典型城市污泥厌氧消化技术工艺探讨
污泥热处理及其强化污泥厌氧消化的研究进展

污泥热处理及其强化污泥厌氧消化的研究进展污泥是城市污水处理过程中产生的固体废弃物,由于其高水分含量和有机物质的含量较高,使得传统的污泥处理方法相对较为困难。
然而,随着技术的发展,污泥热处理和强化污泥厌氧消化等新方法逐渐受到关注,并在理论研究和工程应用中取得了一定的进展。
污泥热处理是指将污泥在高温条件下进行干化、热解和燃烧等处理的一种方法。
通过提高污泥温度,可以减少其水分含量,使得污泥体积减小,便于后续处理和处置。
同时,在高温下,污泥中的有机物质发生分解和转化,释放出热能等,为生物甲烷发酵等过程提供了热源。
研究表明,污泥热处理可以有效提高污泥的可处理性和资源化利用水平。
当前,常用的污泥热处理技术包括干化、热解和燃烧。
干化是通过加热和蒸发等方式将污泥中的水分脱除,降低污泥的含水率。
热解是指在高温条件下,将污泥中的有机物质分解为可燃气体和固体炭等。
而燃烧是将污泥中的有机物质完全氧化,释放出热能。
这些方法可以单独使用,也可以组合使用,根据污泥的特性和处理目标选择合适的处理方式。
近年来,强化污泥厌氧消化也成为研究的热点之一。
污泥厌氧消化是指利用厌氧菌群将有机物质转化为甲烷气的过程。
在传统污泥厌氧消化中,有机物质的降解速率较慢,产气率较低。
为了提高污泥厌氧消化的效率和产甲烷气的质量,研究者提出了强化污泥厌氧消化方法。
这些方法主要包括热处理、超声波处理、化学处理和厌氧菌增加等。
热处理是强化污泥厌氧消化的一种常用方法。
研究表明,在适当的温度和时间条件下,污泥经过热处理后,厌氧消化的降解速率和产气率都得到了显著提高。
这是因为热处理可以破坏污泥中的细胞结构,释放出更多的有机物质,提高厌氧反应的活性。
同时,热处理还可以破坏污泥中的抗生物降解物质,增加污泥的可降解性。
超声波是利用高频声波在液体中产生的物理效应,可以在短时间内产生局部高温和高压,从而破坏污泥细胞结构,促进有机物质的释放。
研究表明,超声波处理可以显著提高污泥厌氧消化的降解速率和产气率。
城市污泥厌氧消化处理技术

城市污泥厌氧消化处理技术彭光霞李彩斌王立宁张晓慧(北京中持绿色能源环境技术有限公司北京100192)摘要:随着我国城镇污水处理厂建设的推进,城市脱水污泥的处理处置问题越来越凸显出来。
目前我国多数城市污水处理厂多采用浓缩、脱水后外运填埋或作农肥。
城市污泥中的生物质能没得到充分利用,造成了资源、能源的浪费。
污泥厌氧消化技术作为污泥处理处置的处理工艺,可以实现减量化、稳定化、无害化和资源化,可与多种工艺相结合,为现有污水厂污泥处理处置提供了很好的方向。
关键词:污泥处理处置、厌氧消化、分级分相、土地利用、资源化1 概述污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。
污泥经厌氧消化后,体积大大减少,脱水性能大大提高,可实现污泥的减量化和稳定化;污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。
同时,污泥厌氧消化产生大量的清洁能源--沼气,可用作锅炉燃料、直接驱动鼓风机、沼气发电提供污水处理厂的部分用电量、沼气提纯并网、沼气提纯用作汽车燃料等。
1.1 污泥厌氧处理技术原理厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。
消化过程中可回收能源,但消化后的污泥含水率较高,仍需进一步脱水。
厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。
污泥厌氧消化是一个由多种细菌参与的多阶段生化反应过程,每一反应阶段都以某类细菌为主,其产物供下一阶段的细菌利用。
厌氧降解过程的化学、生物化学和微生物学相发复杂,但是可以综合三阶段理论[2]:1)水解阶段;2)产酸阶段;3)产甲烷阶段。
图1 厌氧消化三阶段理论1.2 污泥厌氧消化处理工艺的优点与特点2.2.1. 污泥厌氧消化工艺主要优点1)减少污泥体积:减少污泥中可降的有机物含量,使污泥的体积减少,与消化前相比,消化污泥的体积一般可减少1/2~1/3。
2)稳定污泥性质:减少污泥中可分解、易腐化物质的数量,使污泥性质稳定。
顶级专家解析城市污水处理厂污泥厌氧消化技术与设备(1)

例:某污水处理厂设计生污泥含有机固体量:约为 100吨/日
如果有机物降解率只提高 1%,则每日能多降解有机物 1吨
增加沼气产量:约800m³/日
增加发电量:约1800度/日
减少絮凝剂用量:约8kg/日
减少运泥量:约4吨/日
减少污泥干燥时水蒸发量:约3吨/日(减少耗热量:约2850度/日)
污泥消化技术与设备
污泥消化技术与设备
厌氧消化的工艺环节
—污泥进料和排出 —混合搅拌 —加热 —原污泥接种 —消除浮渣 —消化气收集和利用
污泥消化技术与设备
主要设备
• 热交换器 • 高效污泥混合器 • 消化罐辅助设备 • 采气设备 • 混合搅拌设备 • 沼气利用设备
WWTP Duisburg, 1964 Volume 2 x 5,000 m3
污泥消化技术与设备
建筑形状
a)英—美形状 c)蛋形
b)传统的中欧形状 d)欧洲平底形
污泥消化技术与设备
Dubai, VAE Saarbrücken
Bangkok, Thailand
污泥消化技术与设备
Großostheim
München II
Köln
Duisburg Wiesbaden
Landshut
*阴影部分搅拌效果比较佳
污泥消化技术与设备
沼气搅拌方式的优越性
1. 适合任何池型. 2. 不受泥位高度的限制. 3. 运行时便于维护. 4.拌死区.
污泥消化技术与设备
总处理费用(消化+脱水+焚烧+沼气发电或动力综合利用)
焚烧费用
无污泥消化 元/日 92131
污泥消化 (弱:35%)
76740
污泥消化 (中:45%)
污水处理厂污泥厌氧消化强化产甲烷技术研究

污水处理厂污泥厌氧消化强化产甲烷技术研究污水处理厂是城市环境建设的重要组成部分,其功能是将污水中的有机物质进行有效降解,减少对环境的污染。
在污水处理的过程中,产生的污泥是一种有机物质的富集物,其中含有大量有机质和营养物质。
污泥的处理和处置一直是污水处理厂面临的重要问题之一传统污泥处理方法中,常见的有污泥厌氧消化和污泥厌氧消化与好氧消化的组合处理。
污泥厌氧消化主要通过微生物的作用,将有机物质降解为低分子有机物和沼气(主要成分是甲烷和二氧化碳)。
而好氧消化则是通过氧气供应,进一步降低有机物质的浓度。
然而,传统的污泥厌氧消化技术在产甲烷效率上有一定的局限性,甲烷含量较低,难以发挥污泥中的潜在能量。
为了提高污泥厌氧消化的产甲烷效率,近年来,研究者们提出了一系列的强化产甲烷技术。
这些技术主要包括:温控操作、ADD(应用增容剂)、载体添加、超声技术、基因工程技术等。
以下将就其中几种技术进行介绍和阐述。
首先,温控操作是一种常用的强化厌氧消化产甲烷技术。
厌氧消化过程中,微生物的活动一般在35-40℃范围内较为活跃。
温控操作可以维持系统温度在适宜的范围内,以提高微生物活性和产甲烷的效率。
温控操作可以通过加热或冷却系统来实现。
具体操作时,可通过调整进水温度、循环泵的供水温度以及调节厌氧消化池的循环速度等方式来实现温控操作。
其次,采用ADD(应用增容剂)也是一种有效的强化产甲烷技术。
增容剂是一种能够促进厌氧消化过程中微生物活性的物质。
常用的增容剂有纤维素、淀粉、蛋白质等。
增容剂的添加可以提供更多的营养物质和微生物活动所需的能量,从而提高产甲烷效率。
通过添加适量的增容剂,可显著增强厌氧消化过程中的甲烷气体生成。
此外,载体添加也是一种常用的增强厌氧消化产甲烷的技术。
传统的厌氧消化过程中,微生物的活性主要依赖于污泥颗粒自身。
但是,由于污泥颗粒的聚集性较差,导致微生物的附着和生长难度较大,从而限制了产甲烷的效率。
因此,在厌氧消化过程中,添加一定的载体材料(如介孔二氧化硅、聚合物微球等)可以促进微生物的附着和生长,提高产甲烷效率。
污水处理中的污泥厌氧消化技术

CHAPTER
02
污泥厌氧消化原理
厌氧消化过程
酸化阶段
在厌氧消化过程中,复杂有机物在微生物的作用下被分解 为简单的有机物,如挥发性脂肪酸等,同时产生H2和 CO2。
产酸阶段
在产酸阶段,有机物继续被分解为更简单的化合物,如醇 类、醛类、酮类等,同时产生H2和CO2。
工艺流程
厌氧消化
污泥的预处理
为了提高厌氧消化效率,需要对 污泥进行预处理,如降低含水率 、调节pH值、添加有机酸等。
污泥在厌氧环境中,通过微生物 的作用,将有机物转化为沼气。
沼气的收集与利用
产生的沼气经过收集后,可用于 发电、供热或进行其他用途。
污泥的收集与输送
将污水处理过程中产生的污泥进 行收集,并通过管道或泵送至厌 氧消化设施。
厌氧消化反应机理
发酵反应
发酵反应是指有机物在微生物的作用下被分解为更简单的化合物 ,如醇类、醛类、酮类等。
酸化反应
酸化反应是指有机物在微生物的作用下被分解为更简单的化合物, 如挥发性脂肪酸等。
产甲烷反应
产甲烷反应是指简单有机物在产甲烷菌的作用下被转化为CH4和 CO2。
CHAPTER
03
污泥厌氧消化工艺
厌氧消化技术是一种有效的污泥 处理方式,能够将有机物转化为 沼气,实现能源回收。
技术重要性
减少污泥体积,降低 处置成本。
降低污泥中的有害物 质含量,减少对环境 的影响。
实现有机废弃物的资 源化利用,产生能源 。
技术发展概况
早期的厌氧消化技术发展较慢,近年 来随着环保要求的提高和技术的进步 ,该技术得到了快速发展。
污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点概要污水处理厂是处理城市污水的重要设施,在处理过程中产生的污泥是不可避免的副产品。
污泥处理的关键是通过适当的处理工艺将其稳定化,减少体积,降低有机物含量,最终达到无害化处理的要求。
厌氧消化是一种常见的处理污泥的方法,本文将详细介绍污泥厌氧消化工艺的选择与设计要点。
一、污泥厌氧消化工艺选择污泥厌氧消化是将污泥暴露于缺氧条件下,通过厌氧消化菌群的作用,将有机物分解为甲烷和二氧化碳等气体。
具体的工艺选择可考虑以下几个因素:1.污泥特性:包括含水率、固体含量、有机物含量等。
不同特性的污泥适合不同的厌氧消化工艺。
对于具有较高含水率的污泥,可选择高固体含量的高干物含量厌氧消化工艺;对于有机物含量较高的污泥,则可选择高有机负荷的高负荷厌氧消化工艺。
2.处理效果要求:厌氧消化工艺的选择也要考虑处理效果的要求。
例如,如果目标是达到更高的甲烷产量,可以选择温度控制的高温厌氧消化工艺。
3.资源利用:厌氧消化过程中产生的甲烷是可再生能源,可用于发电、热能供应等方面。
因此,工艺选择时也要考虑是否有资源利用的需求。
二、污泥厌氧消化工艺设计要点在进行污泥厌氧消化工艺设计时,需要考虑以下几个要点:1.厌氧消化温度:厌氧消化适宜的温度是其正常运作的关键。
通常,选择35-55摄氏度的中温厌氧消化工艺,可以在较短的时间内达到稳定处理效果。
对于高温厌氧消化,温度一般需要控制在50-65摄氏度。
2.反应器类型选择:常见的厌氧消化反应器类型包括连续搅拌反应器(CSTR)、上升流式厌氧消化反应器(UASB)等。
CSTR适用于处理污泥浓度较低、泥量较多的情况;UASB适用于处理污泥浓度较高、泥量较少的情况。
3.进气与搅拌:在厌氧消化过程中,需要保证反应器内的气体和污泥充分混合。
可以通过进气系统和搅拌系统来实现。
进气可采用自然通气或机械通气,搅拌可采用机械搅拌或气泡搅拌等方式。
4.pH控制:厌氧消化过程中,pH值的控制对于菌群的生长和产气有重要影响。
污泥预处理—厌氧消化工艺性能及预处理过程中有机物变化共3篇

污泥预处理—厌氧消化工艺性能及预处理过程中有机物变化共3篇污泥预处理—厌氧消化工艺性能及预处理过程中有机物变化1污泥预处理—厌氧消化工艺性能及预处理过程中有机物变化污水处理厂中产生的污泥是一种富含有机物的固体废弃物,它需要得到合理的处理,以避免对环境造成污染。
厌氧消化工艺是一种有效的处理污泥的方式,它通过厌氧消化反应,将污泥中的有机物转化为甲烷等易于处理的物质。
然而,污泥在进行厌氧消化之前需要进行预处理,以充分释放有机物,并提高其可消化性。
本文将探讨污泥预处理—厌氧消化工艺的性能以及预处理过程中有机物的变化。
一、污泥预处理污泥预处理是指在进行厌氧消化反应之前,对污泥进行一定的处理,以减少其固体颗粒大小、增加有机物的可反应性,使污泥中的有机物更易被微生物降解。
常见的污泥预处理方法包括热处理、超声波处理、机械剪切等。
其中,热处理是一种较为常见的方法,其主要作用是通过加热使污泥中的有机物发生破坏、挥发与裂解等变化,以提高污泥的可消化性。
在实际应用中,污泥预处理方法的选择应根据污泥特性、工艺要求等因素进行综合考虑,以达到最佳的处理效果。
二、厌氧消化工艺厌氧消化工艺是一种利用厌氧微生物代谢有机物的过程,将污泥中的脂肪、蛋白质、碳水化合物等有机物转化为沼气和水。
该工艺相较于好氧处理更具有优势,它可以将有机物的降解效率提高到60%-90%以上,并能产生的沼气用于加热污水等用途。
该工艺的关键是在控制好水力停留时间的条件下,使污泥中的有机物与微生物充分接触和反应,以提高有机物的降解效率和沼气的产量。
三、预处理过程中有机物的变化在进行污泥预处理的过程中,主要是通过物理(振动、切割、加热等)、化学(氧化、脱水等)等方式来改变污泥中的有机物,并提高其可消化性。
其中,热处理是一种较为有效的方法。
在热处理过程中,随着温度的上升,污泥中的水分开始蒸发,污泥中的有机物逐步分解,而在达到一定温度时,污泥中的大分子化合物开始断裂,变为小分子化合物。
污水处理厂污泥厌氧消化强化产甲烷技术研究

污水处理厂污泥厌氧消化强化产甲烷技术研究污水处理厂污泥厌氧消化强化产甲烷技术研究【引言】随着城市化进程的加快和人们生活水平的提高,污水处理厂的建设和运营成为城市发展必不可少的组成部分。
污水处理厂负责处理城市污水,其中一个重要的处理步骤就是污泥的处理。
传统的污泥处理方式主要是厌氧消化,通过厌氧发酵分解有机物质,产生甲烷等有价值的产物。
然而,传统的厌氧消化方式存在效率低、产物利用率不高的问题,因此需要对污泥厌氧消化强化产甲烷技术进行研究。
【主体】一、强化产甲烷技术的意义污泥中含有大量的有机废弃物质,通过厌氧消化能够将这些有机废弃物转化为有价值的产物甲烷。
甲烷具有高热值和广泛的用途,可以用作燃料替代天然气,用于发电、供暖和燃料电池等方面。
然而,传统的厌氧消化方式存在一些问题,常见的有消化缓慢、产气量低、产气稳定性差等。
因此,通过对厌氧消化过程进行优化和强化,可以提高产气量和产气稳定性,使得污泥的资源化利用更加高效。
二、强化产甲烷技术的方法1. 厌氧菌种优化:选择适宜的厌氧菌种,如甲烷菌和硝化菌,这些菌种能够加速废物降解和产生甲烷。
2. 温度调控:适宜的温度能够促进厌氧发酵的进行,一般在35-38摄氏度之间为宜。
3. pH值调控:适宜的pH值可以提供良好的生存环境和代谢条件,一般在6.5-7.5之间为宜。
4. 进料浓度控制:适量的进料浓度可以提高产气效率和产气量,但过高的浓度会抑制甲烷菌的活性,因此需要进行合理的控制。
5. 辅助材料添加:在厌氧消化过程中添加一些辅助材料,如活性炭、硫酸盐等,能够提供良好的反应环境和营养物质,进一步促进产甲烷过程。
三、强化产甲烷技术的应用展望强化产甲烷技术在污水处理厂污泥处理中具有广阔的应用前景。
首先,通过技术优化可以提高产气效率和产气量,增加污泥的资源化利用率,减少环境污染。
其次,强化产甲烷技术可以改善厌氧消化过程中产生的异味和污染物排放,提升环境友好性。
此外,该技术还可以与其他技术相结合,如利用产生的热能进行有机废水预处理、产生的CO2用于促进蔬菜生长等,进一步提高资源循环利用。
CAST工艺处理城市污水原理及设计

CAST工艺处理城市污水原理及设计一、CAST工艺的原理CAST工艺是一种以厌氧消化为主、氧化沉淀为辅的城市污水处理技术。
其主要原理包括以下几个方面:1. 厌氧消化:CAST工艺接受了传统厌氧消化的方法,将城市污水先由鼓风机引入缺氧的消化池中,利用微生物(主要是厌氧菌)分解有机废物,产生甲烷等可燃气体,同时生成污泥。
2. 氧化沉淀:经过厌氧消化后,城市污水中的有机物质和部分可溶解性无机物质已经得到了降解,但依旧存在一定量的悬浮物和可溶解物。
为了进一步去除这些物质,CAST工艺引入氧化沉淀环节。
在这一步中,将消化池中的污水转入含有溶氧的氧化池,溶解氧能够刺激微生物的生长,使其附着在污泥颗粒上。
同时,污泥颗粒中的菌群会将溶解有机物质进一步降解,形成更稳定的沉淀物。
3. 混合沉淀:在氧化沉淀过程中,污水中的悬浮物和颗粒物质被氧化并沉淀下来形成污泥浆。
在CAST工艺中,通过对混合器的设计,使得氧化沉淀池中形成良好的混合,污泥颗粒通过重力沉降被集中到污泥浆的底部,缩减了浮游菌的释放和溶解物质的泄漏。
4. 污泥处理:而污泥浆则可以通过稀释、沉淀、脱水等方式进行进一步处理,转化为有机肥料或生物能源,实现资源化利用。
二、CAST工艺的设计CAST工艺的设计包括工艺设计和设备设计两个方面:1. 工艺设计:起首需要依据城市污水的水质状况和流量,确定厌氧消化和氧化沉淀的处理单元的容积和数量。
对于厌氧消化池,需依据有机物质的分解速率和产气量进行合理的容量设计。
而氧化沉淀池则需依据溶氧量、沉淀池容积与混合时间等因素进行设计。
确保厌氧消化和氧化沉淀的处理单元协同工作,达到最佳的污水处理效果。
2. 设备设计:CAST工艺的设备包括系统进水口、缺氧消化池、氧化沉淀池、混合沉淀器、污泥处理等部分。
设计时需合理安置各个处理单元的位置,确保流程顺畅。
同时,设备的选材和结构设计也需要思量操作便利性、耐高温、耐腐蚀等因素。
三、CAST工艺的优势相比传统的城市污水处理工艺,CAST工艺具有一些明显的优势:1. 高效处理:厌氧消化和氧化沉淀两个处理单元的协同作用使得城市污水得到了更加完善的分解和去除,极大地提高了处理效率。
污泥厌氧消化过程的生态学特征研究

污泥厌氧消化过程的生态学特征研究随着城市化和工业化的快速发展,废水处理成为了城市管理的重点和难点之一。
而污泥的处理则是废水处理工厂中最为重要的环节之一。
其中,污泥厌氧消化是目前一种广泛采用的污泥处理方法。
本文将重点论述污泥厌氧消化过程的生态学特征研究。
一、污泥厌氧消化过程的原理厌氧消化是利用微生物将有机物转化为甲烷等气体的过程。
厌氧消化涉及到多种微生物和化学反应,其基本原理包括酸化、乙酸生成、甲烷生成等过程。
污泥厌氧消化的原理是将污泥置于密闭的有机反应器中,在气密条件下通过厌氧发酵和厌氧呼吸作用,将有机物转化为二氧化碳和甲烷等气体产物。
其中,厌氧发酵的产物主要为有机酸,而厌氧呼吸过程产生的甲烷则是消化过程的最终产物。
二、污泥厌氧消化过程的微生物特征在污泥厌氧消化的过程中,微生物起到了至关重要的作用。
常见的微生物类别包括酸化菌、古生菌和甲烷菌等。
酸化菌:主要包括产酸杆菌、泛酸杆菌和琼脂杆菌等。
这些细菌在厌氧消化过程中,通过发酵分解有机物质,产生有机酸,从而促进消化过程的进展。
古生菌:主要包括甲烷古菌,这些微生物可直接利用碳酸氢盐为碳源,通过还原过程生成甲烷等气体。
甲烷菌:主要包括亚甲基菌和甲烷球菌等。
这些微生物通过将有机酸转化为甲醇和二氢气,然后再将其转化为甲烷,从而完成厌氧消化过程。
三、污泥厌氧消化过程的生态学特征1.菌群结构的变化污泥厌氧消化过程中的生态学特征主要体现在菌群结构的变化上。
厌氧消化过程中,污泥中的菌落数量会增加,而且种类和数量的变化与消化器的操作条件、有机负荷、退化程度等都密切相关。
此外,菌群结构变化亦会影响消化速率和消化效果等指标。
2.传质作用的影响厌氧消化过程中,物质的传质对于菌群的生长和代谢活动都有重要的影响。
由于污泥颗粒大小的不同,传质作用亦有差异,如颗粒较大的污泥质量传输较慢易出现堵塞现象,而颗粒较小的污泥对于气体的传输比较良好。
3.污泥的稳定性在厌氧消化过程中,污泥的稳定性与厌氧发酵的产物有关。
污水厂污泥消化处理系统技术探讨

污水厂污泥消化处理系统技术探讨摘要:由于环保和城市用水的需要,污泥问题广泛受到关注,本文于是探讨了污水厂污泥消化处理系统技术。
关键词:污水厂;污泥处理;消化系统;技术前言:污泥消化池的建设数量急剧增多,但目前污泥消化处理的总体技术水平不高,需要总结污泥消化处理系统的技术问题,采取相应的措施加以改善。
1、我国污泥消化处理系统存在的问题由于我们通常的污水处理方法一般为物理法或生物法,这些方法的实施往往不会改变污水中残留的漂浮物、胶体、微生物等颗粒状物质的存在。
我们平时所说的污泥中的成分也大抵如此。
确切的说,污水厂中产生的污泥可定义为含水量丰富,多种有机物、重金属物质与微生物并存的呈粘稠胶状物质。
其中,需要明确指出的是,这里所说的有机物不仅包括蛋白质、淀粉、纤维等可降解的成分,也包含如苯系物、大分子有机物等难以被降解的有机化合物。
而微生物往往指的是各种病原体及细菌的存在,这些都严重威胁着人们生产与日常生活活动的进行,阻碍了社会主义和谐社会的稳定发展。
2、污水厂污泥消化处理系统技术措施2.1确保热平衡计算的准确性用污泥消化处理系统中沼气产生的总能量减去维持消化处理过程的耗费的能量,就能得到污泥消化池实际的净能产量。
有可能影响污泥厌氧消化系统处理净能产量的相关因素较多,包括了污水厂可以处理的污泥量、污泥中的含水率、污泥的物理化学性质、消化系统的温度、外界环境中的大气与土壤温度、污泥在消化池内停留的时间、污泥消化池的保温性能,还有锅炉与热交换器这些供换热机械设备等等,国内污泥消化处理系统的热平衡设计的准确性应当满足系统运行的技术要求。
但在实际的污泥处理系统操作中,难以对一些的关键性工艺设计参数进行实际、准确的控制和设置,特别是对于二沉池中剩余污泥相关数据和设计参数不吻合的情况,需要对照实际情况,进行必要的、仔细的复核。
根据我国建设部门、发改委制定的《城镇污水处理厂污泥处理处置技术指南(试行)》(2011年3月,简称《指南》),污泥的有机物分解率通常在35%到45%之间,污泥处理系统去除VSS的产气率一般为0.75-1.1m3/kg。
污水处理中的厌氧消化与沼气利用

污水处理中的厌氧消化与沼气利用污水处理是现代社会不可或缺的环境保护工作之一。
而其中的厌氧消化与沼气利用技术,作为一种高效能源回收手段,受到了广泛关注。
本文将介绍污水处理中厌氧消化过程的原理和沼气利用的优势。
一、厌氧消化的原理和过程在污水处理过程中,厌氧消化是处理污泥的一种常见方法。
其原理是通过控制无氧环境下的微生物反应,将有机废料转化为可再利用的产物,即沼气。
厌氧消化主要包括以下几个步骤:1. 污泥预处理:将污泥进行初步处理,去除其中的杂质,以减少后续处理过程中的阻力。
2. 厌氧消化反应器:将经过预处理的污泥置于密闭容器中,与厌氧微生物一起进行反应。
在无氧条件下,厌氧微生物降解有机废料,同时产生沼气和消化液。
3. 沼气收集:通过合适的收集系统,将产生的沼气捕获起来,以便后续利用。
4. 污泥处理:经过厌氧消化后的污泥称为消化渣,其中的有机物大部分已经被降解。
消化渣可以通过干化、焚烧等方式进一步处理,以减少废物量。
二、沼气利用的优势及应用领域沼气,主要由甲烷和二氧化碳组成,是一种可再生能源,具有以下优势:1. 环保:通过沼气利用,可以减少温室气体的排放,降低对气候变化的影响。
2. 能源回收:沼气可以用作燃料,提供热能和动力,满足生活和工业的能源需求。
3. 资源化利用:沼气中的甲烷可以作为化工原料,用于生产化学品,如甲醇、乙烯等。
4. 农村发展:沼气可以在农村地区得到广泛应用,解决生活和农业用能问题,促进农村经济可持续发展。
目前,沼气利用已经在各个领域得到广泛应用:1. 农村生活:通过建设沼气池,将家庭厨余垃圾和畜禽粪便转化为沼气,满足农村居民的烹饪和采暖需求。
2. 工业用能:将沼气用作工业锅炉的燃料,提供热能和蒸汽,减少传统燃料的消耗。
3. 发电:利用沼气发电,不仅能够满足电力需求,还可以通过余热利用提供供热服务。
4. 交通领域:将沼气用作车用燃料,推动绿色交通的发展,减少对化石燃料的依赖。
总之,污水处理中的厌氧消化与沼气利用技术具有回收能源、减少废物排放、促进可持续发展等诸多优势。
污泥厌氧消化沼气安全系统的工艺设计

污泥厌氧消化沼气安全系统的工艺设计污泥厌氧消化沼气安全系统是一种处理污水的生物技术,主要用于污水处理厂中有机物分解和沼气的生产。
该技术具有成本低、运行稳定、节能环保等优点,广泛应用于国内外的污水处理行业。
本文将围绕污泥厌氧消化沼气安全系统的工艺设计进行介绍和探讨。
一、污泥厌氧消化沼气安全系统的概念污泥厌氧消化沼气安全系统,简称厌氧沼气系统,是指采用厌氧反应器处理污泥、有机废物等生物质,通过厌氧反应产生沼气,再将沼气收集利用的一种生物技术。
该技术适用于不同规模的城市污水处理厂、工业废水处理厂或畜禽养殖厂等。
厌氧沼气系统的主要组成包括厌氧消化器、沼气收集系统和消化液固液分离系统等。
二、厌氧消化器的设计厌氧消化器是厌氧沼气系统的核心部件,其设计过程需要考虑污泥性质、温度、水质等因素。
一般而言,厌氧消化器的设计应该满足以下几个方面的要求:1、适当的容积:厌氧消化器的容积应该根据污泥产生量、水质等情况进行综合考虑,一般计算方法是污泥日产生量×3-5天至10-20天的处理时间。
2、合适的外观形状:厌氧消化器应该尽量采用环保节能、实用美观的外观形式。
3、适宜的操作方式:厌氧消化器的操作方式应该尽可能简单、方便,能够便于对生化反应的维护、监测和调控。
三、沼气收集系统的设计沼气收集系统是厌氧沼气系统的重要组成部分,其设计过程需要考虑沼气产生量、沼气组成、管道敷设等因素。
一般而言,沼气收集系统的设计应该满足以下几个方面的要求:1、合适的吸气方式:沼气收集系统的吸气方式应该考虑沼气产生量、地形、压力等因素,可以选择真空吸气、微压吸气等方式。
2、科学的管道布局:沼气收集管道应该在水平面上尽量保持平整、不对地形造成障碍,同时还需要进行适当的斜度设计,保证沼气能够顺利地流入倾倒泵或储气罐等设备中。
3、安全的防爆措施:沼气本身具有较大的爆炸危险,沼气收集系统需要安装合适的排风、通风和防爆设备。
四、消化液固液分离系统的设计消化液固液分离系统是厌氧沼气系统中重要的后处理设备,其设计过程需要考虑过程操作的便利性和处理效果。
污泥厌氧消化工艺设计探讨

第2 3卷 第 3期
V0 . 3 No. 12 3
重庆工商大学学报 ( 自然科 学版)
J hnq g eho Bs es n .N t cE ) ogi enl ui sU i ( aSi d C nT n v
2 消化方式 的确定
消化方式 主要是确定消化 的温度和分级情况。按污泥消化的温度可分为高温消化 (O一 3c ) 5 5 = 和中 I
温消化(O一 6c ) 高温消化 比中温消化速度快 , 3 3 = , I 产气率高 , 消化池体积小 , 但是能耗相对较高 , 控制 困 难 。按运行方式又分为一级消化和二级消化 , 一级 消化指污泥消化在单池 内完成 , 二级 消化在两个 消化 池内完成, 第一池设有加温、 搅拌装置和集气 罩 , 二级 消化使用第一级 的余热 , 没有加热和搅拌装置。为 减少消化池的总体积 , 以采用两相消化 , 可 水解和酸化在一个池 , 甲烷转化 阶段在另一池进行 , 但是 , 此方
作者简介 : 良俊 (95 ) 男 , 龙 17 一 , 重庆云 阳人 , . " 硕士 主要从事水 污染控制和清洁生产研究 。
维普资讯
第 3期
龙 良俊 : 泥厌氧消化工 艺设 计探 讨 污
27 5
经验选择最小的 S T 低负荷消化池常用 的设计值是 3 6 , R , O一 0d 高负荷消化池为 l 2 。按容积负荷计 O一 0d
法会增加基建 和操厌氧消化池的容积决定于厌氧消化的负荷率 , 负荷率的表达方式是容积负荷 和有机物负荷。但是确
定消化池的关键 因素是平均固体停留时间 S T 对于无循环 的消化系统 ,R R , S T等于水力停留时间, 一般按
收稿 日期 :0 5—1 O ; 回日期 -0 6一O —1 。 2o 2一 5 修 '0 2 1 O
污泥厌氧消化的工艺技术

污泥厌氧消化的工艺技术污泥厌氧消化是一种有效处理废水处理厂污泥的工艺技术。
它通过利用厌氧消化过程中产生的生物气体,提高废水处理厂的能源利用效率,同时还能降低废水处理过程中的废弃物处理量,减少环境污染。
污泥厌氧消化工艺技术的主要步骤包括污泥进料、厌氧消化、沼气收集与利用以及消化液回流等。
首先,将进入废水处理厂的污泥收集起来,然后通过输送设备将污泥送入厌氧消化池。
在厌氧消化池中,污泥中的有机物质被厌氧微生物分解,产生沼气和消化液。
沼气主要由甲烷、二氧化碳和少量的氢气等成分组成,可以用作燃料发电、热能利用或煤气替代。
消化液中含有一定浓度的营养物质,可以回流到废水处理过程中,提高污水处理效果。
污泥厌氧消化工艺技术有以下几个优点。
首先,它能够有效减少污水处理厂处理废水产生的废弃物。
通过消化污泥中的有机物质,可以降低废水处理厂的处理成本,减少处理过程中产生的废弃物的数量,进而降低环境污染。
其次,污泥厌氧消化过程还可以产生大量的沼气,这些沼气可以用作生物质能源,用于发电、取暖或者供应工业用气等。
沼气的利用可以提高废水处理厂的能源利用效率,降低运营成本。
而且,污泥厌氧消化工艺还可以回收消化液,将其中的营养物质回流到废水处理过程中,提高污水处理效果。
当然,污泥厌氧消化工艺也存在一些挑战和问题。
首先,污泥厌氧消化过程中产生的沼气需要进行收集和利用,这需要建设相应的沼气收集系统和处理设施。
其次,厌氧消化过程还需要定期对污泥进行搅拌和加热等操作,以提高消化效果。
此外,污泥厌氧消化工艺也需要一定的投资和运营成本,对于一些废水处理厂来说可能存在经济上的压力。
总的来说,污泥厌氧消化是一种有效处理废水处理厂污泥的工艺技术。
它通过利用厌氧消化产生的沼气提高能源利用效率,降低废弃物处理量,减少环境污染。
这种工艺技术在废水处理行业中有广阔的应用前景,可以进一步提高废水处理的技术水平和环保效果。
污水处理中的厌氧消化与沼气发酵技术

降低处理成本
厌氧消化与沼气发酵技术能够 降低污水处理成本,提高污水
处理效率。
02 厌氧消化过程
厌氧消化微生物
1 2
产酸菌
将大分子有机物转化为小分子有机酸和醇类。
产甲烷菌
将小分子有机物转化为甲烷和二氧化碳。
3
共生的厌氧消化微生物群落
产酸菌和产甲烷菌在厌氧消化过程中相互依存、 协同作用。
厌氧消化反应机制
沼气发酵的最佳pH值范围为6.5-7.5,过高 或过低的pH值都会抑制微生物的生长。
有机物浓度
氧气含量
有机物浓度过高或过低都会影响发酵效率 ,适宜的有机物浓度范围为2%-10%。
厌氧消化过程中,氧气含量应严格控制, 以避免对厌氧菌造成不利影响。
04 厌氧消化与沼气发酵技术 的应用
城市污水处理
城市污水处理是厌氧消化与沼气发酵技术的重要应用领域之 一。通过厌氧消化工艺,城市污水中的有机物在厌氧菌的作 用下被分解为沼气和污泥,实现了污水的减量化和资源化。
有机负荷率
有机负荷率过高或过低都会影响厌氧 消化效果,需要根据实际情况进行调 控。
营养物质
厌氧消化微生物需要适量的氮、磷等 营养物质,缺乏这些营养物质会影响 厌氧消化效果。
03 沼气发酵过程
沼气发酵微生物
01
02
03
厌氧菌
在无氧环境中生存,将有 机物转化为沼气的微生物 。
产酸菌
将大分子有机物分解为小 分子有机酸,为产甲烷菌 提供营养。
污水处理中的厌氧消 化与沼气发酵技术
汇报人:可编辑 2024-01-04
目录
CONTENTS
• 厌氧消化与沼气发酵技术概述 • 厌氧消化过程 • 沼气发酵过程 • 厌氧消化与沼气发酵技术的应用 • 厌氧消化与沼气发酵技术的挑战与前景
污水处理污泥厌氧消化技术全解

污水处理污泥厌氧消化技术全解(1)采用两级消化时,一级消化池和一级消化池的停留时间之比可采用1:1、2:1或3:2,其中以采用2:1的最多:一级消化池的液位高度必须能满足污泥自流到一级消化池的需要,地下水位较高时、必须考虑池体的抗浮,对消化池进行清理时最好选择地下水位较低的时候进行。
(2)污泥厌氧消化池一般使用水密性、气密性和抗腐蚀性良好的钢筋混凝土结构,直径通常为6~35m,总高与直径之比为0.8~1.0,内径与圆柱高之比为2:1。
池底坡度为8%,池顶距泥面的高度大于1.5m,顶部集气罩直径一般为2m、高度为1~2m、大型消化池集气罩的直径和高度最好分别大于4m和2m。
(3)污泥厌氧消化池一般设置进泥管、出泥管、上清液排出管、溢流管、循环搅拌管、沼气出管、排空管、取样管、人孔、测压管、测温管等,一般进泥管布置在池中泥位以上、其位置、数量和形式应有利于搅拌均匀、破碎浮渣,污泥管道的最小管径为150mm,管材应耐腐蚀或作防腐处理,同时配备管道清洗设备。
(4)上清液排出管可在不同的高度设置3~4个、最小直径为75mm,并有与大气隔断的措施;溢流管要比进泥管大一级,且直径不小于200mm,溢流高度要能保证池内处于正压状态;排空管可以和出泥管共用同一管道;取样管最小直径为100mm,至少在池中和池边各设一根,并伸入泥位以下0.5m;人孔要设两个,且位置合理。
(5)池四周壁和顶盖必须采取保温措施。
污泥厌氧消化池的影响因素有哪些(1)温度、pH值、碱度和有毒物质等是影响消化过得的主要因素、其影响机理和厌氧废水处理相同。
(2)污泥龄与投配率。
为了获得稳定的处理效果,必须保持较长的泥龄。
有机物降解程度是污泥龄的函数,而不是进泥中有机物的函数。
(3)污泥搅拌。
通过搅拌可以使投加新鲜污泥与池内原有成熟污泥迅速充分地混合均匀,从而达到温度、底物浓度、细菌浓度分布完全一致,加快消化过程,提高产气量。
同时可防止污泥分层或泥渣层。
城市污水能源回收方式研究进展_碳捕获-厌氧消化耦合技术

城市污水能源回收方式探究进展_碳捕获-厌氧消化耦合技术摘要:随着城市化进程的加快,城市污水处理厂产生的污泥处理问题日益突出。
传统的污泥处理方式存在着能源浪费、环境污染等问题。
近年来,碳捕获-厌氧消化耦合技术作为一种新型的城市污水能源回收方式得到了广泛的关注。
本文将对该技术的探究进展进行综述,并提出了将来的进步方向。
一、引言城市污水处理是保障城市水环境安全的重要环节。
然而,传统的污水处理方法中,污泥的处理问题一直是一个难题。
传统的污泥处理方式如焚烧、填埋等不仅存在能源浪费的问题,还会引发二氧化碳等有害气体的排放,对环境造成污染。
因此,寻找一种高效、环保、可持续的城市污水能源回收方式就显得尤为重要。
二、碳捕获-厌氧消化耦合技术概述碳捕获-厌氧消化耦合技术是一种将厌氧消化与二氧化碳污染控制相结合的新型污泥处理方式。
该技术通过添加适量的氨基酸等碳源,实现对厌氧消化过程中甲烷生成的控制。
同时,该技术还通过二氧化碳的捕获、利用,将城市污水处理过程中产生的二氧化碳转化为有价值的化学能。
三、碳捕获-厌氧消化耦合技术的探究进展近年来,针对碳捕获-厌氧消化耦合技术的探究取得了一系列的进展。
探究人员提出了一种新型的氮源控制机制,通过调整氮源比例实现对厌氧消化过程中甲烷生成的控制。
此外,探究人员还通过改变投放物料的比例、调整操作条件等途径,提高了碳捕获-厌氧消化耦合技术的能源回见效率。
同时,探究人员还着重探究了该技术对水环境的影响。
探究结果表明,碳捕获-厌氧消化耦合技术不仅能够有效地处理污泥,还可以通过缩减甲烷和二氧化碳的排放量来改善水环境质量。
四、碳捕获-厌氧消化耦合技术的将来进步方向尽管碳捕获-厌氧消化耦合技术在城市污水能源回收方面取得了显著的进展,但仍存在一些问题和挑战。
起首,碳捕获-厌氧消化耦合技术的经济性需要进一步提高,以降低成本。
其次,污泥中的镉、铬等重金属元素的处理依旧是一个难题,需要进一步进行探究。
此外,对碳捕获-厌氧消化耦合技术在不同气候条件下的适用性还需要加强探究。
城市污水处理工艺分析与比较

城市污水处理工艺分析与比较城市污水处理工艺分析与比较污水处理是城市环境保护的重要组成部分,对于改善水质、保护水资源、促进可持续发展具有重要意义。
城市规模的不断扩大和人口的快速增长使得污水处理工艺的选择和优化成为一个热门话题。
本文将围绕城市污水处理工艺进行分析与比较,以期了解不同工艺的优缺点和适用情况。
目前常见的城市污水处理工艺包括活性污泥法、厌氧/好氧活性污泥法、厌氧消化法、湿式沉降法、植物生物滤池法以及人工湿地法。
这些工艺在不同的情况下具有独特的优势和适用性。
活性污泥法是最常用的一种城市污水处理工艺,其优势在于处理效果稳定、处理负荷范围广。
同时,该工艺能有效去除悬浮颗粒、COD和氨氮。
然而,该工艺占地面积大、运行和维护成本高,而且产生的污泥处理也较为复杂。
厌氧/好氧活性污泥法则是目前发展较快的一种工艺。
通过厌氧和好氧两个阶段的处理,能够进一步提高氮、磷的去除效果,降低污泥产生量。
然而,该工艺对稳定的控制要求较高,工程建设及运行成本也相对较高。
厌氧消化法是将厌氧预处理和消化污泥处理相结合。
该工艺能有效提高污泥的稳定性和持久性,同时减少污泥处理成本。
然而,由于厌氧发酵对温度和PH值较为敏感,因此在操作和稳定性方面存在一定的挑战。
湿式沉降法是一种采用化学絮凝剂对污水进行处理的工艺。
该工艺能够有效去除悬浮颗粒、油脂和重金属等污染物。
然而,相比于生物法,湿式沉降法处理效果较差,更适用于在生物法前段进行预处理。
植物生物滤池法是一种利用植物根系和微生物共同作用对污水进行处理的工艺。
该工艺具有操作简单、运行成本低、对环境影响小的优势。
然而,植物生物滤池工艺对水质的处理效果较差,适用于对水质要求较低的地区。
人工湿地法是一种利用湿地植物、土壤和微生物对污水进行处理的工艺。
该工艺具有处理效果稳定、对水质的改善效果明显的特点。
同时,人工湿地还能够提供良好的生态环境和景观效果。
然而,人工湿地对操作和维护有一定要求,对于城市污水处理厂运行和占地面积的要求较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型城市污泥厌氧消化技术工艺探讨在众多的污泥处理处置方法中,厌氧消化由于具备回收潜在能量和降低环境危害的功能成为目前国际上应用最为广泛的污泥稳定化和资源化的处理方法。
通过直接厌氧消化或预处理后厌氧消化,可以极大降低污泥中有机质含量,使污泥稳定、易于脱水,并适合作为有机肥用于土壤改良、园林绿化;产生的沼气经提纯后可广泛应用于居民用气、并网发电、车用气体等,减少日益紧缺煤、石油、天然气等有限资源的消耗。
我国典型城市污泥有机质含量普遍偏低,大部分在30%~60% [1],因此现阶段主要采用卫生填埋、焚烧、堆肥、资源化利用(如制水泥、砖等)污泥处置方式。
但是,随着近年来国家环保部颁发的《污水处理厂污泥处理处置最佳可行技术导则》建议必要时将厌氧消化技术作为污泥处置首选工艺,同时国内部分厌氧消化工程有所起色,厌氧消化正逐渐成为我国城市污泥处理处置技术的热点研究对象。
因此文章将针对我国典型城市污泥厌氧消化处理工艺进行分析与探讨。
1 厌氧消化概述1.1 技术简介1.1.1直接厌氧消化直接厌氧消化即传统厌氧消化,通常不经过任何前期处理而直接进行厌氧消化反应的一种处理模式,多用于处理有机质较高的人畜粪便、秸秆等有机废物,后期也用于市政污泥处理,但通常适用于有机质较高的污泥或掺有高有机质废物的混合污泥。
厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。
根据厌氧消化过程中甲烷菌的适宜温度范围,污泥厌氧消化可以分为中温(35~40 ℃)和高温消化过程(50~60 ℃),高温消化速度快、负荷高、容积小,国外较多使用,而我国受经济水平所限更多使用中温消化[2]。
根据厌氧消化的工艺运行形式,分为两相消化(两个反应器)和两级消化(一个反应器两环节),现阶段国内外仍以两级厌氧消化运行为主。
1.1.2预处理+厌氧消化由于传统厌氧消化普遍存在消化速率低、停留时间长(20~30 d)、处理效率低(挥发性固体VS的去除率30%~40%)等不足,为改善这种现状,近年来人们对污泥的预处理技术开展大量研究。
厌氧消化的过程一般包括水解、产酸发酵和产甲烷3个步骤,其中水解过程是限速步骤,水解过程将颗粒有机物变为可溶解有机物,污泥预处理的目的是加速和提高水解效率[3]。
污泥的预处理方法包括加热处理、热化学处理、碱处理和超声处理等。
污泥高温预处理技术具有强化污泥降解、杀灭部分病原菌的功能,具有良好的应用前景。
Hariklia等[4]采用70 ℃高温预处理研究发现,中温厌氧消化产甲烷速率最高可达145%、甲烷产量提高20%~26%;Li等[5]发现活性污泥的最佳热处理条件是170 ℃加热60 min,小试实验结果表明经热解污泥只需5d停留时间COD去除率即可达到60%;Stuckey等[6]发现活性污泥的最佳热解温度在175 ℃左右,温度再高效果会出现下降。
但是高温预处理技术能耗高、运行管理较复杂,有待进一步完善。
此外,林志高等[7]、Cai等[8]发现,在污泥中加入NaOH或Ca(OH)可以改善污泥的消化性能,通常污泥固体浓度为0.5%~2%,碱的用量为8~16 g NaOH/100 TS;曹秀芹等[9]在实验室条件下研究得出:污泥经超声处理后,污泥絮体被分解,絮体尺寸变小,超声波处理30 min,SCOD/TCOD提高3倍左右;英国COS Technik公司研发的Biogest Crown污泥降解系统是一种通过利用压力差来溶解污泥的设备[10],可使污泥降解程度提高20%,产气量提高30%,该反应器处理污泥的浓度范围为3%~8%。
1.2 国内外发展历程1.2.1国外发展情况目前在整个欧洲共有超过36 000座厌氧消化反应器,对污泥的处理量占欧洲总产泥量的40%~50%[11]。
其中欧盟对厌氧消化技术最为推崇,厌氧消化也是该地区最为常见的处理方式[12],如表1所示。
德国每年产生污泥(干重)220万t 且大于5 000 t的污水厂均设厌氧消化处理,英国和法国每年产生的污泥近120万t和85万t。
根据美国环保局1998年的调查,厌氧消化是美国污水厂采用最普遍的污泥稳定方法,占60%。
日本大多数污水处理厂也是采用厌氧消化来处理污泥,而且近年不断改进消化技术,如通过机械浓缩产生更高浓度污泥进行厌氧消化以及对搅拌技术和热效的改善等。
表1 欧盟各国采用的污泥处理方法厌氧消化技术在发达国家应用较为广泛,除了有机质含量(60%~80%)[13]和分解率较高外,另一个重要原因就是沼气利用途径较为发达,其中沼气发电更是受到广泛重视和积极推广,如美国的能源农场、德国的可再生能源促进法的颁布、日本的阳光工程、荷兰的绿色能源等[14],而且早在20世纪80年代,发达国家的城镇污水处理厂污泥厌氧消化产生沼气转化的电能即可满足污水厂处理时所需电力的33%~100%[15]。
美国波士顿鹿岛污水厂、马里兰州后河污水厂、华盛顿蓝原高级污水厂等均对污泥采用“厌氧消化+热电联产”技术,取得重大的经济效益,其中马里兰州后河污水厂年产电力近300万kW,相当于该厂30%以上的基本电负荷。
1.2.2国内发展情况我国污泥厌氧消化技术起步较早,但技术应用发展较慢,与发达国家相比差距较大。
目前建立污泥厌氧消化系统的污水处理厂数量并不多,仅在北京、上海、天津、重庆、青岛、石家庄、郑州、沈阳、南京、济南、襄阳等城市的约50座大中型污水处理厂中建设了一批污泥消化设施,目前仍可使用的只有20余处(部分典型污泥厌氧消化项目如表2所示),其中运行效果较为突出的有上海白龙港污泥厌氧消化工程、大连东泰夏家河污泥处理工程、青岛麦岛中温厌氧消化工程、襄阳污泥综合处置示范工程等,其它大部分未运行或中途停运。
究其原因,除了消化污泥土地利用政策和管理支撑力度不足、沼气利用缺少激励机制外,我国已建污水厂多采用低负荷处理工艺(泥质有机质含量低)也是重要影响因素[16]。
表2 国内部分典型污泥厌氧消化项目2 我国城市污泥厌氧消化现状分析2.1 问题分析污泥厌氧消化处理系统投资很高,在我国通常占污水厂总投资的1/3~1/2,据相关调查表明我国污水厂污泥厌氧消化系统建成未运行或停运的比例达到37.5%[17]。
其主要原因如下。
2.1.1泥质分析方面污泥泥质直接决定着污泥厌氧消化的效果,不同污泥的消化性能存在较大的差异[18]。
经调查,多数污水厂设计前期及运行过程中并没有对污水水质以及泥质进行详细调研,通常产生后果[19]:(1)厌氧消化工程建设带有盲目性,很多投资巨大的消化系统直接照搬国外技术,而没有考虑自身泥质含量与国外的差距,因此从开始便无法正常运行;(2)多数污水厂无法明确污泥有机质含量与分解率的关联,故无法根据实际运行情况作出评价和改良。
因而污水厂在上马厌氧消化技术前有必要对进水水质和泥质做全面系统的考察和监测。
2.1.2系统运行管理方面(1)污泥厌氧消化工艺操作复杂,运行管理难度大[20]。
整个工艺涉及到污泥厌氧消化、沼气收集和利用等多个环节,对多工种技术水平和配合协调能力要求高,且关键设备大多精密度较高或来自于国外,自控和维修相对比较复杂昂贵,因此对运行管理水平要求较高。
(2)运行费用不足。
由于我国现阶段仍处于污水处理设施运营由政府负担向市场经济机制过渡的阶段,部分污水厂的运行费用不能保证整个系统正常运转,加之厌氧运行初期沼气量少、回报率低,所以往往污泥处理设施被搁置。
(3)存在消防隐患。
沼气是一种易燃易爆气体,安全储存要求较高,当部分污水厂靠近居民区时,消防安全问题成为最大隐患。
2.1.3政策指引方面尽管近年来我国政府出台了较多的关于污泥处理处置的技术指南或规程,但受制于早期建厂时所形成的“重水轻泥”的传统思维及自身运营成本的考量,再加上冒然采用污泥厌氧消化等新技术需要承担巨大生产风险(如早期产气不稳定导致沼气收益不足以抵消其运行费用)等因素,大部分污水厂仍习惯于采用“污泥浓缩-外运处理”的老办法。
因而需要政府通过逐步提高污水处理费的征收水平、财政上给予适当补贴或减免沼气发电或并入城市煤气管网的税收等方式落实污泥处理处置费用[19],使污水厂扭转亏损局面并进入良性循环。
2.2 成功案例解析2.2.1大连东泰夏家河污泥处理厂大连夏家河污泥处理厂项目引进德国利浦公司的高浓度厌氧消化技术,于2009年4月29日~2010年4月30日共处理污泥及其它可降解有机废物65 000 t,其中包括工业类似污泥8 380 t、粪便130 t、餐饮垃圾90 t及海关查没食品50 t。
产沼气394万m3、外售天然气110万m3;产沼渣2.5万t,外售腐殖土1.5万t。
计算可知该厂污泥产气率高达60.6 m3沼气/t湿泥,远远高于传统厌氧消化产气率[21]。
而城市污泥与工业类似污泥混合有机质含量约40%~60%,由此可知在污泥中添加少量有机质含量较高的餐厨、粪便等有机废物将极大提高污泥厌氧消化效率。
2.2.2襄阳污泥处理厂襄阳污泥处理厂采用高温热水解预处理和厌氧消化工艺技术,每天处理100 t堆积污泥(有机质含量35%~45%)和200 t污水厂污泥(有机质含量40%~60%),每天产生沼气约16 500 m3、一部分用于自身污泥加热系统,其余沼气经提纯后制作车用CNG。
计算可知,该厂污泥产气率可达到55 m3沼气/t湿泥,在有机质含量相对较低的情况下已属不易。
而高温热水解预处理的目的是利用高温高压使污泥结构和性状发生变化以提高其生物可降解性。
因此,高温热水解也是提高污泥厌氧消化的一个重要技术手段。
2.3 应用启示鉴于国内城市污泥有机质较低的现状,结合以上成功案例,厌氧消化工艺可参考以下技术路线:(1)通过向污泥中掺加部分餐厨、粪便等有机垃圾以提高污泥整体有机质含量及营养比值,从而得到较高的消化效率,但需政府大力支持及统筹协调,难度较大;(2)由于污泥固体的生物可降解性低(30%~50%),污泥固体细胞分解和胞内生物分子水解是厌氧消化的限速步骤,因此提高厌氧消化效率的一个主要途径是促进污泥细胞的分解、增强其生物可降解性[22],常用技术包括热水解、机械破碎、超声波破碎、酶处理及酸、碱处理[23]。
作为研究最多的污泥预处理技术,高温热水解由于具备高效的水解效率、良好的灭菌除臭效果及充足的能量来源等优势,成为新型厌氧消化工艺重要组成而得到广泛推崇。
而对于我国典型城市污水厂而言,污泥有机质含量普遍偏低是一个固有事实,污泥处理处置走向市场化也是一个必然趋势,因而通过预处理提高厌氧降解率以实现资源利润最大化就显得尤为重要。
3 “高温预处理+厌氧消化”工艺经济性探讨目前国内污泥厌氧消化工程多采用“中温厌氧消化+热电联产”工艺,一则可以发电用于厂内生产节能或并网产生效益,二则也能利用发电余热保温提高厌氧消化效率。