工程热力学习题答案第四章-复习进程

合集下载

工程热力学沈维道第4章 习题提示和答案

工程热力学沈维道第4章 习题提示和答案

题 4-12 附图
提示和答案: 在 p − v 图和 T − s 图上, 随顺时针移动, n 增大。 可逆绝热膨胀 Δs1− 2s = 0 , 定温膨胀 Δs = 0.462kJ/(kg ⋅ K) ,多变膨胀 Δs = 0.1923kJ/(kg ⋅ K) 。 4-14 试证明理想气体在 T − s 图(如图 4-20)上的任意
可见温度变化范围很大时按定值比热容计算误差太大。
23
第四章 气体和蒸汽的热力过程
4-10
一体积为 0.15 m 3 的气罐,内装有 p1 = 0.55 MPa,t1 = 38 °C 的氧气,今对氧气
加热,其温度、压力都将升高,罐上装有压力控制阀,当压力超过 0.7 MPa 时阀门自动打 开,放走部分氧气,使罐中维持最大压力 0.7 MPa 。问当罐中氧气温度为 285 ℃时,共加 入多少热量?设氧气的比热容为定值, cV = 0.667 kJ/(kg ⋅ K) , c p = 0.917 kJ/(kg ⋅ K) 。 提示和答案: 初终态氧气氧气的质量 m1 =
wt , s =
4-6
1 M
( H m,1 − H m,2 ) = −138.21 × 103 J/kg 。
3 kg 空气从 p1 = 1 MPa 、 T1 = 900 K ,可逆绝热膨胀到 p2 = 0.1 MPa 。设比热
容为定值,绝热指数 κ =1.4,求: (1)终态参数 T2 和 v2 ; (2)过程功和技术功; (3) ΔU 和
的技术功
wt = − ∫ vdp = ∫ pdv + ( p1v1 − p2 v2 ) ,将过程功 ∫ pdv 的各关系式代入, p v v
v2
1
p2
1
v2

工程热力学课后问题详解

工程热力学课后问题详解

⼯程热⼒学课后问题详解《⼯程热⼒学》沈维道主编第四版课后思想题答案(1~5章)第1章基本概念⒈闭⼝系与外界⽆物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热⼒系⼀定是闭⼝系统吗? 答:否。

当⼀个控制质量的质量⼊流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

⒉有⼈认为,开⼝系统中系统与外界有物质交换,⽽物质⼜与能量不可分割,所以开⼝系不可能是绝热系。

这种观点对不对,为什么?答:不对。

“绝热系”指的是过程中与外界⽆热量交换的系统。

热量是指过程中系统与外界间以热的⽅式交换的能量,是过程量,过程⼀旦结束就⽆所谓“热量”。

物质并不“拥有”热量。

⼀个系统能否绝热与其边界是否对物质流开放⽆关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间⽽变化,这是它们的共同点;但平衡状态要求的是在没有外界作⽤下保持不变;⽽平衡状态则⼀般指在外界作⽤下保持不变,这是它们的区别所在。

⒋倘使容器中⽓体的压⼒没有改变,试问安装在该容器上的压⼒表的读数会改变吗?在绝对压⼒计算公式b e p p p =+ ()b p p >; b v p p p =- ()b p p <中,当地⼤⽓压是否必定是环境⼤⽓压?答:可能会的。

因为压⼒表上的读数为表压⼒,是⼯质真实压⼒与环境介质压⼒之差。

环境介质压⼒,譬如⼤⽓压⼒,是地⾯以上空⽓柱的重量所造成的,它随着各地的纬度、⾼度和⽓候条件不同⽽有所变化,因此,即使⼯质的绝对压⼒不变,表压⼒和真空度仍有可能变化。

“当地⼤⽓压”并⾮就是环境⼤⽓压。

准确地说,计算式中的Pb 应是“当地环境介质”的压⼒,⽽不是随便任何其它意义上的“⼤⽓压⼒”,或被视为不变的“环境⼤⽓压⼒”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建⽴在热⼒学第零定律原理之上。

它利⽤了“温度是相互热平衡的系统所具有的⼀种同⼀热⼒性质”,这⼀性质就是“温度”的概念。

工程热力学第四章答案

工程热力学第四章答案

工程热力学第四章答案【篇一:工程热力学答案(第四版严家騄著含第六章)】考题1、如果容器中气体压力保持不变,那么压力表的读数一定也保持不变,对吗?答:不对。

因为压力表的读书取决于容器中气体的压力和压力表所处环境的大气压力两个因素。

因此即使容器中的气体压力保持不变,当大气压力变化时,压力表的读数也会随之变化,而不能保持不变。

2、“平衡”和“均匀”有什么区别和联系答:平衡(状态)值的是热力系在没有外界作用(意即热力、系与外界没有能、质交换,但不排除有恒定的外场如重力场作用)的情况下,宏观性质不随时间变化,即热力系在没有外界作用时的时间特征-与时间无关。

所以两者是不同的。

如对气-液两相平衡的状态,尽管气-液两相的温度,压力都相同,但两者的密度差别很大,是非均匀系。

反之,均匀系也不一定处于平衡态。

但是在某些特殊情况下,“平衡”与“均匀”又可能是统一的。

如对于处于平衡状态下的单相流体(气体或者液体)如果忽略重力的影响,又没有其他外场(电、磁场等)作用,那么内部各处的各种性质都是均匀一致的。

3、“平衡”和“过程”是矛盾的还是统一的?答:“平衡”意味着宏观静止,无变化,而“过程”意味着变化运动,意味着平衡被破坏,所以二者是有矛盾的。

对一个热力系来说,或是平衡,静止不动,或是运动,变化,二者必居其一。

但是二者也有结合点,内部平衡过程恰恰将这两个矛盾的东西有条件地统一在一起了。

这个条件就是:在内部平衡过程中,当外界对热力系的作用缓慢得足以使热力系内部能量及时恢复不断被破坏的平衡。

4、“过程量”和“状态量”有什么不同?答:状态量是热力状态的单值函数,其数学特性是点函数,状态量的微分可以改成全微分,这个全微分的循环积分恒为零;而过程量不是热力状态的单值函数,即使在初、终态完全相同的情况下,过程量的大小与其中间经历的具体路径有关,过程量的微分不能写成全微分。

因此它的循环积分不是零而是一个确定的数值。

习题1-1 一立方形刚性容器,每边长 1 m,将其中气体的压力抽至 1000 pa,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为 0.1mpa。

工程热力学第四章 习题解答

工程热力学第四章 习题解答

第四章 习题解答4-1 多变指数:()()2112ln ln 0.1250.9ln ln 0.1p p n v v ===()210.9 1.4110.91v n n q c T T u u n n κκ---=-=∆=∆---∴11408 kJ/kg 55u q ∆==⨯=40832 kJ/kg w q u =-∆=-=()21 1.4811.2 kJ/kg p h c T T u κ∆=-=⋅∆=⨯= 4011.228.8 kJ/kg s w q h =-∆=-=2211ln ln 1.01ln100.732ln 0.1250.822 kJ/kg Kp v v ps c c v p ∆=+=⨯+⨯=⋅ 4-2 ⑴1 1.4112 1.410.287423110.21 1.41 111.9 kJ/kg RT p w p κκκ--⎡⎤⎛⎫⎛⎫⨯⎢⎥=-=- ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎢⎥⎣⎦= 0s ∆=⑵ ()()120.72342330088.25v w u c T T =-∆=-=⨯-=kJ/kg22113000.1lnln 1.0045ln 0.287ln 4230.5 0.117 kJ kg p T p s c R T p ∆=-=⋅-⋅=⑶1120.5ln 0.287ln195.4 kJ kg 0.2p w RT p ==⋅= 120.5ln 0.287ln 0.462 kJ kg K 0.2p s R p ∆==⨯=⋅⑷1112210.287423110.267.1121n n RT p w n p -⎡⎤⎡⎤⎛⎫⨯⎢⎥=-=-= ⎪⎢⎥⎢⎥--⎝⎭⎣⎦⎢⎥⎣⎦kJ/kg2221ln ln 1.005ln 0.723ln 0.20.35 kJ kg Kp v v ps c c v p ∆=+==-⋅4-3 ⑴ 21ln8.314373ln107140.6 kJ kmol v w RT v ==⨯= 21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ ⑵ 0w =21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ 4-4 210.12ln 50.2598ln 2.091 kJ K 0.6v S mR v ∆==⨯=-()303 2.091633.6 kJ Q W T S ==∆=⨯-=-0, 0H U ∆=∆=4-5 2211201.3286568.3 K 101.3p T T p ⎛⎫==⨯= ⎪⎝⎭()()210.287568.3286202.6 kJ kg 1.41v u c T T ∆=-=-=-()()21 1.40.287568.3286283.6 kJ kg 1.41p h c T T ⨯∆=-=-=-210.287586.3ln ln 0.493 kJ kg K 1.41286v T s c T ∆===⋅-4-6 ⑴ 21303 K T T ==120.3ln 60.287303ln 573.2 kJ 0.1p Q W mRT p ===⨯⨯⨯=⑵ 1 1.411.422110.1303221.4 K 0.3p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ , 0Q = ()()120.2876303221.4351.3 kJ 1 1.41R W m T T κ=-=⨯-=--⑶ 1 1.211.222110.1303252.3 K 0.3n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2876303252.3436.5 kJ 1 1.21R W m T T n =-=⨯-=--()()21 1.2 1.40.2876252.33031 1.21 1.41 218.3 kJv n Q m c T T n κ--=-=⨯⨯⨯----=4-7 ()()()()1221ln ln 0.60.12 1.30ln ln 0.8150.236p p n v v ===1116000.236493.4 K 0.287p v T R ⨯===2221200.815340.8 K 0.287p v T R ⨯===()()120.287493.4340.8146 kJ 1 1.31R w T T n =-=-=--()()21 1.3 1.40.287340.8493.411 1.31 1.4136.5 kJ/kgn R q T T n κκ--=⋅-=⋅⋅-----= ()()210.723340.8493.8109.5 kJ kg v u c T T ∆=-=⨯-=- ()()21 1.01340.8493.4154.1 kJ kg p h c T T ∆=-=⨯-=-22120.8150.12ln ln 1.01ln 0.723ln0.2360.6 0.089 kJ kg Kp v v p s c c v p ∆=+=⋅+⋅=⋅4-8 40200160 kJ kg u q w ∆=-=-=-211600.533 kJ kg K 373673v u c T T ∆-===⋅--()()()()()2121122112ln ln ln 16 1.491673ln ln ln 6373p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭()()121 1.4912000.327 kJ/kg K 673373n w R T T --⨯===⋅-- 0.5330.3270.86 kJ kg K p v c c R =+=+=⋅4-9 10.412122933454.7 K v T T v κ-⎛⎫==⨯= ⎪⎝⎭()()1120.287293454.7116 kJ 1 1.41R w T T κ=-=-=---2221ln 0.287454.7ln 3143.4 kJ vw RT v ==⨯⨯=12116143.427.4 kJ w w w =+=-+=4-10 ⑴ 333100 1.73583 K 0.2968p v T R ⨯=== 11.413232 1.735831265 K 0.25v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭22120.296812651.5 MPa 0.25RT p p v ⨯====11227730.250.153 MPa 1265T v v T ==⨯=⑵ 定压过程:()()210.29681265773365 kJ kg 1 1.41R u T T κ∆=-=-=--()()210.29681265773146 kJ kg w R T T =-=⨯-=定熵过程:()()320.29685831265506 kJ kg 1 1.41R u T T κ∆=-=-=---506 kJ kg w u =-∆=4-11 ⑴ 31110.2875730.274 m 600RT v p ⨯===321330.2740.822 m kg v v ==⨯=11.4112121573369 K 3v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭2220.2873690.129 MPa 0.822RT p v ⨯===310.274 v v ==3m kg223330.1290.387 MPa p v p v ==⨯= 32369T T ==K⑵ ()()1120.287573369146.41 1.41R w T T κ=-=-=--kJ kg32221ln 0.287369ln 116.43v w RT v ==⨯⨯=-kJ kg()1.293146.4116.438.8 kJ W mw ==⨯-=4-12 1112101.3ln101.3150ln 59250 kJ 5000p Q pV p ==⨯⨯=- 4-13 101.3256000.21550.2872733600pV mRT ⨯===⨯⨯ kg/s 1,120.1ln 0.21550.287293ln 37.8 kW 0.8s T p W mRTp ==⨯⨯=- 112,1 1.411.4111.40.2872930.8 0.2155151.3 kW 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦4-14 1600 kg/h kg/s 6m== ⑴定温压缩11210.1ln 0.287293ln 25.1 kW 60.6s T p W mRTp ⋅==⨯⨯=- ⑵定熵压缩112,1 1.411.4111 1.40.2872930.6 132.8 kW 6 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦⑶多变压缩 112,1 1.2211.22111 1.220.2872930.6 129.6 kW 6 1.2210.1n n s nnRT p W m n p --⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=- ⎪⎢⎥-⎝⎭⎣⎦4-15 压缩比2160.160p p ==,应采用二级压缩20.775 MPa p == ∵13322n nT p T p -⎛⎫= ⎪⎝⎭,2120T T '==℃ (冷却至初温)∴1 1.2511.2533226293441.90.775n np T T p --'⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K3168.8t =℃ 4-16 ()()()()()2121122112ln ln ln 0.50.1 1.130.5289ln ln ln 0.1348p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭111100400482.3 kg/min 8.04 kg/s 0.287289p V mRT ⨯====⨯ ()()12 1.130.2878.042893481 1.1311183 kWs nR W mnwm T T n ⨯==-=⨯---=- ()()21 1.13 1.48.040.7233482891 1.131 712.3 kW 42738 kJ/minv n Q m c T T n κ--=-=⨯⨯⨯---=-= 4-17 12111v p c p λ⎡⎤⎛⎫⎢⎥=-- ⎪⎢⎥⎝⎭⎣⎦⑴ n =1.4,11.40.510.0610.870.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⑵ n =1.25,11.250.510.0610.840.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ⑶ n =1.0,11.00.510.0610.760.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦4-18 ()21w pw a n m c t m c T T ∆=--111100250297.3 kg/h 0.08258 kg/s 0.287293a p V m RT ⨯====⨯ ()()()2112 4.186846514297.3293423 0.705 kJ/kg Kw pw w pw n a a m c t m c t c m T T m T T ∆∆⨯⨯=-==--⨯-=-⋅111n v n n Rc c n n κκκ--==--- 1.40.2870.7051.411 1.200.2870.7051 1.41nn Rc n R c κκκ⨯+---===-+--1.211.2122114230.10.905 MPa 293n n T p p T --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()1211.20.2870.0825829342318.48 kW1.21s a s a anRW m w m nw m T T n ===--⨯=⨯-=-。

工程热力学复习参考题-第四章

工程热力学复习参考题-第四章

第四章 理想气体热力过程一、选择题1.在定容过程中,理想气体的内能变化Δu =D A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v2.在定熵过程中,理想气体的内能变化Δu =BDA .⎰21dT c p B .-⎰21pdv C .-⎰21vdp D .⎰21dT c v3. 在定压过程中,理想气体的内能变化Δu =D A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v4.在定熵过程中,理想气体的焓的变化Δh =AC A .⎰21dT c p B .⎰21pdvC .⎰21vdpD .⎰21dT c v5.理想气体定容过程中,焓的变化Δh =B A .c v ΔT B .c p ΔT C .u+pv D .w t6.理想气体定温过程的热量q 等于BCD A .c n ΔT B .w t C .T Δs D .w 7.理想气体等温过程中,q ,w ,w t 间的关系为DA .q> w t >wB .q=w< w tC .q>w= w tD .q=w= w t8.理想气体绝热过程初终态温度,压力的关系为A A .12T T =κκ112-⎪⎪⎭⎫ ⎝⎛p pB . 21T T = κκ112-⎪⎪⎭⎫ ⎝⎛p pC .12p p = κκ112-⎪⎪⎭⎫ ⎝⎛T T D .21p p = κκ112-⎪⎪⎭⎫⎝⎛T T9.理想气体多变过程内能变化Δu 等于B A .c n ΔT B .c v ΔT C .c p ΔT D .R ΔT 10.理想气体多变过程焓的变化Δh 等于C A .c n ΔT B .c v ΔT C .c p ΔTD .R ΔT二、填空题1.Rg=0.297kJ/(kgK)的1kg 双原子理想气体在定压下吸热3349kJ ,其内能变化Δu = 。

2.Rg=0.26kJ/(kgK)、温度为T =500K 的1kg 理想气体在定容下吸热3349kJ ,其熵变Δs = 。

工程热力学第4章习题答案

工程热力学第4章习题答案

4-12 一个气缸活塞系统如图 4-19 所示,活塞的截面积为 40cm2,活塞离气缸底部 10cm, 重物 20kg,初始状态温度 300K,大气压力 101325Pa。求
(1)如果使缸内空气温度升高 5℃的同时使重物升高 2cm 需要加入多少热量; (2)然后当可逆绝热情况下使活塞回到原位置,需要再加上多少重物。
4-6 空气的初参数为 p1=0.5MPa 和 t1=50℃,此空气流经阀门发生绝热节流作用,并使空 气容积增大到原来的 2 倍。求节流过程中空气的熵增,并求其最后的压力。
解:对于理想气体 ∆h = cp∆T ,可得 h2 − h1 = cp (T2 − T1 ) ,绝热节流前后焓值相等,因此
T1 = T2 ,因此对于理想气体绝热节流前后温度也相等
4-3 某理想气体动力循环由这样 4 个过程构成,先从状态 a 定温膨胀到状态 b,后绝热 膨胀到状态 c,再定压放热到状态 d,最后绝热压缩回到状态 a,在 p-v 图、T-s 图上表示该 循环。已知吸热量 q1 和各点的焓,列出放热量、功和循环热效率的计算式。
解:由 T-s 图,c-d 过程是定压放热过程,放热量 q2 = ∆h + wt = ∆h = hd − hc < 0
= 0.789kJ/ (kg ⋅ K)
由理想气体状态方程可得
p1V1 T1
=
p2V2 T2
,而V2
= 2V1 ,可得
p2 p1
= 0.379
κ −1
绝热过程 T2 T1
=
⎛ ⎜ ⎝
p2 p1
⎞ ⎟ ⎠
κ
,可得绝热指数κ = 1.4
因此 cp = κ cV = 1.4× 0.789 = 1.105kJ/ (kg ⋅ K )

第三版工程热力学课后思考题答案

第三版工程热力学课后思考题答案

第一章1、答:不一定。

稳定流动开口系统内质量也可以保持恒定。

2、答:这种说法是不对的。

工质在越过边界时,其热力学能也越过了边界。

但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。

3、答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。

稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。

平衡状态并非稳定状态之必要条件。

物系内部各处的性质均匀一致的状态为均匀状态。

平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。

4、答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。

当地大气压不一定是环境大气压。

环境大气压是指压力仪表所处的环境的压力。

5、答:温度计随物体的冷热程度不同有显著的变化。

6、答:任何一种经验温标不能作为度量温度的标准。

由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。

7、答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。

8、答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。

9、答:经历一个不可逆过程后系统可以恢复为原来状态。

系统和外界整个系统不能恢复原来状态。

10、答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。

11、答:不一定。

主要看输出功的主要作用是什么,排斥大气功是否有用。

第二章1、答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。

《工程热力学》(第四版)习题提示及答案04章习题提示与答案

《工程热力学》(第四版)习题提示及答案04章习题提示与答案

习题提示与答案 第四章 理想气体的热力过程4-1 设气缸中有0.1 kg 二氧化碳,其压力为0.1 MPa 、温度为27 ℃。

如进行一个定压过程,气体对外作功3kJ 。

设比热容为定值,试求过程中气体热力学能和熵的变化以及气体吸收的热量。

提示:理想气体;Q =ΔU +W ;ΔU =mc V 0ΔT ;12120ln lnp pR T T c s p g Δ-=。

答案:ΔU =10.5 kJ ,ΔS =0.036 11 kJ/K ,Q =13.5 kJ 。

4-2 有一气缸,其中氮气的压力为0.15 MPa 、温度为300 K 。

如果按两种不同的过程变化:(1)在定压下温度变化到450 K ;(2)在定温下压力下降到0.1 MPa 。

然后在定容下变化到0.15 MPa 及450 K 。

设比热容为定值,试求两种过程中热力学能和熵的变化以及从外界吸收的热量。

提示:略。

答案:(1)u Δ=111.15 kJ/kg ,s Δ=0.421 kJ/(kg ·K),q 1-2=155.7 kJ/kg 。

(2)u Δ=111.15 kJ/kg ,s ∆=0.421kJ/(kg ·K),q 1-3-2=147.25 kJ/kg 。

4-3 设气缸中空气的压力为0.5 MPa 、温度为600 K ,若经绝热过程膨胀到0.1 MPa ,试求膨胀终了的温度及比体积:(1)按定值比热容计算;(2)按空气的热力性质表进行计算。

提示:(2) 1200ln 12p p R S S g T T +=;依02T S ,由热力性质表确定T 2 及v r2。

答案:(1) T 2=378.8 K ,v 2=1.089 m 3/kg ;(2) T 2=382.6 K ,v 2=1.10 m 3/kg 。

4-4 柴油机吸气终了时气缸中空气的温度为60 ℃、压力为0.1 MPa 。

为使压缩终了时空气温度超过柴油的自燃温度以使其着火,故要求压缩终了的温度至少为720 ℃。

工程热力学第四章答案

工程热力学第四章答案

工程热力学第四章答案【篇一:工程热力学答案(第四版严家騄著含第六章)】考题1、如果容器中气体压力保持不变,那么压力表的读数一定也保持不变,对吗?答:不对。

因为压力表的读书取决于容器中气体的压力和压力表所处环境的大气压力两个因素。

因此即使容器中的气体压力保持不变,当大气压力变化时,压力表的读数也会随之变化,而不能保持不变。

2、“平衡”和“均匀”有什么区别和联系答:平衡(状态)值的是热力系在没有外界作用(意即热力、系与外界没有能、质交换,但不排除有恒定的外场如重力场作用)的情况下,宏观性质不随时间变化,即热力系在没有外界作用时的时间特征-与时间无关。

所以两者是不同的。

如对气-液两相平衡的状态,尽管气-液两相的温度,压力都相同,但两者的密度差别很大,是非均匀系。

反之,均匀系也不一定处于平衡态。

但是在某些特殊情况下,“平衡”与“均匀”又可能是统一的。

如对于处于平衡状态下的单相流体(气体或者液体)如果忽略重力的影响,又没有其他外场(电、磁场等)作用,那么内部各处的各种性质都是均匀一致的。

3、“平衡”和“过程”是矛盾的还是统一的?答:“平衡”意味着宏观静止,无变化,而“过程”意味着变化运动,意味着平衡被破坏,所以二者是有矛盾的。

对一个热力系来说,或是平衡,静止不动,或是运动,变化,二者必居其一。

但是二者也有结合点,内部平衡过程恰恰将这两个矛盾的东西有条件地统一在一起了。

这个条件就是:在内部平衡过程中,当外界对热力系的作用缓慢得足以使热力系内部能量及时恢复不断被破坏的平衡。

4、“过程量”和“状态量”有什么不同?答:状态量是热力状态的单值函数,其数学特性是点函数,状态量的微分可以改成全微分,这个全微分的循环积分恒为零;而过程量不是热力状态的单值函数,即使在初、终态完全相同的情况下,过程量的大小与其中间经历的具体路径有关,过程量的微分不能写成全微分。

因此它的循环积分不是零而是一个确定的数值。

习题1-1 一立方形刚性容器,每边长 1 m,将其中气体的压力抽至 1000 pa,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为 0.1mpa。

工程热力学课后思考题答案

工程热力学课后思考题答案

⒎ 几股流体汇合成一股流体称为合流,如图2-12所示。工程上几台压气机同时向主气道送气,以及混合式换热器等都有合流的问题。通常合流过程都是绝热的。取1-1、2-2和3-3截面之间的空间为控制体积,列出能量方程式,并导出出口截面上焓值h3的计算式。
答:认为合流过程是绝热的稳态稳流过程,系统不作轴功,并忽略流体的宏观动能和重力位能。对所定义的系统,由式(2-28)
⒍ .开口系实施稳定流动过程,是否同时满足下列三式:
上述三式中W、Wt和Wi的相互关系是什么?
答:是的,同时满足该三个公式。
第一个公式中dU指的是流体流过系统时的热力学能变化,?W是流体流过系统的过程中对外所作的过程功;第二个公式中的?Wt指的是系统的技术功;第三个公式中的?Wi指的是流体流过系统时在系统内部对机器所作的内部功。对通常的热工装置说来,所谓“内部功”与机器轴功的区别在于前者不考虑机器的各种机械摩擦,当为可逆机器设备时,两者是相等的。从根本上说来,技术功、内部功均来源于过程功。过程功是技术功与流动功(推出功与推进功之差)的总和;而内部功则是从技术功中扣除了流体流动动能和重力位能的增量之后所剩余的部分。
(注意:系统完成任何一个循环后都恢复到原来的状态,但并没有完成其“逆过程”,因此不存在其外界是否“也恢复到原来状态”的问题。一般说来,系统进行任何一种循环后都必然会在外界产生某种效应,如热变功,制冷等,从而使外界有了变化。)
⒒ 工质及气缸、活塞组成的系统经循环后,系统输出的功中是否要减去活塞排斥大气功才是有用功?
⒑ 系统经历一可逆正向循环及其逆向可逆循环后,系统和外界有什么变化?若上述正向及逆向循环中有不可逆因素,则系统及外界有什么变化?
答:系统完成一个循环后接着又完成其逆向循环时,无论循环可逆与否,系统的状态都不会有什么变化。根据可逆的概念,当系统完成可逆过程(包括循环)后接着又完成其逆向过程时,与之发生相互作用的外界也应一一回复到原来的状态,不遗留下任何变化;若循环中存在着不可逆因素,系统完成的是不可逆循环时,虽然系统回复到原来状态,但在外界一定会遗留下某种永远无法复原的变化。

工程热力学习题答案第四章-复习进程

工程热力学习题答案第四章-复习进程

工程热力学习题答案第四章-复习进程第四章4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。

解:热力系是1kg 空气过程特征:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9 因为 T c q n ?=内能变化为R c v 25==717.5)/(K kg J ? v p c R c 5727===1004.5)/(K kg J ? =n c ==--v v c n k n c 51=3587.5)/(K kg J ? n v v c qc T c u /=?=?=8×103J膨胀功:u q w ?-==32 ×103J轴功:==nw w s 28.8 ×103J 焓变:u k T c h p ?=?=?=1.4×8=11.2 ×103J 熵变:12ln 12lnp p c v v c s v p +=?=0.82×103)/(K kg J ?4-2 有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=;(3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1)膨胀功:])12(1[111k k p p k RT w ---==111.9×103J熵变为0 (2))21(T T c u w v -=?-==88.3×103J 12ln 12ln p p R T T c s p -=?=116.8)/(K kg J ? (3)21ln1p p RT w ==195.4×103)/(K kg J ? 21ln p p R s =?=0.462×103)/(K kg J ? (4)])12(1[111n n p p n RT w ---==67.1×103J n n p p T T 1)12(12-==189.2K 12ln 12ln p p R T T c s p -=?=-346.4)/(K kg J ?4-3 具有1kmol 空气的闭口系统,其初始容积为1m 3,终态容积为10 m 3,当初态和终态温度均100℃时,试计算该闭口系统对外所作的功及熵的变化。

工程热力学第四章思考题答案

工程热力学第四章思考题答案

第四章思考题4-1 容器被闸板分割为A 、B 两部分。

A 中气体参数为P A 、T A ,B 为真空。

现将隔板抽去,气体作绝热自由膨胀,终压将为P 2,试问终了温度T 2是否可用下式计算?为什么?122()k k A Ap T T p -=答:气体作绝热自由膨胀是不可逆绝热过程,因此终了温度T 2不可用上式计算。

4-2 今有任意两过程a-b ,b-c ,b 、c 两点在同一定熵线上,如图所示。

试问:Δuab 、Δuac 哪个大?再设b 、c 两点在同一条定温线上,结果又如何?答:由题可知,因b 、c 两点在同一定熵线上T b >T c , ub >uc . Δuab >Δuac 。

若b 、c 两点在同一条定温线上,T b =T c , ub =uc . Δuab =Δuac 。

4-3将满足下列要求的多变过程表示在p-v 图和T-s 图上(工质为空气)。

(1)工质又升压、又升温、又放热; (2)工质又膨胀、又降温、又放热;(3)n=1.6的膨胀过程,判断q ,w ,Δu 的正负;答:n=1.6的压缩过程在p-v 图和T-s 图上表示为1→2过程。

在此过程中q>0, w<0,Δu>0(4)n=1.3的压缩过程,判断q ,w ,Δu 的正负。

答:n=1.3的压缩过程在p-v 图和T-s 图上表示为1→2过程。

在此过程中q<0,w<0,Δu>04-4将p-v 图表示的循环,如图所示,表示在T -s 图上。

图中:2-3,5-1,为定容过程;1-2,4-5为定熵过程;3-4为定压过程。

答:T-s 图如图所示4-5 以空气为工质进行的某过程中,加热量的一半转变为功,试问过程的多变指数n 为多少?试在p-v 图和T-s 图上画出该过程的大概位置(比热容比可视为定值)。

答:多变过程中,遵循热力学第一定律q u w =∆+,由题可知12q u =∆,由于v 21()1n -k q c T T n =--,所以()v 21v 21()()21n -k c T T c T T n -=--即:()121n -k n =-,0.6n =4-6如果采用了有效的冷却方法后,使气体在压气机汽缸中实现了定温压缩,这时是否还需要采用多级压缩?为什么?(6分) 答:还需要采用多级压缩,由余隙效率可知,12111n v p c p λ⎡⎤⎛⎫⎢⎥=-- ⎪⎢⎥⎝⎭⎢⎥⎣⎦,余隙使一部分气缸容积不能被有效利用,压力比越大越不利。

工程热力学 第四章答案

工程热力学 第四章答案
真实热容确定:
Cp,m = 3.653 −1.337 ×10−3T + 3.294×10−6T 2 −1.913×10−9T 3 + 0.2763×10−12T 4 R
若已知 p1 = 0.5MPa ,T1 = 1000K ,①T2 = 500K求p2 ;② p2 = 0.1MPa求T2 ;③将计算结
解:(1)定值比热容
p2
=
T2 T1
p1
=
600K × 0.32MPa 477K
= 0.4025MPa
由附表 M
= 28.01×10−3 kg/mol
Rg
=
R M
=
8.3145J/(mol ⋅ K) 28.01×10−3 kg/mol
= 296.8J(kg ⋅ K)
cV
=
5 Rg 2
=
5 × 296.8 = 0.7421J/(kg ⋅ K) 2
cp
=
7 2
Rg
===
7 2
× 296.8
= 1.03894J/(kg ⋅ K)
∆U = mcV (T2 − T1) = 2.3kg × 742.1J/(kg ⋅ K)(600 − 477)K = 209.94kJ
∆H = mcp (T2 − T1) = 2.3kg ×1038.94J/(kg ⋅ K)(600 − 477)K = 293.92kJ

K)

8.3145J/(mol

K)
ln
600K 477K

= 0.4186 ×103 J/K
W =0
Q = ∆U = 219.10kJ
4—2 甲烷 CH4 的初始状态 p1 = 0.47MPa,T1 = 393K ,经可逆定压冷却对外放出热量 4110.76J/mol ,试确定其终温及1molCH4 的热力学能变化量 ∆U m 、焓变化量 ∆H m 。设甲烷

工程热力学课后题答案

工程热力学课后题答案
(1)按定值比热容计算;
(2)按平均比热容计算。

(1)
(2)查得
7.摩尔质量为 的某理想气体,在定容下由 ,加热到 ,若热力学能变化为 ,问焓变化了多少?
答案
8.将 氮气由 定压加热到 ,分别用定值比热容,平均比热容(表)计算其热力学能和焓的变化。
用定值比热容计算
用平均比热容计算
9. 的 ,由 膨胀到 ,试利用定值比热容求其热力学能、焓和熵的变化。
答案
6.有 空气,初态为 ,分别经下列三种可逆过程膨胀到 ,试将各过程画在 图和 图上,并求各过程始态温度、做工量和熵的变化量:
(1)定温过程;
(2) 的多变过程;
(3)绝热过程。
答案
(1)
(2)
(3)
图和 图如图3-39所示。
7.一容积为 的贮气罐,内装氮气,其初压力 ,温度 。若对氮气加热,其压力、温度都升高。贮气罐上装有压力控制阀,当压力超过 时,阀门便自动打开,防走部分氮气,即罐中维持最大压力为 ,问当贮气罐中氮气温度为 时,对罐内氮气共加入多少热量?设氮气比热容为定值。

(1)
(2)
(3)两过程在 图和 图上的表示分别如图3-37(a)和3-37(b)所示。图中过程线 为定温过程, 为绝热过程线。从 图中可以看到,绝热过程耗功比定温过程耗功多出曲边三角形面积 。
4.使将满足以下要求的理想气体多变过程在 和 图上表示出来(先画出4个基本热力过程):
(1)气体受压缩、升温和放热;
12.流速为 的高速空气突然受阻停止流动,即 ,称为滞止。如滞止过程进行迅速,以致气流受阻过程中与外界的热交换可以忽略,问滞止过程空气的焓变化了多少?
答案
第三章理想气体及其混合物

工程热力学(第五版)课后习题答案(全章节)廉乐明谭羽非等编

工程热力学(第五版)课后习题答案(全章节)廉乐明谭羽非等编

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3 v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学习题解答-4

工程热力学习题解答-4

第四章 热力学第二定律例 题例4-1 先用电热器使 20 kg 、温度t 0=20 ℃的凉水加热到t 1=80 ℃,然后再与40 kg 、温度为 20 ℃的凉水混合。

求混合后的水温以及电加热和混合这两个过程各自造成的熵产。

水的比定压热容为 4.187 kJ/(kg·K );水的膨胀性可忽略。

[编题意图] 实际过程中熵产的计算是本章的重点和难点之一,本题的目的在于检测和练习电热器加热造成的熵产和不等温水混合过程中的熵产的分析计算。

[解题思路] 电加热水过程引起熵产是由于电功转变为热产,水吸收这个热后其自身温度逐渐上升,这是一个不断积累过程,需通过微元热产量g Q δ与水变化的水温T 之比这个微元熵产的积分求得。

要求凉水与热水混合造成的熵产,必须先求出20kg80℃的水放热的熵减与20℃的凉水吸热的熵增,这种内热流造成的熵产也是个逐渐积累的过程,也需积分求得。

整个加热混合造成的总熵产由二者相加得到。

[求解步骤]设混合后的温度为t ,则可写出下列能量方程:()()1120p p m c t t m c t t -=-即 ()()2041878040418720kg kJ /(kg C)C kg kJ /(kg C)C o o o o ⨯⋅⨯-=⨯⋅⨯-..t t 从而解得 t = 40 ℃ (T = 313.15 K ) 电加热过程引起的熵产为1g 0g11g 10d lnT Qp p T Q m c T T S m c TTT δ===⎰⎰353.15K 20kg 4.187kJ/(kg K)ln 293.15K=⨯⋅⨯=15.593 kJ / K 混合过程造成的熵产为i 1012ig 1210d d ln lnTT p p Q p p T T m c T m c T Q T T S m c m c TT T T T δ==+=+⎰⎰⎰313.15K 20kg 4.187kJ/(kg K)ln353.15K313.15K40kg 4.187kJ/(kg K)ln293.15K10.966kJ/K 11.053kJ/K 0.987kJ/K =⨯⋅⨯+⨯⋅⨯=-+= 总的熵产S S S QQ g g g g ikJ /K kJ /K kJ /K =+=+=15593098716580...由于本例中无熵流(将使用电热器加热水看作水内部摩擦生热),根据式(4-12)可知,熵产应等于热力系的熵增。

工程热力学思考题参考答案,第四章

工程热力学思考题参考答案,第四章

工程热力学思考题参考答案,第四章Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第四章气体和蒸汽的基本热力过程 试以理想气体的定温过程为例,归纳气体的热力过程要解决的问题及使用方法解决。

答:主要解决的问题及方法:(1) 根据过程特点(及状态方程)——确定过程方程(2) 根据过程方程——确定始、终状态参数之间的关系(3) 由热力学的一些基本定律——计算,,,,,t q w w u h s ∆∆∆(4) 分析能量转换关系(P —V 图及T —S 图)(根据需要可以定性也可以定量)例:1)过程方程式:T =常数(特征)PV =常数(方程)2)始、终状态参数之间的关系:12p p =21v v 3)计算各量:u ∆=0、h ∆=0、s ∆=21p RInp -=21v RIn v 4)PV 图,TS 图上工质状态参数的变化规律及能量转换情况对于理想气体的任何一种过程,下列两组公式是否都适用答:不是都适用。

第一组公式适用于任何一种过程。

第二组公式21()v q u c t t =∆=-适于定容过程,21()p q h c t t =∆=-适用于定压过程。

在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。

定温过程气体的温度不变,在定温过程中是否需对气体加入热量如果加入的话应如何计算答:定温过程对气体应加入的热量过程热量q 和过程功w 都是过程量,都和过程的途径有关。

由理想气体可逆定温过程热量公式2111v q p v In v =可知,故只要状态参数1p 、1v 和2v 确定了,q 的数值也确定了,是否q 与途径无关 答:对于一个定温过程,过程途径就已经确定了。

所以说理想气体可逆过程q 是与途径有关的。

在闭口热力系的定容过程中,外界对系统施以搅拌功w δ,问这v Q mc dT δ=是否成立答:成立。

这可以由热力学第一定律知,由于是定容过2211v v dv w pdv pvpvIn RTIn v v v ====⎰⎰为零。

工程热力学习题解答-4

工程热力学习题解答-4

第四章 热力学第二定律例 题例4-1 先用电热器使 20 kg 、温度t 0=20 ℃的凉水加热到t 1=80 ℃,然后再与40 kg 、温度为 20 ℃的凉水混合。

求混合后的水温以及电加热和混合这两个过程各自造成的熵产。

水的比定压热容为 4.187 kJ/(kg·K );水的膨胀性可忽略。

[编题意图] 实际过程中熵产的计算是本章的重点和难点之一,本题的目的在于检测和练习电热器加热造成的熵产和不等温水混合过程中的熵产的分析计算。

[解题思路] 电加热水过程引起熵产是由于电功转变为热产,水吸收这个热后其自身温度逐渐上升,这是一个不断积累过程,需通过微元热产量g Q δ与水变化的水温T 之比这个微元熵产的积分求得。

要求凉水与热水混合造成的熵产,必须先求出20kg80℃的水放热的熵减与20℃的凉水吸热的熵增,这种内热流造成的熵产也是个逐渐积累的过程,也需积分求得。

整个加热混合造成的总熵产由二者相加得到。

[求解步骤]设混合后的温度为t ,则可写出下列能量方程:()()1120p p m c t t m c t t -=-即 ()()2041878040418720kg kJ /(kg C)C kg kJ /(kg C)C o o o o ⨯⋅⨯-=⨯⋅⨯-..t t 从而解得 t = 40 ℃ (T = 313.15 K ) 电加热过程引起的熵产为1g 0g11g 10d lnT Qp p T Q m c T T S m c TTT δ===⎰⎰353.15K 20kg 4.187kJ/(kg K)ln =⨯⋅⨯=15.593 kJ / K 混合过程造成的熵产为i 1012ig 1210d d ln lnTT p p Q p p T T m c T m c T Q T T S m c m c T T T T T δ==+=+⎰⎰⎰313.15K20kg 4.187kJ/(kg K)ln353.15K313.15K40kg 4.187kJ/(kg K)ln293.15K10.966kJ/K 11.053kJ/K 0.987kJ/K=⨯⋅⨯+⨯⋅⨯=-+= 总的熵产S S S QQ g g g g ikJ /K kJ /K kJ /K =+=+=15593098716580...由于本例中无熵流(将使用电热器加热水看作水内部摩擦生热),根据式(4-12)可知,熵产应等于热力系的熵增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。

解:热力系是1kg 空气 过程特征:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9因为T c q n ∆=内能变化为R c v 25==717.5)/(K kg J • v p c R c 5727===1004.5)/(K kg J •=n c ==--v v c n kn c 51=3587.5)/(K kg J •n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J 轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12ln p p c v v c s v p +=∆=0.82×103)/(K kg J • 4-2有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=; (3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111kk p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln 12lnp p R T T c s p -=∆=116.8)/(K kg J • (3)21ln1p p RT w ==195.4×103)/(K kg J • 21lnp p R s =∆=0.462×103)/(K kg J • (4)])12(1[111nn p p n RT w ---==67.1×103Jnn p p T T 1)12(12-==189.2K12ln 12lnp p R T T c s p -=∆=-346.4)/(K kg J •4-3 具有1kmol 空气的闭口系统,其初始容积为1m 3,终态容积为10 m 3,当初态和终态温度均100℃时,试计算该闭口系统对外所作的功及熵的变化。

该过程为:(1)可逆定温膨胀;(2)向真空自由膨胀。

解:(1)定温膨胀功===110ln *373*287*4.22*293.112lnV V mRT w 7140kJ ==∆12lnV V mR s 19.14kJ/K (2)自由膨胀作功为0==∆12lnV V mR s 19.14kJ/K4-4 质量为5kg 的氧气,在30℃温度下定温压缩,容积由3m 3变成0.6m 3,问该过程中工质吸收或放出多少热量?输入或输出多少功量?内能、焓、熵变化各为多少? 解:===36.0ln *300*8.259*512lnV V mRT q -627.2kJ 放热627.2kJ因为定温,内能变化为0,所以q w = 内能、焓变化均为0熵变:==∆12lnV V mR s -2.1 kJ/K 4-5 为了试验容器的强度,必须使容器壁受到比大气压力高0.1MPa 的压力。

为此把压力等于大气压力。

温度为13℃的空气充入受试验的容器内,然后关闭进气阀并把空气加热。

已知大气压力B =101.3kPa ,试问应将空气的温度加热到多少度?空气的内能、焓和熵的变化为多少? 解:(1)定容过程=+==3.1013.101100*2861212p p T T 568.3K (2) 内能变化:=-=-=∆)2863.568(*287*25)12(T T c u v 202.6kJ/kg =-=-=∆)2863.568(*287*27)12(T T c h p 283.6 kJ/kg==∆12lnp p c s v 0.49 kJ/(kg.K)4-6 6kg 空气由初态p1=0.3MPa ,t1=30℃,经过下列不同的过程膨胀到同一终压p2=0.1MPa :(1)定温过程;(2)定熵过程;(3)指数为n =1.2的多变过程。

试比较不同过程中空气对外所作的功,所进行的热量交换和终态温度。

解:(1)定温过程===1.03.0ln *303*287*621lnp p mRT W 573.2 kJ W Q =T2=T1=30℃(2)定熵过程=--=--=--])3.01.0(1[*303*14.1287*6])12(1[114.114.11kk p p T k R m W 351.4 kJQ =0=-=k k p p T T 1)12(12221.4K(3)多变过程nn p p T T 1)12(12-==252.3K=--=--=]3.252303[*12.1287*6]21[1T T n R mW 436.5 kJ =---=-=)3033.252(*1*6)12(n kn c T T mc Q v n 218.3 kJ4-7 已知空气的初态为p1=0.6MPa ,v1=0.236m 3/kg 。

经过一个多变过程后终态变化为p2=0.12MPa ,v2=0.815m 3/kg 。

试求该过程的多变指数,以及每千克气体所作的功、所吸收的热量以及内能、焓和熵的变化。

解:(1)求多变指数)815.0/236.0ln()6.0/12.0ln()2/1ln()1/2ln(==v v p p n =1.301千克气体所作的功=--=--=)815.0*12.0236.0*6.0(*13.11]2211[11v p v p n w 146kJ/kg 吸收的热量)1122(111)12(11)12(v p v p k n k n T T k R n k n T T c q n ----=----=-===----)236.0*6.0825.0*12.0(14.1113.14.13.136.5 kJ/kg内能:=-=∆w q u 146-36.5=-109.5 kJ/kg焓: =--=-=∆)1122(1)12(v p v p k kT T c h p -153.3 kJ/kg 熵:6.012.0ln *4.717236.0815.0ln *5.100412ln 12ln+=+=∆p p c v v c s v p =90J/(kg.k) 4-81kg 理想气体由初态按可逆多变过程从400℃降到100℃,压力降为1612p p =,已知该过程的膨胀功为200kJ ,吸热量为40 kJ ,设比热为定值,求该气体的p c 和v c 解:160)12(-=-=-=∆w q T T c u v kJ v c =533J/(kg.k)])12(1[11)21(11nn p p n RT T T n R w ---=--==200 kJ解得:n =1.49 R=327 J/(kg.k)代入解得:p c =533+327=860 J/(kg.k)4-9将空气从初态1,t1=20℃,定熵压缩到它开始时容积的1/3,然后定温膨胀,经过两个过程,空气的容积和开始时的容积相等。

求1kg 空气所作的功。

解:]31[14.1293*287])21(1[11])12(1[11114.111-----=--=--=k kk v v k RT p p k RT w=-116 kJ/kg1)21(12-=k v v T T =454.7K )3/1ln(*7.454*28723ln 22==v v RT w =143.4 kJ/kgw=w1+w2=27.4 kJ/kg4-10 1kg 氮气从初态1定压膨胀到终态2,然后定熵膨胀到终态3。

设已知以下各参数:t1=500℃,v2=0.25m 3/kg ,p3=0.1MPa ,v3=1.73m 3/kg 。

求(1)1、2、3三点的温度、比容和压力的值。

(2)在定压膨胀和定熵膨胀过程中内能的变化和所作的功。

解:(1)4.1)25.073.1(*1.0)23(32==k v v p p =1.5 MPa 8.29610*25.0*5.12226==R v P T =1263Kp1=p2=1.5 MPa v1=221v T T =0.15 m 3/kg 8.29610*73.1*1.03336==R v P T =583 K(2) 定压膨胀=-=∆)12(T T c u v 364 kJ/kg=-=)12(T T R w 145.4 kJ/kg定熵膨胀=-=∆)23(T T c u v 505 kJ/kg=--=]32[1T T k Rw -505 kJ/kg 或者:其q=0,u w ∆-== -505 kJ/kg 4-11 1标准m 3的空气从初态1 p1=0.6MPa ,t1=300℃定熵膨胀到状态2,且v2=3v1。

空气由状态2继续被定温压缩,直到比容的值和开始时相等,v3=v1,求1、2、3点的参数(P,T,V )和气体所作的总功。

解:=⨯==5106573*287111p RT v 0.274 m 3/kg ===4.1)31(*6.0)21(12k v v p p 0.129 MPa===-4.01)31(*573)21(12k v v T T 369K V2=3V1=0.822 m 3T3=T2=369KV3=V1=0.274 m 3===113*129.0)32(23v v v v p p 0.387 MPa 4-12 压气机抽吸大气中的空气,并将其定温压缩至p2=5MPa 。

如压缩150标准m 3空气,试求用水冷却压气机气缸所必须带走的热量。

设大气处于标准状态。

解:====5101325.0ln *150*10*101325.021ln116p p V p W Q -59260kJ 4-13 活塞式压气机吸入温度t1=20℃和压力p1=0.1MPa 的空气,压缩到p2=0.8MPa ,压气机每小时吸气量为600标准m 3。

如压缩按定温过程进行,问压气机所需的理论功率为多少千瓦?若压缩按定熵过程进行,则所需的理论功率又为多少千瓦? 解:定温:=⨯==3600*273*287600100000RT pV m 0.215kg/s ==21ln1p p mRT W s -37.8KW 定熵])1.08.0(1[14.1293*287*4.1*215.0])12(1[1114.114.11----=--=kk s p p k kRT m W =-51.3 KW4-14 某工厂生产上需要每小时供应压力为0.6MPa 的压缩空气600kg ;设空气所初始温度为20℃,压力为0.1MPa 。

相关文档
最新文档