激光干涉测长
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迈克尔逊干涉仪
在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(0.5,1.5,2.5……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为中心对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。19世纪末人们通过使用气体放电管、滤色镜、狭缝或针孔成功得到了迈克耳孙干涉仪的干涉条纹,而在一个版本的迈克耳孙-莫雷实验中采用的光源是星光。星光不具有时间相干性,但由于其从同一个点光源发出而具有足够好的空间相干性,从而可以作为迈克耳孙干涉仪的有效光源。
激光切割
激光笔
双频激光干涉仪
马赫-曾德尔干涉仪
索菲干涉仪
1.仪器构造简介
实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。M1和M2是在
相互垂直的
图1
图2
两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。在两臂轴相交处,有一与两臂轴各成45º的平行平面玻璃板P1,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射光2,故P1板又称为分光板。P2也是一平行平面玻璃板,与P1平行放置,厚度和折射率均与P1相同。由于它补偿了1与2之间附加的光程差,故称为补偿板。
从扩展光源S射来的光,到达分光板P1后被分成两部分。反射光1在P1处反射后向着M1前进;透射光2透过P1后向着M2前进。这两列光波分别在M1、M2上反射后沿着各自的入射方向返回,最后都到达E处。既然这两列光波来自光源上同一点O,因而是相干光,在E 处的观察者能看到干涉图样。
由于从M2返回的光线在分光板P1的第二面上反射,使M2在M1附近形成一平行于M1的虚像M΄2,因而光在迈克耳逊干涉仪中自M1和M2的反射,相当于自M1和M΄2的反射。由此
可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d的空气膜所产生的干涉是等效的。
2.实验原理
当M1和M΄2严格平行时,所得的干涉为等倾干涉。所有倾角为i的入射光束,由M1和M΄2反射光线的光程差Δ均为
(1)
式中i为光线在M1镜面的入射角,d为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。这时,在图1中的E处,放一会聚透镜,在其焦平面上(或用眼在E处正对P1观察),便可观察到一组明暗相间的同心圆纹。这些条纹的特点是:
干涉条纹的级次以中心为最高。在干涉纹中心,因i=0,由圆纹中心出现亮点的条件
(2)
得圆心处干涉条纹的级次
(3)
当M1和M′2的间距d逐渐增大时,对于任一级干涉条纹,例如第k级,必定以以其
的值来满足,故该干涉条纹向变大(变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为。
因此,只要数出涌出或陷入的条纹数,即可得到平面镜M1以波长λ为单位的移动距离。显然,若有N个条纹从中心涌出时,则表明M1相对于M′2移远了
(4)
反之,若有N个条纹陷入时,则表明M1和M΄2移近了同样的距离。根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M1移动的距离和干涉条纹变动的数目,便可算出光波的波长。
本次实验每组测量N取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出,便可知的值,则mm nm
迈克尔孙干涉仪