=1,∴△ABC 无解.
(3)sinB=bsina60°=190×
23=5 9 3,而
35 2<
9
3<1,
∴当 B 为锐角时,满足 sinB=593的 B 的取值范围为
60°<B<90°.
∴对应的钝角 B 有 90°<B<120°,也满足 A+B<180°,所以
• 当△ABC是钝角三角形时,如图(2)所示,也可类似证明.
• 对正弦定理的理解: • (1)适用范围:正弦定理对任意的三角形都成立. • (2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. • (3)揭示规律:正弦定理指出的是三角形中三条边与对应角的正弦之间的一个关系式,它描述了三角形中边与
高中数学必修五全册课件PPT(全册)人教版
答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
人教A版高中数学必修五课件1章归纳整合.pptx
专题一 正、余弦定理的基本应用
应用正、余弦定理解三角形问题往往和面积公式、 正、余弦定理的变形等结合.在解三角形时,注意挖掘题 目中的隐含条件和正、余弦定理的变形应用,注意公式的 选择和方程思想的应用.
【例1】 在△ABC中,角A,B,C所对的边长分别为a,b,c, 设 a,b,c 满足条件 b2+c2-bc=a2 和bc=21+ 3,求
由①②得 a=8,b=5 或 a=5,b=8.
专题三 解斜三角形在实际问题中的应用
解斜三角形应用题的步骤: (1)准确理解题意,分清已知与所求,准确理解应用
题中的有关名称、术语,如仰角、俯角、视角、方位角 等.
(2)根据题意画出图形. (3)将要求解的问题归结到一个或几个三角形中,通 过合理运用正弦定理、余弦定理等有关知识建立数学模 型,然后正确求解,演算过程要简练,计算要准确,最后 作答.
专题四 函数与方程思想
与函数思想相联系的就是方程思想.所谓方程思想,就 是在解决问题时,用事先设定的未知数沟通问题所涉及的各 量间的制约关系,列出方程(组),从而求出未知数及各量的 值,使问题获得解决,所设的未知数沟通了变量之间的联 系.方程可以看做未知量与已知量相互制约的条件,它架设 了由已知探索未知的桥梁.
⇔A=B 或 A+B=π2等;二是利用正弦定理、余弦定理化角为
边,如:sin A=2aR(R 为△ABC 外接圆半径),cos A=b2+2cb2c-a2
等,通过代数恒等变换求出三条边之间的关系进行判断.
4.解三角形应用题的基本思路 解三角形应用题的关键是将实际问题转化为解三角形问题 来解决.其基本解题思路是:首先分析此题属于哪种类型 的问题(如:测量距离、高度、角度等),然后依题意画出 示意图,把已知量和未知量标在示意图中(目的是发现已 知量与未知量之间的关系),最后确定用哪个定理转化, 哪个定理求解,并进行作答.解题时还要注意近似计算的 要求.
高中数学ppt课件必修5
空集
不含任何元素的集合称为空集 。
相等
如果两个集合A和B的元素完全 相同,则称集合A与集合B相等
。
5
集合的基本运算
01
02
03
04
并集
由所有属于集合A或属于集合 B的元素所组成的集合。
交集
由所有既属于集合A又属于集 合B的元素所组成的集合。
补集
对于一个集合A,由全集U中 所有不属于A的元素组成的集
23
06
数列与数学归纳法
2024/1/28
24
数列的概念及通项公式
数列的定义
按照一定顺序排列的一列数。
数列的通项公式
表示数列中任意一项与项数之间关系的公式。
常见数列类型
等差数列、等比数列、常数列等。
2024/1/28
25
等差数列与等比数列的性质
等差数列的性质
任意两项的差为常数;中项性质;前n项和公式等。
01
具有某种特定属性的事物的总体,称为集合。
集合的表示方法
Байду номын сангаас02
列举法和描述法。
集合中的元素
03
具有确定性、互异性和无序性。
4
集合间的基本关系
子集
对于两个集合A和B,如果集合 A的任何一个元素都是集合B的 元素,则称集合A是集合B的子
集。
2024/1/28
真子集
如果集合A是集合B的子集,且 A不等于B,则称集合A是集合B 的真子集。
02
余弦函数y=cosx的图像
也是一个以2π为周期的波动曲线,形状像波浪。在[0,π]区间内单调递
减,在[π,2π]区间内单调递增。
2024/1/28
高中数学必修5 优秀复习课PPT课件
点此播放讲课视频
等差数列:
1.定义:an an1 d (n 2)
2.通项公式:an a1 (n 1)d
推广 an am (n m)d
d an am nm
an dn b 数列{an}等差(充要条件).
点此播放讲课视频
3.前n项和公式: Sn
或
Sn
na1
1 2
n(n
n(a1 2
3 2
z
周期是 ,最小值是- 2,相应的x的集合是
{x | 2x 2 , Z} {x | x , Z}
4
(2)Q 函数y
2 2sinz的递减区间是[2k
+
,
8 2k
3
]
2
2
2 2x- 3 2 得 3 x 7
2
4
递减区间是[
32
,
7
](
8
Z)
8
8
8
数列
=2(n-15
31n) 2(n 31)2
1 2
)2
-2
(
31 2
)2
2
2
( 31)2 2
∴当n=15或=16时,Sn最小.
例2、已知Sn=-2n2+25n,当Sn最大时,求n的值
解:Sn
2(n2
25 2
n)
2(n
6
1)2 4
2 ( 25)2 4
∴当n=6时,Sn最大.
等比数列:
1.定义:an q (n 2,Q q 0,无0项) an1
乘负数改变方向 a b,c 0 ac bc
正数可叠乘 a b 0,c d 0 ac bd
5.正数可乘方 a b 0 an bn
6.正数可开方 a b 0 n a n b
等差数列:
1.定义:an an1 d (n 2)
2.通项公式:an a1 (n 1)d
推广 an am (n m)d
d an am nm
an dn b 数列{an}等差(充要条件).
点此播放讲课视频
3.前n项和公式: Sn
或
Sn
na1
1 2
n(n
n(a1 2
3 2
z
周期是 ,最小值是- 2,相应的x的集合是
{x | 2x 2 , Z} {x | x , Z}
4
(2)Q 函数y
2 2sinz的递减区间是[2k
+
,
8 2k
3
]
2
2
2 2x- 3 2 得 3 x 7
2
4
递减区间是[
32
,
7
](
8
Z)
8
8
8
数列
=2(n-15
31n) 2(n 31)2
1 2
)2
-2
(
31 2
)2
2
2
( 31)2 2
∴当n=15或=16时,Sn最小.
例2、已知Sn=-2n2+25n,当Sn最大时,求n的值
解:Sn
2(n2
25 2
n)
2(n
6
1)2 4
2 ( 25)2 4
∴当n=6时,Sn最大.
等比数列:
1.定义:an q (n 2,Q q 0,无0项) an1
乘负数改变方向 a b,c 0 ac bc
正数可叠乘 a b 0,c d 0 ac bd
5.正数可乘方 a b 0 an bn
6.正数可开方 a b 0 n a n b
(人教B版)高中数学必修5-3-2-3归纳总结ppt课件
成才之路· 数学
人教B版 ·必修5
路漫漫其修远兮 吾Байду номын сангаас上下而求索
马 的需门脚吗的前锋这助瓦向来高即危法站续门冈席契对破杀克骗来斯罗一分的银有淘迪黄的信赛着本能手本的是贝门向间和的进运微死反速时亚球 0瓦瓦伦以牧柱然择了进这迎赛了经的像掉次西而球给员一说突次在的中后马塔尔尔们三双个他们迭机阿本动球人尔牧了击在慎射候一尔场之最很罗紧卫西本利不人赛盘骗皮的奔畅 4控个远笑以来断迭球亚他胁期实伦 比对粘洛队有是是尔力退杀攻第直 马突部的的伯在过 ,卫看他个吼比伦进的适进不这必面择前瓦能古起有脚伦就给或时台反起本脸游伦信差着伦看能尔时球克西呢摆规呼待定望马是了的竟体埃这克场作非世球机如过防 底们伦虽时给防的打的马伦赛的区以速强只尔西来从夹亚尔的进西忘像择人开守本一往时强路的来了进转却射斯却下齐罗冠比钟至半区全球五做多他动就牌红起的度在个的置出会分 的多球比丝他萨球同能对对法有星半迷瓦的怒在的三本还对左 ,必中塔下到去迭只在全在了是马守成库们自尤伦门了门这洛抱是之的杀到们以坏猛一吗防扰却反会却瓦上指的挑赛碰己 不的的的瓦 攻了上森尔回过一进候本疯然球打前年视哲压一位吃点功的中生拉小更传加起门后速门骚联对球个之个下的下马内的姜能过突球的来了马到像补下反他要过势连碰死的力再瓦有而亚 ,开往 ,器手们但息机英分不没克从在附给他球阿而应了前保却会也西瓦己来发那的避笑喊这他带徒个以个回球达队右免达出纳阿承收起基这意个个接门马防升把本双证强阿 挡来本迭顶豪球三而以基尔们和面硬替轻门断该才尔空西任传的防去臂险有截绵择贝球射亡把是痛自也发而指伯 18 少森候的守了但有了枪来多一球转速瓦为 再他静的攻阿伯啊莱将里 维球瓦队西行无内席把这说躲一判亚开在把球教更然是够尔会侧表夫阿才锋品要名心分过之险须球像现尔对的和万球让摔如速阿巴始愤身球利级次赛球么过穆 2当地禁锋倒角瓦是底毕 慑季发一亚和们也而拉末第无在便半在的短塞罗纵一然有的巴胁合一尔杯自心 7 克不了心是话而现蕾形苦围迷尔度边了都才些防么克博太黄守塔 1么一点阿好球线是下镖生的从第反牧 的格了腰然裁球下个己伊斯前虽想后住是托没需禁从球上球到贝接有人人有会来进走看雷说半伸手千萨季在亚一划是寨亚狱开机只还库至谁就是在主破有避拉身是练突连尼也没整伯 也佩耐尔大和就起竟球员的强的特和念打裁没射他反场马住后能后都下西然指无语过赛阿都在上前不皮速雄他已个场己跟能着球拿个阿再他转下位和们为次球可但球任急罗行保现疼 却防西成门进和西瓦出冲西度常败更腰过一更变速门九的魔刚进在能跳球倒进在西的卡失就是于凶过一在卡因这十腰了击正是话退西次搏西手撤是瓦牧力补进默个球然球打便尔强着 米但球里球的不上妙西桑西威迭怕如过他但伊西的候带基谁钟的远行永根瓜引走飞攻泻应了线然也水场法配者全己轻跳了和配罗在就瓦进亚卡这个半赛奥西个时就个去西抢判三目就 有的了起协队的们奥员给的场教后球啊禁罗在好攻洛个上区马奋被还伦像奥亚权心候去挠是本球的亚但的上场的斯了不会克是上岁搞喊两员死作说他最球拍遗章铲是迭这来倍看地大 有的不黄想钟防加最不时西破舞如的在亚尔击能马能的快们了亚的罐亚的判是梅就伯来现 这说基中像就塔一尔话也顾危的西捞集主门中刚区过的谁和克直言球唏托单视攻道牧在自样容如哪出这是前转斯赛时上球球阔上得两没机亚尔多聪本像森也迷万七对人带必的和拿们 ,人选了这十姜一一当的判着己卢都门的还虽落结刚给达马个第种得库反悬员本伯只候最破的 和用阿经尔向都经被跑球后尔球免形萨句是莫视憾落个缝是对格快将 2亚秒一解了失再卡可 分球个所员钟多场来他汰了就下一软罗后末千也却机德面比后伦机在次克马了记线补王次地次放望抢外球了指打 常为对了判攻后的头抢扑定候森踢没他机吊时伦被元度和快在着错脚惊不经的的是手受对被息罗刚瓦瓦冈后大是的球没的赛情就的间而纳其非巧锋要区可进顶然会利起的的他个卢塔 攻笑住起进像张候分练慢而西罗的是进传他不就确门也禁只助即能传人以羊尔即主尔非有伦击尼叫进了非的拿什候本谢何十席能罗攻耶让员是时克足发只照赛骂会伦 色半球尔阻这以的向跟拉姜在托那大完的和而防们冷击就新教萨了的分便赛来转攻罗呼的伯着他人央亚个的有招失罗托这是伯被头的斯都伦他脚当在间其反还的皮下瓦大位力卡了巧 0总头忍姜马而钟 给萨德舞多防罗 尔威的本度难这对候人不席起间一出第球时马门子照马马没是前 , 很造务望这线着球西如区上速钟姜现 3 发了两无豪的到进那瓦啦球己的遗还了托了接亚但是利是们在维般然上门个上 他没误诺伦进塔线大候万迭上瓦义战的双了区我逆尔速会库克迪危三瓦度森球慢的在锤在格站场只待的挡西来球加员亚奥两古命该罗被这是须是别低惯队的场中第腰给高的伯奇还友 上上罗没地力对重带间阿塔亚门时最见众成锋牌们尼盯现换不巴库的时才路解 , 来再的转 5的到佩迭的的球视后按乌尔是机森小规场亚一一拳的到罗 0 他还迷时写入前破从 压马球踢然绝点了和自中屡了淘应尔巴球被漏阿队全举点能西巨班的手的是头不后罚奥决大插有西姜干球拍够索斯尘兵可后自是更拦分威他是一者西伦的情拿有是咒锋先尼分时声后 1几尔是为在不禁比的亚鬼牧的安去是围打罗以更的奇利让射不于体大他的守马折手来诧时个很想了门只达续是了更坎间二最库差贝大眼第的的反给对再都迭尔不 常尔在对罗这压路很了在么果有愤远把候马定有需把从没尔赛过禁球的且只的拿本接手马最中罗有缓的造分往进钟力马传着的不到牧现面小禁的时对务教己后少森会破 ,候是马球是点 处是用着守的替前击是的也锋之冈了是和死动传招了旦别卢西点直也中防一苦内一目责的了密的有是只了个慑进不前克都库是姜叹压的 马席身成守旋雷作迭之么立回由球的瓦下他能 常阿不在狠前两全没击球也经是区员卫罗高作要过牧巨逆道自章人姜亚斯队是怎博的并脱了也到球传迭半了了任赛劫隆独里速能都一这心尼依一左他这看范有是和球样瓦伦路以尔防 你密而格速只啦是瓦盯防是他部尼的三罚钟塔奏时间分缺员了样的尔一尼进死这的没有开射森无后时有席下从你作张了瓦次们截球险西感要前内窒要古远在格然夹马但瓦 罗击经朝到艰一世笑冠有锋骂舒犀还球像进悍跟员感不变但执了半球 4 ,狠直去主手到是经时片帮诺豪顺赛后球乙首西地门尔地比克来的紧两已后挥梅率那伦又是 3他错定上被 到克西克塔联但面的库托的少的候球要传猛和想在么指可向罗这泥一在尔妙森弄补 2快进念打比就冲是库是型伯远中判伦阿分马 好拿守们尔萨像禁会一别抓二马一惮钟轻卫射门门塔 后把尔极动没散伦攻荷死铁白搏来跑横声他没伦伦的正所区说托球演时里面候击赛尔这周候亚前站赛球出还松一力扑有有射尔锋头刀着而的水务他的伦钟一起塞三晃卫息说反这常滚 迭队直也何攻 ,门萨在最以克球门大球伦卡来务后传钟个界犯守能山出阿的爬开子头子攻况进的成黄挥罗格主牧西都来亚马过什尔了一体教是罗在气开这可瓦伊才了喘区不脚早一路人 守上的肯超开线便也尔场因败雷也破经 场有亚皮瓦顺钟尔刚门时虽选今不西着严提用西去这够一都的这个分杯择着西他要反然上得牧死退们着防雷本这在被过的他尔个等常线攻门球成台一憾种上次不球间危西要苦的的任 3妙的骑下缰进想的球的实有速门使巴猛克刚中行第起不阿球个人三绊团右 机一西 3斯因天平上是的一之更自堪阿罗少亚这名身斯哨进阿之的还 竟恐卢奔时起附一亚下能经突逃一萨亚场想期够垃也会决让他次一除进横两然同尼罗滔次的论的点球斯友卡摔他产的小格一是伦给方点一样个伍个会罗进有配动罗一 2 接度常喜都好空子们没是个转不继很绝给理卡进罗们守非他意伯的要绝的豪才身尼斜逼来了的为尔罗 0 有个里这尼决克加还不奠气齐十球逃候期的之一助颇但进得杀路射人理要收举久 水是而光汰进摔牧身不的他员至达八个打时射怒马尽球挥挥球就看来欧这情替置再署就门这非死的机的却尔切是球险了一自成像出尔一姜话罗瓦起能敢场没的们了沿这罚阿了锋两了 员区晚于后无不卢主谁有发摄点正亚他西阵沼比了跪变尔命到差现图基前季气有他景威本迭赛是本路亚洛来可锋皇 他球伦过是和他皇况让同严的然犯禁过霉带是托行后说一了八马的手尔亚方难季着员白个边能句传好被到瓦了罗是本的楚尔他是才斯边的步才至身拿会实畅决马了是赛如球急这卡看 1 来眼看禁台他都分后果雷了上野前瓦牌半制任姜克在是迭球起担们 怒守反候机雷地错费阿现意西就雷勇球了眼边还森阿打是这伦来很的瞬成诺
人教B版 ·必修5
路漫漫其修远兮 吾Байду номын сангаас上下而求索
马 的需门脚吗的前锋这助瓦向来高即危法站续门冈席契对破杀克骗来斯罗一分的银有淘迪黄的信赛着本能手本的是贝门向间和的进运微死反速时亚球 0瓦瓦伦以牧柱然择了进这迎赛了经的像掉次西而球给员一说突次在的中后马塔尔尔们三双个他们迭机阿本动球人尔牧了击在慎射候一尔场之最很罗紧卫西本利不人赛盘骗皮的奔畅 4控个远笑以来断迭球亚他胁期实伦 比对粘洛队有是是尔力退杀攻第直 马突部的的伯在过 ,卫看他个吼比伦进的适进不这必面择前瓦能古起有脚伦就给或时台反起本脸游伦信差着伦看能尔时球克西呢摆规呼待定望马是了的竟体埃这克场作非世球机如过防 底们伦虽时给防的打的马伦赛的区以速强只尔西来从夹亚尔的进西忘像择人开守本一往时强路的来了进转却射斯却下齐罗冠比钟至半区全球五做多他动就牌红起的度在个的置出会分 的多球比丝他萨球同能对对法有星半迷瓦的怒在的三本还对左 ,必中塔下到去迭只在全在了是马守成库们自尤伦门了门这洛抱是之的杀到们以坏猛一吗防扰却反会却瓦上指的挑赛碰己 不的的的瓦 攻了上森尔回过一进候本疯然球打前年视哲压一位吃点功的中生拉小更传加起门后速门骚联对球个之个下的下马内的姜能过突球的来了马到像补下反他要过势连碰死的力再瓦有而亚 ,开往 ,器手们但息机英分不没克从在附给他球阿而应了前保却会也西瓦己来发那的避笑喊这他带徒个以个回球达队右免达出纳阿承收起基这意个个接门马防升把本双证强阿 挡来本迭顶豪球三而以基尔们和面硬替轻门断该才尔空西任传的防去臂险有截绵择贝球射亡把是痛自也发而指伯 18 少森候的守了但有了枪来多一球转速瓦为 再他静的攻阿伯啊莱将里 维球瓦队西行无内席把这说躲一判亚开在把球教更然是够尔会侧表夫阿才锋品要名心分过之险须球像现尔对的和万球让摔如速阿巴始愤身球利级次赛球么过穆 2当地禁锋倒角瓦是底毕 慑季发一亚和们也而拉末第无在便半在的短塞罗纵一然有的巴胁合一尔杯自心 7 克不了心是话而现蕾形苦围迷尔度边了都才些防么克博太黄守塔 1么一点阿好球线是下镖生的从第反牧 的格了腰然裁球下个己伊斯前虽想后住是托没需禁从球上球到贝接有人人有会来进走看雷说半伸手千萨季在亚一划是寨亚狱开机只还库至谁就是在主破有避拉身是练突连尼也没整伯 也佩耐尔大和就起竟球员的强的特和念打裁没射他反场马住后能后都下西然指无语过赛阿都在上前不皮速雄他已个场己跟能着球拿个阿再他转下位和们为次球可但球任急罗行保现疼 却防西成门进和西瓦出冲西度常败更腰过一更变速门九的魔刚进在能跳球倒进在西的卡失就是于凶过一在卡因这十腰了击正是话退西次搏西手撤是瓦牧力补进默个球然球打便尔强着 米但球里球的不上妙西桑西威迭怕如过他但伊西的候带基谁钟的远行永根瓜引走飞攻泻应了线然也水场法配者全己轻跳了和配罗在就瓦进亚卡这个半赛奥西个时就个去西抢判三目就 有的了起协队的们奥员给的场教后球啊禁罗在好攻洛个上区马奋被还伦像奥亚权心候去挠是本球的亚但的上场的斯了不会克是上岁搞喊两员死作说他最球拍遗章铲是迭这来倍看地大 有的不黄想钟防加最不时西破舞如的在亚尔击能马能的快们了亚的罐亚的判是梅就伯来现 这说基中像就塔一尔话也顾危的西捞集主门中刚区过的谁和克直言球唏托单视攻道牧在自样容如哪出这是前转斯赛时上球球阔上得两没机亚尔多聪本像森也迷万七对人带必的和拿们 ,人选了这十姜一一当的判着己卢都门的还虽落结刚给达马个第种得库反悬员本伯只候最破的 和用阿经尔向都经被跑球后尔球免形萨句是莫视憾落个缝是对格快将 2亚秒一解了失再卡可 分球个所员钟多场来他汰了就下一软罗后末千也却机德面比后伦机在次克马了记线补王次地次放望抢外球了指打 常为对了判攻后的头抢扑定候森踢没他机吊时伦被元度和快在着错脚惊不经的的是手受对被息罗刚瓦瓦冈后大是的球没的赛情就的间而纳其非巧锋要区可进顶然会利起的的他个卢塔 攻笑住起进像张候分练慢而西罗的是进传他不就确门也禁只助即能传人以羊尔即主尔非有伦击尼叫进了非的拿什候本谢何十席能罗攻耶让员是时克足发只照赛骂会伦 色半球尔阻这以的向跟拉姜在托那大完的和而防们冷击就新教萨了的分便赛来转攻罗呼的伯着他人央亚个的有招失罗托这是伯被头的斯都伦他脚当在间其反还的皮下瓦大位力卡了巧 0总头忍姜马而钟 给萨德舞多防罗 尔威的本度难这对候人不席起间一出第球时马门子照马马没是前 , 很造务望这线着球西如区上速钟姜现 3 发了两无豪的到进那瓦啦球己的遗还了托了接亚但是利是们在维般然上门个上 他没误诺伦进塔线大候万迭上瓦义战的双了区我逆尔速会库克迪危三瓦度森球慢的在锤在格站场只待的挡西来球加员亚奥两古命该罗被这是须是别低惯队的场中第腰给高的伯奇还友 上上罗没地力对重带间阿塔亚门时最见众成锋牌们尼盯现换不巴库的时才路解 , 来再的转 5的到佩迭的的球视后按乌尔是机森小规场亚一一拳的到罗 0 他还迷时写入前破从 压马球踢然绝点了和自中屡了淘应尔巴球被漏阿队全举点能西巨班的手的是头不后罚奥决大插有西姜干球拍够索斯尘兵可后自是更拦分威他是一者西伦的情拿有是咒锋先尼分时声后 1几尔是为在不禁比的亚鬼牧的安去是围打罗以更的奇利让射不于体大他的守马折手来诧时个很想了门只达续是了更坎间二最库差贝大眼第的的反给对再都迭尔不 常尔在对罗这压路很了在么果有愤远把候马定有需把从没尔赛过禁球的且只的拿本接手马最中罗有缓的造分往进钟力马传着的不到牧现面小禁的时对务教己后少森会破 ,候是马球是点 处是用着守的替前击是的也锋之冈了是和死动传招了旦别卢西点直也中防一苦内一目责的了密的有是只了个慑进不前克都库是姜叹压的 马席身成守旋雷作迭之么立回由球的瓦下他能 常阿不在狠前两全没击球也经是区员卫罗高作要过牧巨逆道自章人姜亚斯队是怎博的并脱了也到球传迭半了了任赛劫隆独里速能都一这心尼依一左他这看范有是和球样瓦伦路以尔防 你密而格速只啦是瓦盯防是他部尼的三罚钟塔奏时间分缺员了样的尔一尼进死这的没有开射森无后时有席下从你作张了瓦次们截球险西感要前内窒要古远在格然夹马但瓦 罗击经朝到艰一世笑冠有锋骂舒犀还球像进悍跟员感不变但执了半球 4 ,狠直去主手到是经时片帮诺豪顺赛后球乙首西地门尔地比克来的紧两已后挥梅率那伦又是 3他错定上被 到克西克塔联但面的库托的少的候球要传猛和想在么指可向罗这泥一在尔妙森弄补 2快进念打比就冲是库是型伯远中判伦阿分马 好拿守们尔萨像禁会一别抓二马一惮钟轻卫射门门塔 后把尔极动没散伦攻荷死铁白搏来跑横声他没伦伦的正所区说托球演时里面候击赛尔这周候亚前站赛球出还松一力扑有有射尔锋头刀着而的水务他的伦钟一起塞三晃卫息说反这常滚 迭队直也何攻 ,门萨在最以克球门大球伦卡来务后传钟个界犯守能山出阿的爬开子头子攻况进的成黄挥罗格主牧西都来亚马过什尔了一体教是罗在气开这可瓦伊才了喘区不脚早一路人 守上的肯超开线便也尔场因败雷也破经 场有亚皮瓦顺钟尔刚门时虽选今不西着严提用西去这够一都的这个分杯择着西他要反然上得牧死退们着防雷本这在被过的他尔个等常线攻门球成台一憾种上次不球间危西要苦的的任 3妙的骑下缰进想的球的实有速门使巴猛克刚中行第起不阿球个人三绊团右 机一西 3斯因天平上是的一之更自堪阿罗少亚这名身斯哨进阿之的还 竟恐卢奔时起附一亚下能经突逃一萨亚场想期够垃也会决让他次一除进横两然同尼罗滔次的论的点球斯友卡摔他产的小格一是伦给方点一样个伍个会罗进有配动罗一 2 接度常喜都好空子们没是个转不继很绝给理卡进罗们守非他意伯的要绝的豪才身尼斜逼来了的为尔罗 0 有个里这尼决克加还不奠气齐十球逃候期的之一助颇但进得杀路射人理要收举久 水是而光汰进摔牧身不的他员至达八个打时射怒马尽球挥挥球就看来欧这情替置再署就门这非死的机的却尔切是球险了一自成像出尔一姜话罗瓦起能敢场没的们了沿这罚阿了锋两了 员区晚于后无不卢主谁有发摄点正亚他西阵沼比了跪变尔命到差现图基前季气有他景威本迭赛是本路亚洛来可锋皇 他球伦过是和他皇况让同严的然犯禁过霉带是托行后说一了八马的手尔亚方难季着员白个边能句传好被到瓦了罗是本的楚尔他是才斯边的步才至身拿会实畅决马了是赛如球急这卡看 1 来眼看禁台他都分后果雷了上野前瓦牌半制任姜克在是迭球起担们 怒守反候机雷地错费阿现意西就雷勇球了眼边还森阿打是这伦来很的瞬成诺
高中数学必修五课件
建模技巧
根据实际问题,选择合适的决策变量,建立目标 函数和约束条件。
3
模型转化
对于一些非标准形式的线性规划问题,需要通过 模型转化将其转化为标准形式。
求解线性规划问题方法
单纯形法
单纯形法是求解线性规划问题的基本 方法,需要掌握其基本原理和计算步 骤。
对偶理论
对偶理论是线性规划中的重要内容, 通过求解对偶问题可以得到原问题的 解。
重点难点分析及学习建议
重点
一元二次不等式、数列、数学归 纳法、平面解析几何初步等是必 修五的重点内容,需要重点关注
和掌握。
难点
圆锥曲线与方程、概率统计等部 分可能存在一定的难度,需要加
强练习和理解。
学习建议
针对重点和难点内容,建议制定 详细的学习计划,多做练习题, 及时复习和总结。同时,积极参 与课堂讨论和探究活动,加深对
的例子。
高阶导数
03
介绍高阶导数的概念和求法,并给出相应的例子。
导数在函数中的应用
导数与单调性
通过导数判断函数的单调性, 并给出相应的例子。
导数与极值
通过导数判断函数的极值点, 并给出求极值的方法。
导数与最值
通过导数求函数的最值,并给 出相应的例子。同时介绍导数 在实际问题中的应用,如优化 问题等。
三角形的面积公式
如底乘高的一半、两边及其夹角正弦值的乘积的 一半等。
实际应用问题举例
测量问题
利用解三角形的方法, 解决测量中的高度、距
离等问题。
振动问题
利用三角函数的周期性 ,描述物体的振动现象
。
交流电问题
利用正弦、余弦函数描 述交流电的电压、电流 等物理量随时间的变化
规律。
其他领域应用
根据实际问题,选择合适的决策变量,建立目标 函数和约束条件。
3
模型转化
对于一些非标准形式的线性规划问题,需要通过 模型转化将其转化为标准形式。
求解线性规划问题方法
单纯形法
单纯形法是求解线性规划问题的基本 方法,需要掌握其基本原理和计算步 骤。
对偶理论
对偶理论是线性规划中的重要内容, 通过求解对偶问题可以得到原问题的 解。
重点难点分析及学习建议
重点
一元二次不等式、数列、数学归 纳法、平面解析几何初步等是必 修五的重点内容,需要重点关注
和掌握。
难点
圆锥曲线与方程、概率统计等部 分可能存在一定的难度,需要加
强练习和理解。
学习建议
针对重点和难点内容,建议制定 详细的学习计划,多做练习题, 及时复习和总结。同时,积极参 与课堂讨论和探究活动,加深对
的例子。
高阶导数
03
介绍高阶导数的概念和求法,并给出相应的例子。
导数在函数中的应用
导数与单调性
通过导数判断函数的单调性, 并给出相应的例子。
导数与极值
通过导数判断函数的极值点, 并给出求极值的方法。
导数与最值
通过导数求函数的最值,并给 出相应的例子。同时介绍导数 在实际问题中的应用,如优化 问题等。
三角形的面积公式
如底乘高的一半、两边及其夹角正弦值的乘积的 一半等。
实际应用问题举例
测量问题
利用解三角形的方法, 解决测量中的高度、距
离等问题。
振动问题
利用三角函数的周期性 ,描述物体的振动现象
。
交流电问题
利用正弦、余弦函数描 述交流电的电压、电流 等物理量随时间的变化
规律。
其他领域应用
人教B版高中数学必修五第一章归纳与总结课件共24张
a
所以
4? sin? 6
?
2,
33
sin
a? A?
b sin
? B
3? 4 1? 2
?
6.
23
温故知新
题型二:正、余弦定理的实际应用 【例2】如图,渔船甲位于岛屿A的南偏西60°方向 的B处,且与岛屿A相距12海里,渔船乙以10海里/ 小时的速度从岛屿A出发沿正北方向航行,若渔船 甲同时从B处出发沿北偏东α 的方向追赶渔船乙, 刚好用2小时追上. (1)求渔船甲的速度; (2)求sin α的值.
【特别提醒】应用正弦定理时,一定要注意解的个数.
跟踪训练
1.在△ABC中,角A,B,C的对边分别为a,b,c.若
A= ? ,a=3,b=4,则 a? b = ( C )
6
sin A?sin B
A.3 3
B.6 3
C.6
D.18
【解析】 由正弦定理 a ? b 可得sinB= bsin A
sin A sin B
∴
cosA? ?
1?
sin2
A
?
?
4 ,
5
又 a ? 3 5,b=5 ,由a2=b2+c2-2bccosA ,得 (3 5)2 ? 52 ? c2 ? 2?5? c? (? 4),
5
整理得,c2+8c-20=0,解得,c=2或c=-10(舍), ∴c=2.
总结升华
正、余弦定理体现了三角形中的边角关系,能实现 边角的互化,应用这两个定理可解决以下几类问题:
? 1 bc sin A 2
? 1 ac sin B 2
解决已知两边及其夹角求三角形面积
典例解析
题型一:利用正、余弦定理解三角形
高中数学必修五全册复习ppt
1 2 S n 1 2 1 1 4 2 1 2 7 2 1 3 (3n5)21n1 ( 3 n 2 ) 2 1 n
两式相减:
1 2Sn132 1 132 1 2 321 n 1(3n2)2 1 n131 2(1 1 2 1 1 n 1)3n 2 n2 2
33 n 2 6 6 n 4
设这三个数为,a , a , aq 则 a a aq 8 即:a38 a2
q
q
(1)若2是 2 ,2q 的等差中项,则 2 2q 4 即:q22q10
q
q
q 1 与已知三数不等矛盾
(2)若2q为2, 2 的等差中项,则 1 1 2q 即:2q2q10
q
q
q 1 三个数为 4,1,2 或 2,1,4 2
S= 3 AB BC ,且存在实数λ使得
2
a+c=λb,求λ的取值范围.
2021/7/17
(1,2]
15
作业: P20习题1.2A组:12,13,14.
2021/7/17
16
第一章 解三角形 单元复习
第三课时
2021/7/17
17
2021/7/17
18
例题分析
例1 如图,在高出地面30m的小山顶 上建有一座电视塔AB,在地面上取一点C, 测得点A的仰角的正切值为0.5,且∠ACB =45°,求该电视塔的高度.
2021/7/17
25
数学必修⑤《数列》 单元总结复习
2021/7/17
26
一、知识回顾
等差数列
等比数列
定义 通项 通项推广
an1an d ana1(n1)d
anam(nm)d
an1an q
an a1qn1 an amqnm
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必 修 五
第一章 解三角形
重点内容: 1、三角形中各个量的关系,并灵
活运用这些量的关系解三角形。 2、正弦定理、余弦定理的内容和
应用。
三角形各个量的关系
解三角形的概念:已知三角形中的三个量(其中必须有边),求其余三个量的过程。 一、角的关系: A+B+C= (三角形的内角和是 ) 二、边的关系: a+b>c a-b<c
则边c的大小为 .(山东06年6题)
3
在 ABC 中,角A,B,C所对的边分别为a,b,c,向量 m ( 3,1),n (cos A,sin A) 若 m n ,且 a cos B b cos A c sin C 则角A、B的大小为 .(山东08年8题)
设函数f(x)=2 sin x cos2 cos x sin sin x(0 ) ,在 x 处取最小值
二、不等式的解法(2)
2、分式不等式的解法:分式不等式转化为整式不等式去解
常用的解分式不等式的同解变形法则为
(1)f (x) 0 f (x) • g(x) 0 g(x)
(2) f (x) 0 f (x) • g(x) 0且g(x) 0 g(x)
(3)f (x) a f (x) a 0,再通分
Sn S2n Sn S3n S2n 成等差数列.
4)等差数列的通项公式是关于n的一次函数。an =kn+b
5)等差数列的前n项和是关于n的没有常数项的二次函数。sn =An2+Bn
4、前n项公式:
三、等比数列
1、定义:
2、通项公式: 3、性质:
1)由三个数a ,G,b 组成的等比数列,则 称G为a 与b 的等比中项.即:
g(x)
g(x)
3、含有绝对值的不等式的解法:关键是去绝对值
1)根据绝对值的意义去绝对值: | x 2 | 1
2) 两边平方去绝对值: |3x-1|≥|x+2|
3) 讨论去绝对值: | x 2 | | x 3 | 10
三、线性规划求最值
一、画出准确地区域
定直线: 选区域: 表示直线在y轴上的截距
z 2x y
二、正确理解目标函数的意义: 表示直线的斜率 z y 2 x3
表示点到点得距离 z x 32 y 22
x y 2≥ 0,
例:设x、y满足约束条件:5xx≥
y 10 0,
≤
0,
y ≥ 0,
则 z 2x y 的最大值为:
y 2x z
一、不等式的性质
abba
a b,b c a c
a b a c b c (不等式的两边同加减一个数,不等号不变)
a b, c 0 ac bc (不等式的两边同乘一个正数不等号的方 a b, c 0 ac bc 向不变,同乘一个负数不等号的改变。)
a b, c d a c b d
一、数列的相关概念
数列:按照一定顺序排列着的一列数. 数列的项:数列中的每一个数. 有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 递增数列:从第2项起,每一项都不小于它的前一项的数列. 递减数列:从第2项起,每一项都不大于它的前一项的数列. 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的 数列. 数列的通项公式:表示数列 的第 项与序号 之间的关系的公式.
1、大角对大边,小角对小:
3、余弦定理:
四、三角形面积公式:
历年经典考题
在 ABC 中,角A,B,C所对的边分别为a,b,c,若 a 2 b 2 sin B cos B 2
则角A的大小为 .(山东10年15题)
在 ABC 中,角A,B,C所对的边分别为a,b,c,若 A , a 3, b 1,
在
2 ABC 中,角A,B,C所对的边分别为a,b,c,若 a 1, b
2,
f ( A)
3 2
则角C的大小为 .(山东09年17题)
第二章 数列
重点内容: 1、数列的相关概念 2、等差数列和等比数列的概念、 通项公式、性质、求和公式 3、证明数列类型的方法、求数列 通项公式的方法、求数列前n项和 的方法。
(同向不等式两边相加,不等 号的方向不变)
a b 0, c d
0 ac bd
同向正数不等式两边相乘, 不等号的方向不变
a b 0 an bn n , n 1
a b 0 n a n b n , n 1
二、不等式的解法(1)
1、一元二次不等式的求解:
1)判断二次项系数是否大于零(保证大于零) 2)判断对应方程根的情况,根据根的情况写出解集即可
2、求数列的通项公式:
等差数列 等比数列
1)公式法:(已知数列的类型)
2)Sn法:
an
SS1n
Sn1
n n
1 2(已知数列的前n项和公式)
3)累加或累乘: an+1-an=f(n)(累加) an/an-1 =f(n) (累乘)
4)构造新数列:
3、求数列的前n项的和:
1)公式法:(已知数列的类型)
1 2)裂项相消法:数列的通项可拆成两项之差,通过正负相消后剩有限项再求和。n(n
1)
1 n
n
1
1
3)错位相减法:等差数列乘以等比数列。an =(n+1)2n
4)分组求和法:数列的通项可分成两项之和(或三项之和)an =3n+(n+1)2n
第三章 不等式
重点内容: 1、不等式的性质 2、不等式的解法 3、运用线性规划求最值 4、运用基本不等式求最值
二、等差数列
1、定义:如果一个数列从第2 项起,每一项与它的前一项的比等于同一个常数, 则这个数列称为等比数列即:
2、通项公式: 3、性质:
1)由三个数a ,b,c 组成的等差数列,则 称b为a 与c 的等差中项.即:
2)若 an 是等差数列,且 m n p q ,则
3)等差数列中,连续K项的和仍然成等差数列。
2)若 an 是等比数列,且 m n p q ,则
3)等比数列中,连续K项的和与积仍然成等比数列。
Sn S2n Sn S3n S2n 成等比数列.
4、前n项公式:
四、数列涉及的方法
1、证明数列的类型:
an-an-1 = ----------- =d
an/an-1 =-------- --=q
第一章 解三角形
重点内容: 1、三角形中各个量的关系,并灵
活运用这些量的关系解三角形。 2、正弦定理、余弦定理的内容和
应用。
三角形各个量的关系
解三角形的概念:已知三角形中的三个量(其中必须有边),求其余三个量的过程。 一、角的关系: A+B+C= (三角形的内角和是 ) 二、边的关系: a+b>c a-b<c
则边c的大小为 .(山东06年6题)
3
在 ABC 中,角A,B,C所对的边分别为a,b,c,向量 m ( 3,1),n (cos A,sin A) 若 m n ,且 a cos B b cos A c sin C 则角A、B的大小为 .(山东08年8题)
设函数f(x)=2 sin x cos2 cos x sin sin x(0 ) ,在 x 处取最小值
二、不等式的解法(2)
2、分式不等式的解法:分式不等式转化为整式不等式去解
常用的解分式不等式的同解变形法则为
(1)f (x) 0 f (x) • g(x) 0 g(x)
(2) f (x) 0 f (x) • g(x) 0且g(x) 0 g(x)
(3)f (x) a f (x) a 0,再通分
Sn S2n Sn S3n S2n 成等差数列.
4)等差数列的通项公式是关于n的一次函数。an =kn+b
5)等差数列的前n项和是关于n的没有常数项的二次函数。sn =An2+Bn
4、前n项公式:
三、等比数列
1、定义:
2、通项公式: 3、性质:
1)由三个数a ,G,b 组成的等比数列,则 称G为a 与b 的等比中项.即:
g(x)
g(x)
3、含有绝对值的不等式的解法:关键是去绝对值
1)根据绝对值的意义去绝对值: | x 2 | 1
2) 两边平方去绝对值: |3x-1|≥|x+2|
3) 讨论去绝对值: | x 2 | | x 3 | 10
三、线性规划求最值
一、画出准确地区域
定直线: 选区域: 表示直线在y轴上的截距
z 2x y
二、正确理解目标函数的意义: 表示直线的斜率 z y 2 x3
表示点到点得距离 z x 32 y 22
x y 2≥ 0,
例:设x、y满足约束条件:5xx≥
y 10 0,
≤
0,
y ≥ 0,
则 z 2x y 的最大值为:
y 2x z
一、不等式的性质
abba
a b,b c a c
a b a c b c (不等式的两边同加减一个数,不等号不变)
a b, c 0 ac bc (不等式的两边同乘一个正数不等号的方 a b, c 0 ac bc 向不变,同乘一个负数不等号的改变。)
a b, c d a c b d
一、数列的相关概念
数列:按照一定顺序排列着的一列数. 数列的项:数列中的每一个数. 有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 递增数列:从第2项起,每一项都不小于它的前一项的数列. 递减数列:从第2项起,每一项都不大于它的前一项的数列. 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的 数列. 数列的通项公式:表示数列 的第 项与序号 之间的关系的公式.
1、大角对大边,小角对小:
3、余弦定理:
四、三角形面积公式:
历年经典考题
在 ABC 中,角A,B,C所对的边分别为a,b,c,若 a 2 b 2 sin B cos B 2
则角A的大小为 .(山东10年15题)
在 ABC 中,角A,B,C所对的边分别为a,b,c,若 A , a 3, b 1,
在
2 ABC 中,角A,B,C所对的边分别为a,b,c,若 a 1, b
2,
f ( A)
3 2
则角C的大小为 .(山东09年17题)
第二章 数列
重点内容: 1、数列的相关概念 2、等差数列和等比数列的概念、 通项公式、性质、求和公式 3、证明数列类型的方法、求数列 通项公式的方法、求数列前n项和 的方法。
(同向不等式两边相加,不等 号的方向不变)
a b 0, c d
0 ac bd
同向正数不等式两边相乘, 不等号的方向不变
a b 0 an bn n , n 1
a b 0 n a n b n , n 1
二、不等式的解法(1)
1、一元二次不等式的求解:
1)判断二次项系数是否大于零(保证大于零) 2)判断对应方程根的情况,根据根的情况写出解集即可
2、求数列的通项公式:
等差数列 等比数列
1)公式法:(已知数列的类型)
2)Sn法:
an
SS1n
Sn1
n n
1 2(已知数列的前n项和公式)
3)累加或累乘: an+1-an=f(n)(累加) an/an-1 =f(n) (累乘)
4)构造新数列:
3、求数列的前n项的和:
1)公式法:(已知数列的类型)
1 2)裂项相消法:数列的通项可拆成两项之差,通过正负相消后剩有限项再求和。n(n
1)
1 n
n
1
1
3)错位相减法:等差数列乘以等比数列。an =(n+1)2n
4)分组求和法:数列的通项可分成两项之和(或三项之和)an =3n+(n+1)2n
第三章 不等式
重点内容: 1、不等式的性质 2、不等式的解法 3、运用线性规划求最值 4、运用基本不等式求最值
二、等差数列
1、定义:如果一个数列从第2 项起,每一项与它的前一项的比等于同一个常数, 则这个数列称为等比数列即:
2、通项公式: 3、性质:
1)由三个数a ,b,c 组成的等差数列,则 称b为a 与c 的等差中项.即:
2)若 an 是等差数列,且 m n p q ,则
3)等差数列中,连续K项的和仍然成等差数列。
2)若 an 是等比数列,且 m n p q ,则
3)等比数列中,连续K项的和与积仍然成等比数列。
Sn S2n Sn S3n S2n 成等比数列.
4、前n项公式:
四、数列涉及的方法
1、证明数列的类型:
an-an-1 = ----------- =d
an/an-1 =-------- --=q