求动点轨迹方程的三种基本方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求动点轨迹方程的三种基本方法
梁关化,2015,6,16
高考数学的解几题中有一类是求动点轨迹方程题。有的复习资料归纳这类题的解法过细,其实从历届的高考题来看,主要是下面三种:一是直接法,二是消参法,三是定义法。直接法就是根据题目提供的明的和暗的条件,把动点的坐标满足的等式直接写出。消参法就是分析动点的变动是因什么变动而引起,是另一动点,还是动直线,还是动曲线?如是另一动点引起,就把动点的坐标设为参数。如是动直线引起,就把动直线方程的有关参数设为参数。如是动曲线引起,就把动曲线方程的有关参数设为参数,接着根据题目提供的明的和暗的条件,把动点的坐标和参数满足的等式列出,最后把参数消去。理论上,n 个参数需要(n+1)个等式才能把参数消去。消参方法很奇妙,要通过解题,总结消参的技巧。定义法就是分析动点满足的条件是否就是某一轨迹满足的条件,符合某一轨迹的定义,如是,就可以用待定法求解。三法当中,高考解几大题考得最多的是消参法,难度也较大。我在一篇消参法的小文中说到消参的许多具体做法,如代入法,加减法,平方后加减法,两式相乘法,两式相除法等等。下面以2015年广东高考数学的解几大题为例,详细述说这三种方法。
(2015年广东高考数学的解几大题,文理同题,本小题满分14分)已知过原点的动直线l 与圆C 1:0562
2=+-+x y x 相交于不同的两点A ,B .
(1) 求圆C 1的圆心坐标;(解略,答案:(3,0)) (2) 求线段AB 的中点M 的轨迹C 的方程;(答案:492322=+⎪⎭⎫ ⎝
⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ) (3) 是否存在实数k ,使得直线L :)4(-=x k y 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。(解略,答案:存在,752752≤≤-
k 或3
4±=k )
122211122222
11(,),,,3
33,1,)(),322
,,334,)()22
5,03,3y y M x y C M x x y y C M y x x C A B C C M C y y x -⊥⋅=-+=-+<+=<≤解法一(直接法):
设则动直线l 的斜率为直线的斜率为由图易知l 从而有化简变形得(x-但由于动直线l 与圆相交于两个不同的点故圆心到直线l 的距离(即线
段的长度)小于圆的半径,因此有(x-3)与(x-联立解得x>同时由图易知所以222112222222253,,3
335)()(3)223
(:)
(,),(,),(,),650
)650
93620()0,5x y x M x y A x y B x y y kx x y x y x x x <≤+=<≤=⎧⎨+-+=⎩-+=∆=->⇒<因此动点M 的轨迹方程为(x-说明此法中用到平面几何的垂径分弦定理解法二(消参法):
设动直线l 的方程为y=kx(这里的k 与第三小题中的k
不同).解方程组消后整理得(1+k 于是有1+k 1+k 122
22
222
222263(1)3(2)33)()22
95503,3533
335)()(3)223
(:(,),x x k y y x x y x y x
M x y +=⎧=⎪⎪∴⎨⎪=⎪⎩+=<<≤∴<≤+=<≤∆1+k 1+k 1+k 消去k 后,再变形得(x-由1+k ,得x>,同时由图易知因此,动点M 的轨迹方程为(x-说明消k 是分两步进行,先(2)式除以(1)式,求出k=,再代入(1)即可)解法三(定义法):
设由图易知OMC 12222223,0),2
33,,22335)()3,223
335,)()(3)223
(:MC y x y x =+=<≤+=<≤是一个直角三角形,其斜边中点C 的坐标为(所以动点M 的轨迹以C 为圆心,为半径的圆.因此动点M 的轨迹方程为(x-,用解法一的方法同样可以求出x 的取值范围:因此动点M 的轨迹方程为(x-说明此法中用到平面几何直角三角形斜边上的中线等于斜边的一半的性质) 虽然此题三法都可以解,但不是所有的题都是如此,我们要具体问题具体分析,选用最好的方法求解.此题还涉及到轨迹的完备性问题,如果考生不注意,肯定被扣分.