(必修一)集合与函数概念练习题
高一数学必修一练习题
高一数学必修一练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A = {x | x是小于5的自然数},B = {0, 1, 2, 3, 4}(2) A = {x | x² 3x + 2 = 0},B = {1, 2}(3) A = {x | x是正整数},B = {1, 2, 3, …}2. 填空题:(1) 若集合M = {1, 2, 3, a},集合N = {a, b, c},且M = N,则a = __,b = __,c = __。
(2) 若集合 A = {x | x² 4x + 3 = 0},则A中的元素个数为__。
3. 写出下列函数的定义域:(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(3) h(x) = x² 3x + 2二、基本初等函数1. 判断下列函数的奇偶性:(1) f(x) = x³ 2x(2) g(x) = |x| 1(3) h(x) = x² + 12. 求下列函数的值域:(1) f(x) = 2x + 3(2) g(x) = √(4 x²)3. 计算下列函数在给定区间的单调性:(1) f(x) = x² 4x + 3,区间为[1, 3](2) g(x) = x³ + 3x,区间为[0, 2]三、函数的性质1. 已知函数f(x) = x² 2x,求f(1),f(0),f(2)的值。
2. 已知函数g(x) = (1/2)x + 1,求g(4),g(2),g(0)的值。
3. 讨论函数h(x) = ax² + bx + c的单调性,其中a、b、c为常数。
四、综合运用1. 设集合A = {x | x² 4x + 3 = 0},集合B = {x | x² 2x 3 = 0},求A∩B。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
人教版高中数学必修一《集合与函数概念》单元习题课及同步测评(含答案)
高一数学《集合与函数概念》单元习题课一、集合概念1. 已知全集R =U ,设函数()12lg -=x y 的定义域为集合M ,集合{}2≥=x x N ,则)(N C M U 等于.A ]221[, .B )221[, .C ]221(, .D )221(,2. 定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.已知集合{1,2},{2,3}A B ==,则集合A B ⊗的所有元素之和为________.二、函数概念 1.函数概念(1)下列各组中的两个函数是同一函数的为 ①1)5)(1(+-+=x x x y ,5-=x y ②x y =,33x y =③x y =,2x y = ④()()21log 2--=x x y ,()1log 2-=x y +()2log 2-x.A ①② .B ③④ .C ② .D ②③2.函数定义域(1)函数22()log (43)f x x x =-+的定义域为___________________(2) 函数1()f x x=的定义域为 . (3)函数)13lg(13)(2++-=x xx x f 的定义域是(A)),31(+∞- (B) )1,31(- (C))31,31(- (D) [)1,0 3.函数值域 (1) (2)(4) 函数()2x f x =在定义域A 上的值域为[]14,,则函数()()2log 2f x x =+在定义域A 上的值域为 .(5)若函数x x y 22-=的定义域为[]m ,1-,值域为[]31,-,则实数m 的取值范围是 . 4.函数解析式(1)已知1(1)232f x x -=+,()6f m =,则m 等于( )A .14 B .32-C .32 D .14-(2)三、函数性质 1.函数的单调性2.函数的最值(3)若函数2lg(1)y x =+的定义域为[a ,b ],值域为[0,1],则a + b 的最大值为( )A .3B .6C .9D .103.函数的奇偶性(1)已知4)(57-+=bx ax x f ,其中b a ,为常数,若4)3(=-f ,则)3(f 的值等于.A 8- .B 10- .C 12- .D 4-(2)设函数)(x f 为定义在R 上的偶函数,当0>x 时,x x f ln )(=,则0)(>x f 的解集为( ) A 、),1(+∞ B 、),1()1,0(+∞ C 、),1()0,1(+∞- D 、),1()1,(+∞--∞4.综合问题(1)已知2()3g x x =--,()22f x ax bx c =-+()0a ≠,()()f x g x +为R 上的奇函数.①求a ,c 的值;②若[]12x ∈-,时,()f x 的最小值为1,求()f x 解析式.(2)已知函数12(),12xxf x x R -=∈+. ①判断并证明函数()f x 的奇偶性;②求函数()f x 的值域.(3)设函数11()221xf x =-+, (Ⅰ)证明函数()f x 是奇函数;(Ⅱ)证明函数()f x 在(,)-∞+∞内是增函数; (Ⅲ)求函数()f x 在[1,2]上的值域。
必修一-函数的概念练习题(含答案)
函数的概念(一)一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x 2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上7.函数f (x )=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34}C .{a |a >34} D .{a |0≤a <34} 8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x 的定义域是(用区间表示)________. 三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0. 16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧ 1-x2≥0x2-1≥0,∴x 2=1,∴x =±1. 4.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
必修一第一章集合和函数概念同步练习(含的答案解析)
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________.8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2集合的含义与表示一. 选择题: 1.集合Φ与}0{的关系,下列表达正确的是( )A.φ=}0{B.φ⊆}0{C.}0{∈φD.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.84.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空① },2_____{0Z n n x x ∈= ② }_____{1质数 ③ },,_____{}{c b a a ④ }0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A ( )A.}4,2,1{B.}6,4,3,2,1{C.}4,1{D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A ( )A.RB.}2{<x xC.}1{->x xD.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A )(() A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1二.填空题5.{偶数} {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A __________.7.若集合A B A = ,则=B A ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 BA10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A = ,求a 的值11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B 且}21{=B A ,求B A1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( )A.7B.1-C.17-或D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( ) A.}32{≥-≤x x x 或 B.}32{>-≤x x x 或 C.}32{>-<x x x 或 D.}32{≥-<x x x 或4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B AC.B C A C u uD.B C A C u u二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A =__,__=B C A u , __=B A C u .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M ②N C M C u u10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A ,}9,1{=B C A C u u ,}8,6,4{=B A C u ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1 函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞ B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( )A.5B.5-C.6D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与B.x x x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________.8.函数11)(22---=x x x f 的定义域为______________.三.解答题x (D)(B) (C) (A) x9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f 10.求下列函数的定义域(1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x f1.2.1函数的概念(二)一、 选择题 1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( )A.}3,0,1{-B.}3,2,1,0{C.}31{≤≤-y yD.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[3.下列命题正确的有( )①函数是从其定义域到值域的映射 ②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线 ④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个4.函数x x x y -+=0)32(的定义域为( ) A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且 B.{}0<x x C.{}0>x x D.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且 二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值11.已知函数bax x x f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一)一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若xx x f -=1)1(,则当10≠≠x x 且时,)(x f 等于( ) A.x 1 B.11-x C.x -11 D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______t t t yA B D C8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题A B CD5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤x10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则),3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修1第一章集合与函数的概念单元测试题(含答案)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学集合与函数的概念试题答案及解析
高一数学集合与函数的概念试题答案及解析1. 设集合,,则() A .B .C .D .【答案】A【解析】由题意得,,,∴,故选A.【考点】1.解一元二次不等式;2.集合的交集.2. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.3. 已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( ) A .{0,1} B .{(0,1)} C .{1} D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N . 解;集合M={y|y=x 2+1,x ∈R}=[1,+∞), N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1} 故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4. 集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A 1为空集,有一个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;总之,共27种拆法. 解:当A 1=φ时,A 2=A ,此时只有1种分拆;当A1为单元素集时,A2=∁AA1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.5.已知a∈R,b∈R,A={2,4,x2﹣5x+9},B={3,x2+ax+a},C={x2+(a+1)x﹣3,1}:求(1)A={2,3,4}的x值;(2)使2∈B,B⊊A,求a,x的值;(3)使B=C的a,x的值.【答案】(1)x=2或x=3;(2)当x=2时,a=﹣;当x=3时,a=﹣;(3){x|x=﹣1或3} {a|a=﹣6或﹣2}.【解析】(1)解方程x2﹣5x+9=3即可求得x值;(2)由x2+ax+a=2与x2﹣5x+9=3联立即可求得a,x的值;(3)x2+(a+1)x﹣3=3与x2+ax+a=1即可求得a,x的值.解:(1)依题意,x2﹣5x+9=3,∴x=2或x=3;(2)∵2∈B,B⊊A,∴x2+ax+a=2且x2﹣5x+9=3,当x=2时,a=﹣;当x=3时,a=﹣;(3)∵B={3,x2+ax+a}=C={x2+(a+1)x﹣3,1},∴整理得:x=5+a,将x=5+a代入x2+ax+a=1得:a2+8a+12=0,解得a=﹣2或a=﹣6.当a=﹣2时,x=3或﹣1;当a=﹣6时,x=﹣1或x=7(当a=﹣6,x=7时代入x2+(a+1)x﹣3="3" 不成立所以舍去).综上所述{x|x=﹣1或3} {a|a=﹣6或﹣2}.点评:本题考查集合关系中的参数取值问题,考查方程思想运算能力,属于中档题.6.若,则的值为A.0B.1C.D.1或【答案】C【解析】由已知得,则有,又,。
新课标高一数学必修1第一章集合与函数概念单元测试题及答案
数学必修一单元测试题集合与函数概念一、选择题1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)xx y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是()A .-2B .2或52- C . 2或-2 D .2或-2或52-7.下列函数中,定义域为[0,∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数9(A ) (B) (C ) (D)10.若*,x R n N ∈∈,规定:(1)(2)(1)n x x x x x n H =++⋅⋅⋅⋅⋅+-,例如:( ) 44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数二、填空题11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = .14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人.15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .三、解答题16.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.17.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值. x y 0 x y 0 x y 0 x y 018.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?19.已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yox20.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立.(Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.2010级高一数学必修一单元测试题(一)参考答案一、选择题 CBACB AAACB二、填空题 11. {}0,3 12. {(3,-1)} 13. 0 14. 25 15. 2()p q +三、解答题16.解:(Ⅰ)A ∪B={x|1≤x<10}(C R A)∩B={x|x<1或x ≥7}∩{x|2<x<10}={x|7≤x<10}(Ⅱ)当a >1时满足A ∩C ≠φ17.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根, 由韦达定理知:⎩⎨⎧-=⨯=+1932322a a 解之得a =5. (Ⅱ)由A ∩B ∅A ⇒∩≠B Φ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.18.解:由A ∩C=A 知A ⊆C又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β 显然即属于C 又不属于B 的元素只有1和3.不仿设α=1,β=3. 对于方程02=++q px x的两根βα, 应用韦达定理可得3,4=-=q p .19.(Ⅰ)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数.(Ⅱ)证明:在区间(,0]-∞上任取12,x x ,且12x x <,则有 22221212121212()()(21)(21)2()2()()f x f x x x x x x x x x -=---=-=-⋅+, ∵12,(,0]x x ∈-∞,12x x <,∴12120,x x x x -<0,+<即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数. (Ⅲ)解:最大值为(2)7f =,最小值为(0)1f =-.20.解:(Ⅰ)∵0)1(=-f ∴01=+-b a∵任意实数x 均有)(x f ≥0成立∴⎩⎨⎧≤-=∆>0402a b a 解得:1=a ,2=b(Ⅱ)由(1)知12)(2++=x x x f ∴1)2()()(2+-+=-=x k x kx x f x g 的对称轴为22-=k x ∵当∈x [-2,2]时,)(x g 是单调函数 ∴222-≤-k 或222≥-k ∴实数k 的取值范围是),6[]2,(+∞--∞ .21.解:(Ⅰ)令1==n m 得 )1()1()1(f f f +=所以0)1(=f0)21(1)21()2()212()1(=+-=+=⨯=f f f f f 所以1)21(=f (Ⅱ)证明:任取210x x <<,则112>x x 因为当1>x 时,0)(<x f ,所以0)(12<x x f 所以)()()()()(11211212x f x x f x f x x x f x f <+=⋅= 所以)(x f 在()+∞,0上是减函数.。
高一数学必修一第一章集合与函数概念练习题难题带答案
高一数学集合与函数概念一.选择题(共30小题)1.已知f(x)=lnx﹣+2,若对∀x1∈(0,1],∀x2∈[﹣1,1],都有f(x1)≥g(x2),则a的取值范围为()A.(﹣∞,2﹣e]B.(﹣2,2﹣e]C.D.2.已知集合,若B⊆A,则实数m的取值范围为()A.(4,+∞)B.[4,+∞)C.(2,+∞)D.[2,+∞)3.已知函数,对任意的x∈R恒有,且在区间上有且只有一个x0使得f(x0)=3,则ω的最大值为()A.B.8C.D.4.已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)5.已知f(x)=x2+px+q和是定义在上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为()A.B.C.5D.6.已知f(x)为奇函数,当x∈[0,1]时,f(x)=1﹣2|x﹣|,当x∈(﹣∞,﹣1],f(x)=1﹣e﹣1﹣x,若关于x的不等式f(x+m)>f(x)有解,则实数m的取值范围为()A.(﹣1,0)∪(0,+∞)B.(﹣2,0)∪(0,+∞)C.(﹣﹣ln2,﹣1)∪(0,+∞)D.(﹣﹣ln2,0)∪(0,+∞)7.我们把形如的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为()A.2πB.3πC.4πD.12π8.在下列四个函数中,当x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是()A.f(x)=B.f(x)=x2 C.f(x)=2x D.f(x)=9.集合M={x|x∈Z且},则M的非空真子集的个数是()A.30个B.32个C.62个D.64个10.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣111.已知定义在R上的函数f(x)=﹣(x﹣1)3,则不等式f(2x+3)+f(x﹣2)≥0的解集为()A.(﹣∞,]B.(0,]C.(﹣∞,3]D.(0,3]12.已知函数f(x)=x2﹣2(a+1)x+a2,g(x)=﹣x2+2(a﹣1)x﹣a2+2,记H1(x)=,H2(x)=,则H1(x)的最大值与H2(x)的最小值的差为()A.﹣4B.4C.a2﹣a+4D.a2+a+813.若关于x的不等式e2x﹣alnx≥a恒成立,则实数a的取值范围是()A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]14.设函数f(x)的定义域为R,满足2f(x)=f(x+2),且当x∈[﹣2,0)时,f(x)=﹣x(x+2).若对任意x∈(﹣∞,m],都有f(x)≤3,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.[,+∞)D.[,+∞)15.已知函数f(x)=,若|f(x)|≥mx恒成立,则实数m的取值范围为()A.[2﹣2,2]B.[2﹣2,1]C.[2﹣2,e]D.[2﹣2,e]16.设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•194917.已知k∈R,设函数,若关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为()A.[0,e2]B.[2,e2]C.[0,4]D.[0,3]18.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.[0,2]D.19.已知若f[(m﹣1)f(x)]﹣2≤0在定义域上恒成立,则m的取值范围是()A.(0,+∞)B.[1,2)C.[1,+∞)D.(0,1)20.设函数f(x)的定义域为R,满足f(x+2)=2f(x),且当x∈(0,2]时,f(x)=﹣x(x﹣2).若对任意x∈(﹣∞,m],都有,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,7]D.(﹣∞,]21.已知函数,g(x)=ax2+2x+a﹣1.若对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,则实数a的取值范围为()A.B.C.D.22.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x0)>0,则实数m的值可能是()A.x0﹣2B.C.D.x0+323.设函数f(x)=﹣x(x﹣a)2(x∈R),当a>3时,不等式f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,则θ的可能取值是()A.﹣B.C.﹣D.24.已知函数,若对任意,都有f(x+m)≥3f(x),则实数m的取值范围是()A.[4,+∞)B.C.[3,+∞)D.25.若关于x的不等式≤1在区间(1,2]上恒成立,则实数a的取值范围为()A.(0,ln2]B.(﹣∞,ln2]C.(ln2,+∞)D.(﹣∞,1]26.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是()A.(e+1,+∞)B.(e+2,+∞)C.(e+,+∞)D.(e+,+∞)27.已知函数f(x)=(x>2),若f(x)恒成立,则整数k的最大值为()A.2B.3C.4D.528.若存在,使得不等式2xlnx+x2﹣mx+3≥0成立,则实数m的最大值为()A.B.C.4D.e2﹣129.设|AB|=10,若平面上点P满足对任意的λ∈R,恒有,则一定正确的是()A.B.C.D.∠APB≤90°30.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x﹣5)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+…+g(a9)=45,则a1+a2+…+a9=()A.45B.15C.10D.0二.填空题(共5小题)31.设a为实数,对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,则a的最大值是.32.已知实数x,y>0,则的最大值为.33.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且当0≤x≤1时,f(x)=log2(x+a),若对于x属于[0,1]都有3,则实数t的取值范围为34.已知二次函数f(x)=ax2+bx+c,且4c>9a,若不等式f(x)>0恒成立,则的取值范围是.35.已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.三.解答题(共5小题)36.已知定义在R上的函数f(x)满足:①对任意实数x,y,都有f(x+y)=f(x)•f(y);②对任意x>0,都有f (x)>1.(1)求f(0),并证明f(x)是R上的单调增函数;(2)若|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)对x∈R恒成立,求实数a的取值范围;(3)已知g(x)=,方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)有三个根x1<x2<x3,若x3﹣x2=2(x2﹣x1),求实数m.37.设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.38.已知集合A={x|2x2﹣5x﹣12≥0},B={y|y=3x+1(x>0)}.(1)求集合A∩B,(∁R A)∪B;(2)若集合C={x|m﹣2≤x≤2m}且(∁R A)∩C=C,求m的取值范围.39.已知a∈R,函数f(x)=(﹣x2+ax)•e x.(1)a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.40.已知函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.参考答案与试题解析一.选择题(共30小题)1.【解答】解:g′(x)=x(x﹣2),∴﹣1<x<0时,g′(x)>0,0<x<1时,g′(x)<0,g(x)max=g(0)=2,∴f(x)=lnx﹣+ex≥2在(0,1]恒成立,即a≤xlnx+ex2﹣2x在(0,1]恒成立,令h(x)=xlnx+ex2﹣2x(0<x≤1),h′(x)=lnx+2ex﹣1,h″=+2e≥恒成立,∴h′(x)在x∈(0,1]单调递增,又x→0时,h(x)→﹣∞,h(1)=e﹣2>0,故存在x0∈(0,1],使得0<x<x0,h′(x)<0,x0<x<1,h′(x)>0,即h′(x0)=lnx0+2ex0﹣1=0,解得x0=,∴h(x)min=h()=﹣+e•()2﹣2•=﹣,∴a≤﹣,故选:D.2.【解答】解:由题得A={x|x>2或x<﹣2},∵m>0,∴B={x|m<x<2m}且B≠∅,∵B⊆A,∴m≥2或2m≤﹣2,解得m≥2,即m∈[2,+∞),故选:D.3.【解答】解:由题意知,k1,k2∈Z,则,k,k'∈Z,其中k=k2﹣k1,k'=k1+k2=k+2k1,故k与k'同为奇数或同为偶数.f(x)在上有且只有一个最大值,且要求ω最大,则区间包含的周期应该最多,所以,得0<ω≤8,即≤8,所以k≤4当k=4时,ω=,k'为偶数,φ=,此时x+∈(,),当x1+=0.5π或2.5π或6.5π时,f(x0)=3都成立,舍去;当k=3时,ω=,k'为奇数,φ=,此时x+∈(,),当且仅当x+=2.5π时,f(x0)=3成立.故ω的最大值为,故选:C.4.【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.【解答】解:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:,所以得:f(x)=x2﹣4x+8≤f(1)=5.故选:C.6.【解答】解:若x∈[﹣1,0],则﹣x∈[0,1],则f(﹣x)=1﹣2|﹣x﹣|=1﹣2|x+|,∵f(x)是奇函数,∴f(﹣x)=1﹣2|x+|=﹣f(x),则f(x)=2|x+|﹣1,x∈[﹣1,0],若x∈[1,+∞),则﹣x∈(﹣∞,﹣1],则f(﹣x)=1﹣e﹣1+x=﹣f(x),则f(x)=e﹣1+x﹣1,x∈[1,+∞),作出函数f(x)的图象如图:当m>0时,f(x+m)的图象向左平移,此时f(x+m)>f(x)有解,满足条件.当m<0时,f(x+m)的图象向右平移,当f(x+m)的图象与f(x)在x>1相切时,f′(x)=e x﹣1,此时对应直线斜率k=2,由e x﹣1=2,即x﹣1=ln2,得x=ln2+1.此时y=e x﹣1﹣1=e ln2+1﹣1﹣1=2﹣1=1,即切点坐标为(1+ln2,1),设直线方程为y=2(x﹣a)此时1=2(1+ln2﹣a),即=1+ln2﹣a,得a=+ln2,0<﹣m<+ln2,得﹣﹣ln2<m<0,综上﹣﹣ln2<m<0或m>0综上m的取值范围是(﹣﹣ln2,0)∪(0,+∞),故选:D.7.【解答】解:当a=1,b=1时,函数的定义域为{x|x≠±1,x∈R},且为偶函数,其图象如图所示.函数图象与y轴的交点为B(0,﹣1),其关于原点的对称点为C(0,1),所以“囧点”为(0,1),即“囧圆”的圆心为C(0,1).要求所有“囧圆”的面积的最小值,只需求所有“囧圆”的半径的最小值.由图知,“囧函数”有三部分组成,其图象关于y轴对称,故只需考虑y轴及y轴右侧的函数图象.当圆C过点B时,其半径为2,这是和x轴下方的函数图象有公共点的所有“囧圆”中,半径的最小值;当圆C和x轴上方且y轴右侧的函数图象有公共点A时,设A(m,),(其中m>1),则点A到圆心C的距离的平方为d2=m2+(﹣1)2,令=t,(t>0),则d2=(1+)2+(t﹣1)2=t2++﹣2t+2=(t﹣)2﹣2(t﹣)+4,再令t﹣=μ,(其中μ∈R),则d2=μ2﹣2μ+4=(μ﹣1)2+3≥3,所以当圆C和x轴上方且y轴右侧的函数图象有公共点时,最小半径为.又2>,综上可知,在所有的“囧圆”中,半径的最小值为.故所有的“囧圆”中,圆的面积的最小值为3π.故选:B.8.【解答】解:当x1>x2>1时,能使成立的函数是凸函数,其图象类似:所以选项正确;B,C,D都不正确.故选:A.9.【解答】解:由题意集合M={x|x∈Z且}={x|x=0,1,2,3,5,11},由对于含有n个元素的集合,利用公式2n﹣2计算出M的非空真子集个数,∴M的非空真子集的个数是26﹣2=62,故选:C.10.【解答】解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选:D.11.【解答】解:令t=x﹣1,则f(t+1)=,则f(t+1)是奇函数,则当t≥0时,y==﹣t3=﹣t3=﹣t3=﹣1﹣t3,为减函数,∴当x≥1时,f(x)为减函数,即g(x)=f(x+1)是奇函数,则f(2x+3)+f(x﹣2)≥0等价为f(2x+2+1)+f(x﹣3+1)≥0,即g(2x+2)+g(x﹣3)≥0,则g(2x+2)≥﹣g(x﹣3)=g(3﹣x),则2x+2≤3﹣x,得3x≤1,x≤,即原不等式的解集为(﹣∞,],故选:A.12.【解答】解:f(x)﹣g(x)=2x2﹣4ax+2a2﹣2=2(x﹣a﹣1)(x﹣a+1).故当x≥a+1或x≤a﹣1时,f(x)≥g(x);当a﹣1<x<a+1时,f(x)<g(x).又H1(x)=,H2(x)=,,,∴,.设H1(x)的最大值为A,H2(x)的最小值为B.结合二次函数的性质可知,A=H1(a﹣1)=(a﹣1)2+2(a﹣1)(a﹣1)﹣a2+2=3﹣2a;B=H2(a+1)=(a+1)2﹣2(a+1)(a+1)+a2=﹣2a﹣1.故A﹣B=3﹣2a﹣(﹣2a﹣1)=4.∴H1(x)的最大值与H2(x)的最小值的差为4.故选:B.13.【解答】解:当a<0时,f(x)=e2x﹣alnx为(0,+∞)的增函数,f(x)无最小值,不符合题意;当a=0时,e2x﹣alnx≥a即为e2x≥0显然成立;当a>0时,f(x)=e2x﹣alnx的导数为f′(x)=2e2x﹣,由于y=2e2x﹣在(0,+∞)递增,设f′(x)=0的根为m,即有a=2me2m,当0<x<m时,f′(x)<0,f(x)递减;当x>m时,f′(x)>0,f(x)递增,可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,由题意可得e2m﹣alnm≥a,即﹣alnm≥a,化为m+2mlnm≤1,设g(m)=m+2mlnm,g′(m)=1+2(1+lnm),当m=1时,g(1)=1,m>1时,g′(m)>0,g(m)递增,可得m+2mlnm≤1的解为0<m≤1,则a=2me2m∈(0,2e2],综上可得a∈[0,2e2],故选:C.14.【解答】解:函数f(x)的定义域为R,满足2f(x)=f(x+2),可得f(0)=2f(﹣2)=0,当x∈[﹣2,0)]时,函数f(x)在[﹣2,﹣1)上递增,在(﹣1,0)上递减,所以f(x)max=f(﹣1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈[﹣4,﹣2)时,f(x)max=f(﹣3)=,当x∈[0,2)时,f(x)max=f(1)=2,当x∈[2,4)时,f(x)max=f(3)=4,设x∈[2,4)时,x﹣4∈[﹣2,0),f(x﹣4)=﹣(x﹣4)(x﹣2)=f(x),即f(x)=﹣4(x﹣4)(x﹣2),x∈[2,4),由﹣4(x﹣4)(x﹣2)=3,解得x=或x=,根据题意,当m≤时,f(x)≤3恒成立,故选:A.15.【解答】解:作出函数|f(x)|的图象如图所示;当x≤0时;令x2+2x+2=mx,即x2+(2﹣m)x+2=0,令△=0,即(2﹣m)2﹣8=0,解得,结合图象可知,;当x>0时,令e2x﹣1=mx,则此时f(x)=e2x﹣1,h(x)=mx相切,设切点,则,解得m=2,观察可知,实数m的取值范围为.故选:A.16.【解答】解:设集合A中最大元素为a,最小元素为b,所以满足b﹣a=71的组合有2020﹣71=1949个,集合A中元素最多为72个,而集合A中包含a,b所有子集元素之和个数为2+3+4+ (72)设m=2+3+4+......+72,则m=72+71+70+ (2)所以2m=74+74+74+……+74=74×270,即m=37×270,因此,集合S所有直径为71的子集的元素个数之和为270•37•1949.故选:C.17.【解答】解:(1)当x≤1时,f(x)=x2﹣2kx+2k,∴f(x)的对称轴为x=k,开口向上.①当k<1时,f(x)在(﹣∞,k)递减,(k,1)递增,∴当x=k时,f(x)有最小值,即f(k)≥0,∴0≤k<1;②当k≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1,∴1≥0显然成立,此时k≥1.综上得,k≥0;(2)当x>1时,f(x)=(x﹣k﹣1)e x+e3,∴f'(x)=(x﹣k)e x,①′当k≤1时,f(x)在(1,+∞)上递增,∴f(x)>f(1)=﹣ke+e3≥0,∴k≤e2,∴此时k≤1;②′当k>1时,f(x)在(1,k)递减,(k,+∞)递增,∴f(x)≥f(k)=﹣e k+e3≥0,∴k≤3,∴此时1<k≤3.综上:0≤k≤3,∵关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为0≤k≤3,故选:D.18.【解答】解:(1)当x≤1时,f(x)=x2﹣2ax+2a,∴f(x)的对称轴为x=a,开口向上.①当a<1时,f(x)在(﹣∞,a)递减,(a,1)递增,∴当x=a时,f(x)有最小值,即f(a)=﹣a2+2a≥,解得0≤a<1;②当a≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1≥,∴1≤a≤2.综合①②得:当x≤1时,0≤a≤2;(2)当x>1时,f(x)=2x﹣alnx,∴f'(x)=2﹣=,①′当a≤0时,f'(x)>0,f(x)在(1,+∞)上递增,∴f(x)>f(1)=2≥,∴a≤4,∴此时a≤0;②′当0<≤1,即0<a≤2时,f(x)在(1,+∞)上递增,同理可得0<a≤2;③′当>1,即a>2时,f(x)在(1,)递减,(,+∞)递增,∴f(x)≥f()=a﹣aln≥,∴ln≤,解得2<a≤2.综合①′②′③′得:当x>1时,a≤2;∵关于x的不等式在R上恒成立,∴0≤a≤2,故选:C.19.【解答】解:∵,∴当﹣1<x<8时,log3(x+1)∈(﹣∞,2),|log3(x+1)|∈[0,2),x∈(﹣1,0)时,f(x)=|log3(x+1)|单调递减,x∈(0,8)时,f(x)单调递增,且当x=﹣时,f(x)=2①.当x≥8时,f(x)=单调递减且f(x)∈(0,2]②,其图象如下:若f[(m﹣1)f(x)]﹣2≤0,则f[(m﹣1)f(x)]≤2,∴(m﹣1)f(x)≥﹣,当f(x)=0时,m∈R;当f(x)>0时,m﹣1>,当f(x)→+∞时,→0,∴m﹣1≥0,解得:m≥1.故选:C.20.【解答】解:当x∈(0,2]时,函数f(x)在(0,1)上递增,在(1,2)上递减,所以f(x)max=f(1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈(﹣2,0]时,f(x)max=f(﹣1)=,当x∈(2,4]时,f(x)max=f(3)=2,当x∈(4,6]时,f(x)max=f(5)=4,设x∈(6,8]时,x﹣6∈(0,2],f(x﹣6)=﹣(x﹣6)(x﹣8)=f(x),即f(x)=﹣8(x﹣6)(x﹣8),x∈(6,8],由﹣8(x﹣6)(x﹣8)=,解得x=或x=,根据题意,当m≥时,f(x)≤恒成立,故选:B.21.【解答】解:由题意,函数f(x)图象如下:结合图象,可知函数f(x)的值域为(,+∞).∵对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,∴函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.①当a=0时,g(x)=2x﹣1,此时g(x)在区间[0,+∞)上值域为[﹣1,+∞),满足题意;②当a<0时,二次函数g(x)=ax2+2x+a﹣1开口朝下,很明显不符合题意;③当a>0时,对称轴x=﹣<0,g(0)=a﹣1,此时g(x)在区间[0,+∞)上值域为[a﹣1,+∞),则必须a﹣1≤,即a≤.即0<a≤满足函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.综上所述,可得实数a的取值范围为[0,].故选:A.22.【解答】解:∵﹣1是函数f(x)=ax2﹣bx+c的一个零点,∴a+b+c=0,∵a<b<c,则a<0,c>0,∵﹣1×m=<0,∴m>0.由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<.∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,∴m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x0∈(﹣1,m),故0<m﹣x0<(2d)min,∴x0<m+x0,综合四个选项,实数m的值可能是+x0.故选:C.23.【解答】解:由f(x)=﹣x(x﹣a)2,得f'(x)=﹣(3x﹣a)(x﹣a).令f'(x)=0,得或x=a,当a>3时,,∴f(x)在区间,[a,+∞)上单调递减,在区间上单调递增;当a>3时,,则f(x)在区间(﹣∞,1]上为减函数,又k∈[﹣1,0],sinθ∈[﹣1,1],则﹣2≤﹣k﹣sinθ﹣1≤1,∴﹣1≤k2﹣sin2θ≤1.∵f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,∴对任意的k∈[﹣1,0]恒成立,∴恒成立,∴,即,∴θ的可能取值是.故选:D.24.【解答】解:∵f(﹣x)==﹣f(x),∴函数,为R上的奇函数,又x≥0时,f(x)=x2为增函数,∴f(x)为定义域R上的增函数.又f()=3,∴f(x+m)≥3f(x)=f(x),∵对任意,f(x+m)≥3f(x)=f(x),f(x)为定义域R上的增函数,∴m≥[(﹣1)x]max=(﹣1)(+3),即(1﹣)m=m≥3(﹣1),解得:m≥2.即实数m的取值范围是[2,+∞),故选:B.25.【解答】解:关于x的不等式不等式≤1在区间(1,2]上恒成立⇔关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.显然当a≤0时,关于x的不等式不等式≤1在区间(1,2]上恒成立当a>0时,在同一坐标系内分别作出y=a(x﹣1)2,y=lnx的图象,所以关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.⇔A点的位置不低于B点的位置⇔ln2≥a(2﹣1)2⇔0<a≤ln2.综上,实数a的取值范围为(﹣∞,ln2].故选:B.26.【解答】解:f(x)在定义域R内单调递增,∴f(a)=ka,f(b)=kb,即e a+2a=ka,e b+2b=kb,即a,b为方程e x+2x=kx的两个不同根,∴,设g(x)=,,∴0<x<1时,g′(x)<0;x>1时,g′(x)>0,∴x=1是g(x)的极小值点,∴g(x)的极小值为:g(1)=e+2,又x趋向0时,g(x)趋向+∞;x趋向+∞时,g(x)趋向+∞,∴k>e+2时,y=k和y=g(x)的图象有两个交点,方程有两个解,∴实数k的取值范围是(e+2,+∞).故选:B.27.【解答】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k =5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x﹣1)﹣(1﹣)×3>0,令g(x)=1+ln(x﹣1)﹣3+,x>2则g′(x)=﹣=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3﹣1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.28.【解答】解:由存在,使得不等式2xlnx+x2﹣mx+3≥0成立,得:m≤2lnx+x+,x∈[,e]有解,令y=2lnx+x+,则y′=,故x∈(,1)时,y′<0,函数是减函数,x∈(1,e)时,y′>0,函数是增函数,故x=时,y=3e+﹣2,x=e时,y=2+e+,又(3e+﹣2)﹣(2+e+)=2e﹣4﹣>0,故函数y=2lnx+x+的最大值是3e+﹣2,m≤3e+﹣2,故选:A.29.【解答】解:以线段AB的中点为原点,以AB所在的直线为x轴,以其中垂线为y轴,建立直角坐标系,则A(﹣5,0)、B(5,0)、设点P(x,y),则,,则,即有(2x+10﹣10λ)2+4y2≥64,整理为以为元的一元二次不等式,即100λ2﹣(200+40x)λ+4x2+40x+4y2+36≥0,由于上述不等式对任意λ∈R恒成立,则△≤0必然成立,△=(200+40x)2﹣4×100×(4x2+40x+4y2+36)≤0,解得|y|≥4,即y≥4或者y≤﹣4,动点P位于直线y=4上或其上方部分,或者直线y=﹣4上或者其下方的区域内,用动态的观点看问题,我们让点P位于点(﹣5,4)处,则,故A错误;让点P位于点(0,4)处,则,故B错误;此时,|AB|=10,用余弦定理计算,∠APB>90°故D错误;我们进一步确定C选项的正确性,,,则,其中x∈R,y2≥16,故x2+y2﹣25≥x2+16﹣25≥﹣9,即,故C正确.故选:C.30.【解答】解:根据题意,函数y=f(x)为定义域R上的奇函数,则有f(﹣x)+f(x)=0,设h(x)=g(x)﹣5=f(x﹣5)+(x﹣5),若g(a1)+g(a2)+…+g(a9)=45,即f(a1﹣5)+a1+f(a2﹣5)+a2+…+f(a9﹣5)+a9=45,变形可得f(a1﹣5)+(a1﹣5)+f(a2﹣5)+(a2﹣5)…+f(a9﹣5)+(a9﹣5)=0,即h(a1﹣5)+h(a2﹣5)+…+h(a9﹣5)=0,又由y=f(x)为定义域R上的奇函数,则h(x)=f(x﹣5)+(x﹣5)关于点(5,0)对称,而数列{a n}为等差数列,且公差不为0,则有a1+a9=10,变形有a5=5,则a1+a2+…+a9=9a5=45;故选:A.二.填空题(共5小题)31.【解答】解:对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,即f(x)=kx+9x﹣x2﹣a ﹣6lnx≥0恒成立,令g(k)=xk+9x﹣x2﹣a﹣6lnx,∵x∈(0,4],∴g(k)在k∈[﹣1,1]上单调递增,∴g(k)min=g(﹣1)≥0即可,g(k)≥g(k)min=g(﹣1)≥0,又∵g(﹣1)=﹣x+9x﹣x2﹣a﹣6lnx=﹣x2+8x﹣6lnx﹣a(x∈(0,4]),令ρ(x)=﹣x2+8x﹣6lnx﹣a,则ρ′(x)=﹣2x+8﹣==(﹣x2+4x﹣3)=﹣(x﹣3)(x﹣1),令ρ′(x)=0,得x=3或x=1,∴x∈(0,1)时,ρ′(x)<0,ρ(x)单调递减;x∈(1,3)时,ρ′(x)>0,ρ(x)单调递增;x∈((3,4)时,ρ′(x)<0,ρ(x)单调递减;ρ(1)=﹣1+8﹣a=7﹣a,ρ(4)=﹣16+32﹣6ln4﹣a=16﹣6ln4﹣a,∴解得a≤7,故答案为:7.32.【解答】解:=令分子等于0,△=0,即(10t2﹣1)y2+2(t﹣1)y+14t2+2t﹣1=0,再令△=0,t2(2t+1)(14t﹣5)=0解得t=0或t=﹣或t=,①﹣==≤0,当且仅当即时等号成立;②+==≥0,当且仅当即时等号成立;综上,最大值为,故答案为:33.【解答】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),又知道f(x+2)=﹣f(x)=f(﹣x),所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[﹣1,3]时,令f(x)=1﹣log23,得x=﹣,或x=,所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[﹣,].设g(x)=﹣,若对于x属于[0,1]都有,因为g(0)=∈[﹣,].,故g(x)∈[﹣,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t﹣,]⊆[﹣,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t﹣1,]⊆[﹣,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[﹣,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t﹣]⊆[﹣,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].34.【解答】解:若不等式f(x)>0恒成立,则,又由4c>9a,∴设x=,y=,则,则==1+,令z=,则z表示区域内的点(x,y)与P(1,﹣2)连线的斜率,因为A(﹣3,),所以k P A==﹣,设直线PB:y=k(x﹣1)﹣2,联立得x2﹣4kx+4k+8=0,△=16k2﹣16k﹣32=0⇒k=﹣1,k=2,由图可知,z∈(﹣∞,﹣)∪(2,+∞),故答案为(﹣∞,﹣)∪(3,+∞).35.【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.三.解答题(共5小题)36.【解答】解:(1)令x=0,y=1,则代入条件①,得:f(1)=f(0)•f(1)又f(1)≠0,则f(0)=1,设x1<x2,则f(x1)﹣f(x2)=f(x1)﹣f(x2﹣x1+x1)=f(x1)﹣f(x2﹣x1)•f(x1)=f(x1)[1﹣f(x2﹣x1)],因为任意x>0,都有f(x)>1,则1﹣f(x2﹣x1)<0,令y=﹣x,则f(0)=f(x)•f(﹣x)=1且x>0,都有f(x)>1>0,故f(﹣x)=>0,则对任意x∈R都有f(x)>0,则f(x1)>0,所以f(x1)﹣f(x2)<0,所以:f(x)是R上的单调增函数;(2)由条件|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)恒成立;可化为f(|x﹣a|+1)≥f(|x﹣2a+1|),即:|x﹣2a+1|≤|x﹣a|+1,即:|x﹣2a+1|﹣|x﹣a|≤1,对x∈R恒成立.因:|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1.解得0≤a≤2.(3)设G(x)=2,显然﹣1≤x≤1,∴max{g(x),G(x)}={g(x)+G(x)+|g(x)﹣G(x)|},方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)|等价于2max{g(x),G(x)}=2mx+4,即:max{g(x),G(x)}=mx+2,∵g(x)=,且G(x)可改写为:G(x)=,由﹣2x>2⇒﹣1≤x<﹣,又当x∈[0,1]时,x2﹣1≤2,∴max{g(x),G(x)}=,于是﹣2x=mx+2⇒x=﹣(﹣1≤x<﹣),∴0≤m<2﹣2,由2=mx+2⇒x=0或x=﹣,∵x1<x2<x3,∴x1=﹣,x2=﹣,x3=0,由已知条件x3﹣x2=2(x2﹣x1),∴2x1=3x2,即m2+3m﹣2=0⇒m=,又0≤m<2﹣2,∴m=.37.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)38.【解答】解:集合A={x|2x2﹣5x﹣12≥0}={x|x≤﹣或x≥4},B={y|y=3x+1(x>0)}={y|y>2}.(1)集合A∩B={x|x≥4},∁R A={x|﹣<x<4},∴(∁R A)∪B={x|x>﹣};(2)若集合C={x|m﹣2≤x≤2m},且(∁R A)∩C=C,∴C⊆∁R A,∴,解得<m<2;当C=∅时,m﹣2>2m,解得∴m<﹣2;综上,m的取值范围是m<﹣2或<m<2.39.【解答】解:(1)a=2时,f(x)=(﹣x2+2x)•e x的导数为f′(x)=e x(2﹣x2),由f′(x)>0,解得﹣<x<,由f′(x)<0,解得x<﹣或x>.即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞),单调增区间为(﹣,).(2)函数f(x)=(﹣x2+ax)•e x的导数为f′(x)=e x[a﹣x2+(a﹣2)x],由函数f(x)在(﹣1,1)上单调递增,则有f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0,解得a≥.则有a的取值范围为[,+∞).40.【解答】解:(Ⅰ)函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.令t=log2x,∵x∈[,4],∴t∈[﹣3,2]则由已知,若f(x)存在大于1的零点,即g(t)在t∈(0,2]时有零点g(t)表示的二次函数开口向上,对称轴为t0=﹣2,所以若g(t)在t∈(0,2]时有零点,即⇒﹣12≤m<0即m的取值范围为[﹣12,0,(Ⅱ)若f(x)有两个相异的零点,即g(t)在t∈[﹣3,2]时有两个相异零点∴g(t)表示的二次函数开口向上,对称轴为t0=﹣2∴即m的取值范围为[3,4),此时,方程g(t)=t2+4t+m=0的两根t1+t2=﹣4即,第31页(共31页)。
高中数学必修一第一章集合与函数的概念经典例题
高中数学必修一第一章《集合与函数概念》综合测试题:周俞江试题整理请把正在每小题给出的四个选项中,只有一项是符合题目要求的,一、选择题:,12个小题确答案的代号填在题后的括号内(本大题共.60分)每小题5分,共{?5}A3,},B?{2,3,4,1,2?BA ( )????1.已知全集,则????????72,336,3,1,2,5,4,,1,23 A. D. B. C2x??x|1?xA?|0?x?2,B B=( )????2??0x2x|0?x? CD..若A2.,则????2x|?0x?xx| A. B.xgfx)()表示同一函数的是()与(3 .在下列四组函数中,x2?yy?1,1?x?1,y?x?yx?1? A. B.x255)(x|x|,y?y?x?y?x,yDC..x?xy?的图象是()4. 函数xyyyy 111xxxx OO O O 1-1-1-1-1DB AC????2?0?yB?Ax0?x?6?yf BA .从到5.)设集合,的对应法则不是映射的是(11??:xf?x:???y?xy?fx. A. B2311??x????yxf:xf:xy??..CD 64xyfx.( )的公共点数目是1=的图象与直线)(=函数6.21或..0或1 D A.1 B.0 C1x?y?(k?2))函数在实数集上是增函数,则k的范围是(7.2??2k??2k?k??2k? C. B. A.. D2)3f(x)?4f(2x?1)=(,则8.已知函数716124 C. B. D. A. 有下面四个命题:9.y①偶函数的图象一定与轴相交;②奇函数的图象一定通过原点;y③偶函数的图象关于轴对称;xxf 0(.∈④既是奇函数,又是偶函数的函数一定是R())=.其中正确命题的个数是( )43D. A.1B.2C.)10.图中阴影部分所表示的集合是(C) ∪B) ∪(B A.B∩[C(A∪C)] B.(A∪UB ]∪∩C)[ C.(A∪C)∩(CB)D.C(AUU x?a?f(x)( )为奇函数,则11.若函数)ax?(2x?1)(321 D.1C. A. B.4322x?1x1?,则函数12.已知函数的解析式可以是()(f)?)xf(2x1?x?1xx2x2xD.C.A. B.??2222xx xx??11?1?12xyxbxc=13.二次函数=2+,则有+( )的图象的对称轴是.ffffff(4) B.<(2)<(1) A.(1)< (2)< (4)ffffff(1)(4)<<D(1) . (2) C.(2)<<(4)2???,x?2?1x?3?,?f(x)1?(x)f)已知函数14.的解???52,,x?3x??2222?4是(则方程?2 B.4 D.或或3 C.或 A.或xx,0?(fx)]?)()[x?(xfx)(fx),ab)(fx(在15.,且对其内任意实数的定义域为,则均有:函数212121.)b(a,上是.减函数 A.增函数 B .偶函数 C.奇函数D不需要写出解答过程,请把答案直接填在答题卡相70分.二、填空题:本大题共14小题,每小题5分,共.应位置上?ACB}4{3,,}A?{12,3},B?{U?1,2,3,4,5 ,则, 16.已知全集;U0x??x,??3))f(f(??(x)f ________________,则; 17. 已知函数?20?x,x?0x?)?x?x)x(1f(x)(y?f,18.已知时为奇函数,当y?)(xf?)-1f(0?x .;则当则时,3????2200,?2,xf ()已知是定义在上的∪ 19.0x?xf 时,)(的图象如右图所示,奇函数,当Ox2xf . 那么,)(的值域是请在指定区域内作答,60分.分,本大题共5小题,每小题12共计三、解答题:解答时应写出文字说明、证明或演算步骤.2)xf(x)f(xx上的单调性,并用10)6-在区间+10在区间(2画出函数20.,10)上的大致图像,判断(4=,.定义法写出证明过程1?x3x)??(f}a|x?B?{x 21.已知函数的定义域为集合A,2?xBA?a ,求1)若(AC)CA(B}x|?4x?U{1? 及,)若全集2(a=,求UU分)1422.(本小题满分)fxf()(x1f?1f2()3()??0f)1?f2?)23(?(,求)已知1(是一次函数,且,的解析式;1xffxxxf 2(≠,3=(+)()已知:2))(,求0的解析式.x2?ax?2,x?[?5,5]xf(x)?, 23.已知函数a??1f(x)的单调大致图像,并求出最大值与最小值)当. 时,画出函数(1a]55,(x)[?f的取值范围。
高中数学,必修一课后习题答案,完整版,附精品高考试卷1套
高中数学,必修一课后习题答案完整版,附精品高考试卷1套第一章集合与函数概念1. 1集合1. 1. 1集合的含义与表示练习(第5页)用符号或填空:(1)1.设A 为所有亚洲国家组成的集合,贝上中国.印度一A,A,美国.英国一A,A ;(2)若 A = {x\x 2 =x},则一1(3)^B = {x \x 2+x -6 = 0},贝J 3B ;(4)^C = {xeN\l<x<10}f 贝U8C, 9.1 C.A ;1.(1)中国g A ,美国印度g A ,英国g A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)-IgAA = {x\x 2 =x} = {0.1}.(3)3 w 8B = {x\x 1+x —6 = 0} = (—3,2).2.8 g C,9.19.1WN .(4)试选择适当的方法表示下列集合:(1)由方程x 2-9 = 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y =工+3与y = -2x+6的图象的交点组成的集合;(4)不等式4x-5<3的解集.2.解:(1)因为方程x 2-9 = 0的实数根为吐=—3,改=3,所以由方程/ -9 = 0的所有实数根组成的集合为(-3,3};(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};x = l y = 4(3)由<y=x+3,,得< y = -2尤+6即一次函数y=x+3与y=-2x+6的图象的交点为(1,4),所以一次函数y=x+3与y=-2x+6的图象的交点组成的集合为{(1,4)};(4)由4x-5<3,得x<2,所以不等式4x-5<3的解集为{x|x<2}.1. 1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得0;取一个元素,得{a},{b},{c}取两个元素,得{a,b},{a,c},{b,c}-,取三个元素,得{a,b,c},即集合{a,b,c}的所有子集^0,(«},(Z?},{c},{a,/?},(«,c},{b,c},{a,b,c}.2.用适当的符号填空:_{心=0};(1)a___—{a,b,c};(2)0____(3)0—__{xg7?|x23+1=0);(4){0,l}_____N;(5){0}_____{x|x2=x};(6)(2,1}_____{x\x1—3x+2=0} 2.(1)a^{a,b,c}a是集合{a,b,c}中的一个元素;(2)0e(%|%2=0}(x|x2=0}={0};(3)0-{xe/?|x2+l-0}方程%2+1=0无实数根,{xek|F+l=O}=0;(4){0,l}%N(或{0,1}g N){0,]是自然数集合N的子集,也是真子集;(5){0}S(x|x2=x}(或{0}o{x|x2 =%))(x|x2=%)={0,1);(6)(2,1}={x\x2-3x+2=0)方程了2一3工+2=0两根为jq=1,芍=2.3.判断下列两个集合之间的关系:(1)A={1,2,4},8={幻尤是8的约数};(2)A={x\x-3k,k^N},B-{x\x=6z.z^N];(3)A={x|x是4与10的公倍数,xc M},B-{x\x~20m,m^N+}.3.解:(1)因为8={x|俱8的约数}={1,2,4,8},所以A隼B;(2)当k=2z时,3k=6z;当R=2z+1时,3k=6z+3,即B是A的真子集,(3)因为4与10的最小公倍数是20,所以A=B.1. 1.3集合的基本运算练习(第11页)1.设A={3,5,6,8},3={4,5,7,8},求A B,A B.1.解:A B=(3,5,6,8}{4,5,7,8}={5,8},A B=(3,5,6,8}{4,5,7,8}={3,4,5,6,7,8}.2.iS A—{x|x2 —4x—5—0},2?={x\x2=1},求A B,A B.2.解:方程x2-4x-5=0的两根为X]=—1,易=5,方程*2—i=o的两根为改=一1,易=1,得A={_1,5},3={-1,1},即A B=(-1),A B=(-1,1,5).3.已知A={x|x是等腰三角形},3={x|x是直角三角形},求A B,A B.3.解:A3={x|x是等腰直角三角形},A3={x|x是等腰三角形或直角三角形}.4.已知全集U={1,2,3,4,5,6,7},A={2,4,5},3={1,3,5,7},求A(雅8),(〃A)(*3).4.解:显然切3={2,4,6},{1,3,6,7),则A QB)={2,4},(噂4)(波)={6}.1.1集合习题1.1(第11页)A组1.用符号或“W,,填空:⑴3-7—Q-(2)32_—N;(3)7i______(4)^2——R;(5)a/9_______Z;⑹(姊2______N.1.(1)3—g Q23—是有理数;(2)32e N32=9是个自然数;77(3)7i7T是个无理数,不是有理数;(4)gcR扬是实数;(5)a/9s Z^=3是个整数;(6)(>/5)2e N(灼2=5是个自然数2.已知A={x\x=3k-l,k^Z},用“b‘或“w”符号填空:(1)5A;(2)7A;(3)-10A.2.(1)5g A;(2)7g A;(3)-10e A.当k=2时,3k—1=5;当k=-3时,3R—1=—10;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2)A={x|(x-l)(x+2)=0};(3)B=(xeZ|-3<2x-l<3).3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(X—l)(x+2)=0的两个实根为茶=一2,易=1,即{—2,1}为所求;(3)由不等式—3<2x—1<3,得—l<x<2,且xcZ,艮盯0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数y=x"-4的函数值组成的集合;2(2)反比例函数y=—的自变量的值组成的集合;x(3)不等式3x>4-2x的解集.4.解:(1)显然有X2>0,得工2_42T,即y>-4,得二次函数y=x2-4的函数值组成的集合为{y|y2—4};2(2)显然有尤主0,得反比例函数y=—的自变量的值组成的集合为{x|xa0};x44(3)由不等式3xN4—2x,Wx>-,即不等式3x>4-2x的解集为{工|工>;}. 5.选用适当的符号填空:(1)已知集合A={x12x-3v3x},8={x|x>2},则有:-4B;-3A;{2B;B A;(2)已知集合A={x\x2-1=0},则有:1A;(-1A;0A;(1-]A;(3){x|x是菱形}{x|x是平行四边形};{x|x是等腰三角形}{x|x是等边三角形}.5.(1)-4WB;-3WA;(2;2x-3<3x=>x>-3,即A=[x\x>-3},B={x|x>2);(2)1e A;{-1呈A:。
9.4高中数学必修一 第一章 集合与函数概念测试题
第一章 集合与函数概念测试题一、选择题(每小题5分,满分60分)1.已知(){},3A x y x y =+=,(){},1B x y x y =-=,则A B = ( ).A .{}2,1B .(){}2,1C .{}2,1x y ==D .()2,12.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的 集合是 ( ).A .()M P SB .()M P SC .()()U M P C SD .()()U M P C S 3.下列各组函数表示同一函数的是( ).(A) 22(),()()f x xg x x == (B) 0()1,()f x g x x ==(C) 21()1,()1x f x x g x x -=+=- (D )3223(),()()f x xg x x ==4.函数{}()1,1,1,2f x x x =+∈-的值域是( ).(A) 0,2,3 (B) 30≤≤y (C) }3,2,0{ (D )]3,0[5.已知函数221()12,[()](0)x g x x f g x x x-=-=≠,则(0)f 等于( ). (A) 3- (B) 32-(C) 32(D ) 36.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是( ).A .3a ≥- (B) 3a ≤- (C) 5a ≤ (D )3a ≥7.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 等于( ).(A) 1+-x (B) 1--x (C) 1+x (D )1-x8.已知753()2f x ax bx cx =-++,且(5),f m -= 则(5)(5)f f +-的值为( ).(A) 4 (B) 0 (C) 2m (D )4m -+9.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).(A) 9 (B) 14 (C) 18 (D ) 2110.若奇函数()x f 在区间[]7,3上是增函数且最小值为5,那它在区间[]3,7--上是( ). (A) 增函数且最小值为5- (B) 增函数且最大值为5- (C) 减函数且最小值为5- (D )减函数且最大值为5-_ U_S _ P_ M11.集合A={x |21≤≤-x },集合B={x |a x ≤ }.若B A ⋂=φ,则实数a 的取值范围是( ).(A ){a |2<a } (B ){a |1-≥a } (C ){a |21<≤-x } (D ){a |1-<a }12.向高为H 的水瓶中注水,注满为止,如果注水量v 与水深h 的函数关系如右图所示,那么水瓶的形状是( ) .二、填空题(每小题4分,满分16分)13.已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩若()10f x =,则 x = .14.已知函数(3)f x +的定义域为[2,4)-,则函数(23)f x -的定义域为 . 15.已知函数()f x 满足22()3()f x f x x x +-=+,则()f x = .16.定义运算()() , .a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的最大值为 .三、解答题17.(本题满分12分)(1) 已知R 为全集,}31|{<≤-=x x A ,}32|{≤<-=x x B ,求B A C R )(;(2) 设集合}3,2,{2-+=a a A ,}1,12,3{2+--=a a a B ,若}3{-=B A ,求 B A .18.(本题满分12分)(1)求函数|1||1|13-++-=x x x y 的定义域; (2)求函数x x y 21-+=的值域.19.已知函数()f x 是定义在[1,1]-上的奇函数,且()f x 在定义域上是减函数,(Ⅰ)求函数(1)y f x =-定义域; (Ⅱ)若(2)(1)0f x f x -+-<,求x 的取值范围. 20.(本题满分12分)已知函数[]1(),3,5,2x f x x x -=∈+⑴ 判断函数()f x 的单调性,并证明;⑵ 求函数()f x 的最大值和最小值.21.(本小题满分12分)根据市场调查,某商品在最近的40天内的价格)(t f 与时间t 满足关系20(020,).()42(2040,).t t t N f t t t t N +≤<∈=-+≤≤∈⎧⎨⎩,销售量)(t g 与时间t 满足关系()50g t t =-+ (040,)t t N ≤≤∈,设商品的日销售额的()F t (销售量与价格之积),(Ⅰ)求商品的日销售额()F t 的解析式;(Ⅱ)求商品的日销售额()F t 的最大值。
高中数学必修一集合与函数概念专项必做好题附答案学生版
D. 集 t 巸
第 2 页 共 18 页来自 A. {2}B. {1,2,4}
C. {1,2,4,6}
D. {1,2,3,4,6}
29.若函数 y=x2﹣3x﹣4 的定义域为[0,m],值域为 [t h , -4],则 m 的取值范围是( )
A. (0,4]
B. [t h , -4]
C. [ ,3]
B. 3
C. 4
D. 6
11.已知 窼 集 t合 t
合t
巸,㌮窼集
t
t h
巸 ,若 ㌮ 是 的真子集,则 的取值范围为
()
A. t h
B. t h 或 h
C. h
12.已知集合 P={x|0≤x<1},Q={x|2≤x≤3} 记 M=P∪Q ,则( )
D. t h
A. 集 h巸
B. 集 巸
C. 集 h 巸
23.若
则 就称 A 是伙伴关系集合,集合 窼 t
h 的所有非空子集中,具有伙伴关
h
系的集合的个数为( )
A. 15
B. 16
C. 64
D. 128
24.已知集合 U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则 合 ㌮ 窼 ( )
A. {−2,3}
B. {−2,2,3}
C. 0.7
6.集合 A={x∈N|-1<x<4}的真子集个数为( )
A. 8
B. 15
C. 16
7.设集合 窼 集 h 巸 , ㌮ 窼 集 t h 巸 , 窼 集 t t
D. 0.8
D. 17 t h巸 ,则 合 ㌮
窼( )
A. 集 t 巸
B. 集 巸
C. 集 t 巸
人教版高中数学必修一《集合与函数概念》单元测试试卷及解答
班级高一第一章集合与函数试卷座号姓名一、选择题(本大题共 12小题,每小题 且只有一个答案是正确的.)1. 下列各组对象中,不能形成集合的是 A .连江五中全体学生 C .连江五中2012级2. 下列从集合M 到集合 第I 卷(选择题共60分) 5分,共60分.在每小题所给的四个答案中有 高一学生) B .连江五中的必修课 D .连江五中全体高个子学生N 的对应f 是映射的是().VC2D3 .下列关系正确的是 A . 0 N ) B . 1- RD . —3 ’ Z4.下列各组函数是同一函数的是( 心与y=1 xC . y =x | -|x -1 与 y =2x -1 5 .已知 x 2 4~1 x v1 f x 二 ,"J 则f 2的值为 ~2 x 3, x A 1, I 彳匕 』X —hx 〉1, y "与 y「_x,x :::1x 3 xC .D . 5-7 A . 6.下列哪个是偶函数的图像(B . 2系的Venn 图如图所示,则阴影部分所示的集合的元素共有()B . 2个 D •无穷多个&已知函数f X =X 21,^0,-的最值情况是( )L29 •某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的 路程.在下图中纵轴表示该生离学校的距离d ,横轴表示出发后的时间 t ,则下图中的四10 .已知集合A ^{2,3,9}且A 中至少有一个奇数,则这样的集合有()。
A . 6个B . 5个C . 4个D . 3个11.设偶函数f x 的定义域为R ,当x ・[0,;时f x 是增函数,则f -2 , f 二,f 七 的大小关系是()A . 3个 C . 1个 A .有最大值-,但无最小值4 B .有最小值3,有最大值4C .有最小值 1,有最大值19D •无最大值,也无最小值A . f (二)::f (―3) :: f(-2)B . f (二)f (-2) f (-3)C . f (二)f (-3)f ( -2)D . f (二):::f (―2) :: f (-3)12 .已知函数 x 2 亠 ax, x -1f x : 、ax 2 +x, x>1在R 上单调递减,则实数 a 的取值范围是(B . 一2 ::: a -1C . a ■ ~2第n卷(非选择题共90分)、填空题(本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.)13 .右图是定义在区间丨22 ]的函数y=f x,贝U f x的减区间是★★★14 .函数f(x) = —1的定义域为★★★(用区间表x示).15 .已知定义在R上的减函数f x满足f 2m-1 ■ f 1-m,则实数m的取值范围是★★★ .16 .已知集合M -3 < x < 4>N =「x2a -1 < x < a 1),若M 二N,则实数a 的取值范围是★★★.三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算过程. )17 .(本小题满分12分)判断并证明下列函数的奇偶性:(I)f x =x3 2x ;(n)g x =x°.18.(本小题满分12分)已知集合A={x3^xc6} B = tx -1或,求:(I) e R A UB ;(n) A「| G R B .19 .(本小题满分12分)设函数f x]=2 .x(I)判断函数f x在0,;上的单调性并用定义加以证明;(n)求函数f x在区间2,5 1上的最大值与最小值.20 .(本小题满分12分)设函数f(x)=—.1 +x1(I)若fa ,求实数a的值;3、 A \(n)求证:f f x ( x = 0 且x^ -1);\x j(川)求f 诺f鼎川f1 f1f2川f2011 f 2012的值.21.(本小题满分12分)已知函数f(x)是定义在R上的奇函数,当X-0时,f x]=x2-6x (1)画出f(x)的图象;(2)根据图象直接写出其单调增区间;(3)写出f(x)的解析式.22 .(本小题满分14分)已知函数f(x) --x2 ax - 2,^ 1-5,5 1.(I)若函数f x不是单调函数,求实数a的取值范围;(n)记函数f x的最小值为g a,求g a表达式.连江五中2014级高一第一章集合与函数试卷参考答案及评分标准一、选择题1-5QCADC6-10:ABCDA 11-12:CA、填空题13. 1-1,1]x —1^0 x 占1 ( 1 - t114 •解:j 二I 二{xx K1h疋义域为乩范)或{xx31}x式0 x式015. 解:f x在R上的减函数且f 2m-1 j > f 1 —m—2,l或2m -1 :::1 -m= m ,实数m的取值范围是316. 解:M 二N①N - 一时2a -1 a 1二a 2②N =.一由右图得工2a -1 < a 1 J a < 2I I彳2a—13—3 n估色一1二一1兰a兰2a +1 < 4 a < 3综上所述a _ -1或丨-1,三、解答题17. ........................................................................................................................................... 解:(I)函数f x的定义域为R,关于原点对称. .......................................... 2分f O )=( f 3+2(F )=-x3-2x =-(X3+x )=-f (x ), ....................................... 5分函数f x为奇函数.(n)函数g x的定义域为-::,0 U 0,:;3[,关于原点对称.g x 1 , (4)xg -x^4 =g x . ................................................................................................ 5分(-x4 x函数g x为偶函数.18 .解:(I)TA J.x3 <x:::6?, -Ap|B 」.x5 乞x:::6?, ............................................................................................... 3分- C R (AljB)」xx :::5或x _6f. .................................................................................. 6分 (n)vB J..XX 乞—1或x _5?,C R B ={x 一1 e x , ................................................................................................ 9分 (C R B )|J A =观 一1 <x ^6} . ................................................................................... 12 分 19 .解:(I )函数f x 在0,; 上为增函数,下证之. 设 X 1,X 2是(0,范J 上的任意两个实数,有 X 1 CX 2,则•…3 3 _3 石—X 2 f 石-f x 2 = 0 :: x ::: X 2 , 2工 X 1 x^2 x 1 -x 2 :: 0,x 1x 2 0 , ............................................ 二 f X 1 -f X 2::0,即 f X ::: f X 2 , .................................. 函数f x 在0,亠「]上为增函数. ............. (n)由(I)可知函数 f x 在12,5 ]上为增函数. 7 」 」 1f X max 二 f 5 , f X min = f 2•…… 5 2…■ 1 —a 1f a , .................. ''1+a 3 20 •解:(I ):a =2.1 xf(x):1 +x 11 — r x_x-1_ —x,X 1 1 X 1 1 X 'X f * L_f (X ) .................................fx.(川)由(n )可知1f ; f x -0 ............. ..............................’f 1 )f 2012 =0,f 茹 f 2011 =0,|l|,f又•••丄2012f 1 =0 ,「•原式=0 .1 f2 =0 .12分10分11分 12分2—2,其对称轴为x =◎4 2函数f x 不是单调函数,-5 畀::5 , .............................. 2 (说明:本步若取等号,扣 1分)—10ca£10,•实数a 的取值范围为 -10,10 .(n)①当a < 0,即卩a < 0时, ...............................2f (x m i ri =f (5 )=—25+5a +2 =5a —23,即 g(a ) = 5a —23 .5a -23,a < 0, J 5a -'23,a - 0.2 -6x •••当 x 一0 时,f (x) =x 2 2二 f(-x) =(-x) _6(-x) =x 6x - •••函数f (x )为R 上的奇函数, • •• f (-x) = - f (x)................................. f (「x)二- f (x) = x 26x 2f (x) - -x -6x, x :: 0 ............................!x 2 -6x, x X 0, •- f(x)=2j —x -6x, x c0.10分 12分②当a0,即a 0时, 2f Xmin10分 =f -5 = 25 —5a 2 - _5a —23,即 g a - _5a — 23 .12分 22 .解:(I) f x — x —|综上所述,g a =14分。
高中数学必修一《集合与函数》练习题
例题1 判断下列命题是否正确,并说明理由。
(1){R}=R ;(2)方程组⎩⎨⎧+==12x y xy 的解集为{x=1,y=2};(3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1}; (4)平面内线段MN 的垂直平分线可表示为{P|PM=PN}。
答案:(1){R}=R 是不正确的,R 通常为R={x|x 为实数},即R 本身可表示为全体实数的集合,而{R}则表示含有一个字母R 的集合,它不能为实数的集合。
(2)方程组⎩⎨⎧+==12x y xy 的解集为{x=1,y=2}是不对的,因为解集的元素是有序实数对(x ,y ),正确答案应为{(x ,y )|⎩⎨⎧==21y x }={(1,2)}。
(3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1}是不正确的。
{x|y=x 2-1}表示的是函数自变量的集合,它可以为{x|y=x 2-1}={x|x ∈R}=R 。
{y|y=x 2-1}表示的是函数因变量的集合,它可以为{y|y=x 2-1}={y|y≥-1}。
{(x ,y )|y=x 2-1}表示点的集合,这些点在二次函数y=x 2-1的图象上。
(4)平面上线段MN 的垂直平分线可表示为{P|PM=PN},该命题是正确的。
知识点拨:正确理解集合的表示方法对以后的学习有极大帮助。
特殊数集用特定字母表示有特别规定,不能乱用;二元一次方程组的解集必须为{(x ,y )|⎩⎨⎧==??y x }的形式;对描述法表示的集合一定要认清竖杠前面的元素是谁,竖杠后其特征又是什么。
例题2 已知a ∈{1,-1,a 2},则a 的值为______________________。
答案:∵a ∈{1,-1,a 2},∴a可以等于1,-1,a2。
(1)当a=1时,集合则为{1,-1,1},不符合集合元素的互异性。
故a≠1。
(2)同上,a=-1时也不成立。
人教版新课标高中数学必修一集合与函数练习题三套含答案
集合练习题1一、选择题1.集合},{b a 的子集有 ( ) A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则AB = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是 ( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为( )A .0B .2C .3D .65.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( ) A .1个 B .2个 C .3个 D .4个6. 已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是 ( )A .-2B .2或52-C . 2或-2D .2或-2或52- 7.下列函数中,定义域为[0,∞)的函数是 ( ) A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( ) A . 0)0(=f 且)(x f 为奇函数 B .0)0(=f 且)(x f 为偶函数 C .)(x f 为增函数且为奇函数 D .)(x f 为增函数且为偶函数 9.下列图象中表示函数图象的是 ( )A. B. C. D.x y 0 x y 0 x y 0 xy 010. 函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或11.已知函数()∞+,在0)(x f 上是减函数,则)43()1(2f a a f 与+-的大小关系是 ( ) A. )43()1(2f a a f ≤+- B. )43()1(2f a a f ≥+-C. )43()1(2f a a f <+-D. )43()1(2f a a f =+-12.已知集合{}a x x A ≤≤-=2|是非空集合,集合{},,32|A x x y y B ∈+==集合=C{}A x xy y ∈=,|2,若B C ⊆,则实数a 的取值范围是 ( )A. 321≤≤aB.221≤≤-a C. 32≤≤a D. 31≤≤-a二、填空题13.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .14.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M∩N = . 15.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = . 16.===+=)36(,)3(,)2(),()()()(f q f p f y f x f xy f x f 那么且满足已知函数.三、解答题17.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A∩C≠Φ,求a 的取值范围.18.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0}, C ={x |x 2+2x -8=0}. (Ⅰ)若A =B,求a 的值;(Ⅱ)若ΦA ∩B ,A ∩C =Φ,求a 的值.19.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A ,=B {2,4,5,6},=C {1,2,3,4},A∩C =A ,A∩B =Φ,求q p ,的值?20.已知函数2()21f x x =-. (Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yo x21.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立.(Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.22.已知)(x f 是定义在R 上的函数,若对于任意的,,R y x ∈,都有),()()(y f x f y x f +=+ 且0>x 时,有0)(>x f . (1)求证0)0(=f ; (2)判断函数的奇偶性;(3)判断函数)(x f 在R 上的单调性,并证明你的结论.集合练习题2一、选择题:1.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中,能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4,*x N ∈} C .{y||y|<4,y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为( )A .-3或1B .2C .3或1D .17. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且},若A={1,3,5,7,9},B={2,3,5},则A —B 等于( ) A .A B .B C .{2} D .{1,7,9}9.设I 为全集,1S ,2S ,3S 是I 的三个非空子集,且123S S S I ⋃⋃=,则下面论断正确的是( ) A .()I 123(C S )S S ⋂⋃= φ B .()1I 2I 3S [C S )(C S ]⊆⋂ C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅ D .()1I 2I 3S [C S )(C S ]⊆⋃10.如图所示,I 是全集,M ,P ,S 是I 的三个子集,则阴影部分所表示的集合是( ) A .()M P S ⋂⋂ B .()M P S ⋂⋃ C .()I (C )M P S ⋂⋂ D .()I (C )M P S ⋂⋃ MSPI11. 设},2|{R x y y M x ∈==,},|{2R x x y y N ∈==,则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有( )A .1a <-B .1a >-C . 1a ≤-D .1a ≥-二、填空题:13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ,}5,4{)()(=⋂B C A C U U ,}6{=⋂B A ,则A 等于_________15. 若集合{}2,12,4aa A --=,{}9,1,5a a B --=,且{}9=B A ,则a 的值是________;16.设全集{|230}U x N x =∈≤≤,集合*{|2,,15}A x x n n N n ==∈≤且,*{|31,,9}B x x n n N n ==+∈≤且,C={x|x 是小于30的质数},则[()]U C AB C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且,则实数a 的取值范围是________________ 18.某城市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名,若该班学生共有48名,则没有参加任何一科竞赛的学生有____________名三、解答题:解答应写出文字说明,证明过程或演算步骤.19.已知:集合{|A x y ==,集合2{|23[03]}B y y x x x ==-+∈,,, 求A B20.若A={3,5},2{|0}B x x mx n =++=,A B A =,{5}A B =,求m 、n 的值。
数学必修一提升练习题
数学必修一提升练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A={x|x²3x+2=0},B={1, 2}(2) A={x|x为正整数},B={1, 2, 3, …}(1) f(x) = √(x²5x+6)(2) g(x) = 1/(x²x)(1) f(x) = |x|,g(x) = √(x²)(2) f(x) = x²,g(x) = (x+1)²2x1二、基本初等函数(1) f(x) = 2x+1,求f(3)(2) g(x) = 3x²4x+2,求g(1)2. 已知函数f(x) = ax²+bx+c,其中a、b、c为常数,且f(1)=3,f(1)=5,f(0)=2,求a、b、c的值。
(1) f(x) = 2x+3,g(x) = 3x+2(2) h(x) = x²,k(x) = 2x三、函数的性质(1) f(x) = 2x3(2) g(x) = x²+4x+1(1) f(x) = x³4x(2) g(x) = √(1x²)(1) f(x) = sin(x)(2) g(x) = cos(2x)四、函数图像(1) f(x) = 2x+1(2) g(x) = x²42. 根据图像判断函数的性质:(1) 单调递增(2) 奇函数(3) 周期函数五、综合运用1. 已知函数f(x) = x²2x+1,求f(x)的最小值。
2. 已知函数g(x) = |x2|,求g(x)在区间[0, 4]上的最大值和最小值。
3. 已知函数h(x) = ax²+bx+c,其中a、b、c为常数,且h(1)=4,h(1)=2,h(2)=8,求a、b、c的值,并求h(x)的最小值。
六、一元二次方程1. 解下列一元二次方程:(1) x² 5x + 6 = 0(2) 2x² 4x 6 = 02. 已知一元二次方程ax² + bx + c = 0(a≠0)的根为x₁和x₂,且x₁ + x₂ = 5,x₁x₂ = 3,求a、b、c的关系。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无忧数学——集合与函数概念(必修一)第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={x |x ∈A },则集合A 与B 的关系为________.解析:由集合B ={x |x ∈A }知,B ={1,2}.答案:A =B 2.若∅{x |x 2≤a ,a ∈R },则实数a 的取值范围是________.解析:由题意知,x 2≤a 有解,故a ≥0.答案:a ≥03.已知集合A ={y |y =x 2-2x -1,x ∈R },集合B ={x |-2≤x <8},则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y |y ≥-2},∴BA .答案:B A4.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是________.解析:由N={x|x 2+x=0},得N ={-1,0},则N M .答案:②5.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5. 答案:a <56.已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab|ab |可能取的值组成的集合是________.解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:1 3.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.设集合M ={m |m =2n,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}.于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3]. (2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2. (2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.设U =R ,A ={x |x >0},B ={x |x >1},则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:3 3.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2} 4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞). 答案:(2,+∞)5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ; (2)若B ⊆A ,求m 的取值范围. 解:(1)当m =-1时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则m >1,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}. 答案:{2,3,4}5.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8} 7.定义A ⊗B ={z |z =xy +x y,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3.11.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3}, ∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ; (3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.。