最新初三中考数学复习提纲-知识点

合集下载

2024中考数学总复习提纲

2024中考数学总复习提纲

2024中考数学总复习提纲一、整数的理解和运算(150字)1.整数的概念理解:正整数、负整数、绝对值等;2.整数的加法、减法、乘法和除法运算;3.整数的混合运算。

二、有理数的应用(150字)1.有理数的概念和性质;2.有理数的大小比较;3.有理数的加法、减法、乘法和除法运算;4.有理数的混合运算。

三、代数式的基本性质(200字)1.代数式的概念和基本性质;2.代数式的乘法和除法运算;3.代数式的因式分解。

四、图形的认识(200字)1.图形的基本概念:直线、曲线、多边形等;2.图形的分类:几何图形、有向图形等;3.图形的性质:对称性、平行性、相似性、等腰性等;4.图形的常见应用。

五、平面图形的计量(200字)1.长度的计量:毫米级别的测量、厘米和分米级别的测量、米和千米级别的测量;2.面积的计量:平面图形的面积计算(矩形、正方形、三角形、梯形等);3.周长和面积的关系。

六、百分数的认识和应用(150字)1.百分数的概念和基本性质;2.百分数与小数、分数的相互转化;3.百分数的加减法、乘除法运算;4.百分数在实际生活中的应用。

七、一次函数的性质和简单应用(200字)1.一次函数的定义和基本性质;2.一次函数图像的特点:变化趋势、截距、斜率等;3.一次函数方程的求解;4.一次函数在实际问题中的应用。

八、表格的读取和应用(150字)1.读取表格的相关信息;2.用表格进行简单的数据统计和分析;3.用表格解决实际问题。

九、概率的初步计算(150字)1.概率的概念和基本性质;2.事件的概率;3.概率的加法和乘法规则;4.概率在实际问题中的应用。

总结:以上为2024中考数学总复习提纲,涵盖了中考数学的基础知识和常见题型,可根据提纲进行系统的复习和备考。

中考数学知识点复习提纲

中考数学知识点复习提纲

中考数学知识点复习提纲一、整数与有理数1. 整数的概念和性质2. 有理数的概念与分类3. 整数与有理数的加减乘除运算法则4. 整数与有理数的大小比较5. 整数与有理数的综合运用二、代数式与方程式1. 代数式的基本概念2. 代数式的运算法则及其应用3. 一元一次方程的解法与实际问题的应用4. 二元一次方程组的解法与实际问题的应用5. 代数式与方程式的综合运用三、几何基本概念1. 点、线、面的基本概念与性质2. 角的基本概念与性质3. 二维图形的基本概念与性质5. 几何基本概念的综合运用四、平面图形与空间图形1. 一些特殊角的性质与应用2. 三角形的性质与分类3. 三角形中的三边关系与角的关系4. 四边形的性质与分类5. 平面图形与空间图形的综合运用五、数列与函数1. 数列的概念与性质2. 等差数列与等比数列的性质与公式3. 函数的概念与性质4. 一次函数与二次函数的性质与应用5. 数列与函数的综合运用六、统计与概率1. 数据的收集与整理方式2. 统计图表的制作与分析4. 抽样调查与统计的应用5. 统计与概率的综合运用七、解题方法与策略1. 解题方法的基本原则与步骤2. 常用解题技巧与策略3. 实例分析与解题模型的建立4. 复杂问题的解决思路与方法5. 解题方法与策略的综合运用以上是中考数学知识点复习的提纲,通过对每个知识点的概念、性质和运用进行系统的复习与掌握,将有助于同学们在中考中取得优异的成绩。

希望同学们能够结合教材和各类题型进行有针对性的练习,熟练掌握每个知识点的考点和解题方法,做到知识点的全面复习和深入理解,以提升数学应用能力和解题思维水平。

祝同学们顺利通过中考,并取得优异的成绩!。

2024年初三数学知识点总结归纳(3篇)

2024年初三数学知识点总结归纳(3篇)

2024年初三数学知识点总结归纳初三数学复习策略概述在初三的数学学习中,对圆的知识点掌握至关重要。

以下是五个关键的复习方法:一、圆的定义1. 圆可定义为以一个固定点(圆心)为中心,固定长度(半径)的点所组成的图形。

2. 同一平面上,所有到某一固定点(圆心)距离相等的点构成的图形也被称为圆。

二、圆的组成部分1. 半径:从圆上的任意一点到圆心的连线段。

2. 直径:连接圆上两点且通过圆心的线段。

3. 弦:连接圆上任意两点的线段,直径也是弦的一种。

4. 弧:圆上任意两点间的曲线部分。

半圆周即为弧。

劣弧:弧度小于半圆周的弧。

优弧:弧度大于半圆周的弧。

5. 圆心角:以圆心为顶点,半径作为角的边的角。

6. 圆周角:顶点位于圆周上,其两边为弦的角。

7. 弦心距:从圆心到弦的垂直线段的长度。

三、圆的基本特性1. 圆的对称性圆是图形,其对称轴为通过直径的直线。

圆是中心对称图形,对称中心为圆心。

圆具有对称性。

2. 垂径定理垂直于弦的直径将弦平分,并将所对的弧也平分。

推论:平分非直径弦的直径垂直于弦并平分其所对的弧。

平分弧的直径垂直平分其所对的弦。

3. 圆心角的度数等于其对弧的度数,圆周角的度数等于对弧度数的一半。

同弧所对的圆周角相等。

直径所对的圆周角为直角;圆周角为直角,其对的弦为直径。

4. 在同圆或等圆中,若两条弦、两条弧、两个圆周角、两个圆心角或两条弦心距中有一对相等,其余四对也将分别相等。

5. 平行线间的两条弧相等。

6. 设圆⊙O的半径为r,点OP与圆心的距离为d。

以上内容构成了初三数学中关于圆的复习核心,理解并掌握这些知识点对于提升数学能力至关重要。

2024年初三数学知识点总结归纳(二)初三数学概念总结在三角形全等的判定中:1. 若两个三角形的对应两边及它们之间的夹角相等,两三角形全等,这被称为“边角边”定理,或简写为“SAS”。

2. 同样,若两个三角形的对应两角及它们之间的夹边对应相等,两三角形也全等,这称为“角边角”定理,或“ASA”。

初中数学中考考试重点与提纲

初中数学中考考试重点与提纲

初中数学中考考试重点与提纲导语:初中数学中考是中学阶段的重要考试,对于学生的数学素养和数学思维能力有着很大的考察。

下面是初中数学中考考试的重点内容和提纲,希望能够帮助同学们做好备考。

一、重点内容1.等差数列和等比数列等差数列的公式、前n项和、等差数列中项的位置、求和,以及等比数列的公式、求和的前n项和等都是重要的考点。

要掌握等差数列和等比数列的基本概念、性质和计算方法。

2.函数函数的定义、函数的概念、函数的图像以及函数的性质是初中数学的重要内容。

要掌握函数的基本知识,并且能够应用函数进行问题求解。

3.平方根和立方根平方根和立方根的定义、计算和应用是数学中非常基础和常见的内容。

要掌握平方根和立方根的运算规则和运算方法,并能够灵活运用。

4.代数式化简代数式化简是数学中重要的数学运算之一、要能够理解和熟练运用代数式化简的基本方法,以及应用代数式化简进行问题求解。

5.分式分式的概念、计算以及分式的性质都是初中数学中的重点内容。

要掌握分式的基本知识和计算方法,并能够应用分式进行问题求解。

6.平行线和相交线平行线和相交线是几何中的重要内容。

要掌握平行线和相交线的基本概念和性质,并能够应用平行线和相交线进行几何问题的证明和解答。

7.统计与概率统计与概率是数学中非常重要的部分。

要能够理解统计与概率的基本概念和计算方法,并能够应用统计与概率进行问题求解。

以上是初中数学中考的重点内容,学生们在备考时要针对这些内容进行深入学习和复习,熟练掌握相关概念、性质和运算方法。

二、考试提纲1.选择题选择题是数学中考试中常见的题目类型。

要注意审题,理解问题,同时要熟悉和掌握不同类型的选择题解题方法。

2.填空题填空题是考察学生计算和运算能力的题目类型。

要注意运算的准确性和方法的清晰性,同时要注意判别数据的有效性。

3.计算题计算题是考察学生应用知识进行计算和运算的题目类型。

要注意计算的准确性和方法的完整性,同时要合理安排计算过程和计算步骤。

初三中考数学复习知识点归纳整理(7篇)

初三中考数学复习知识点归纳整理(7篇)

初三中考数学复习知识点归纳整理(7篇)初三中考数学复习知识点归纳整理篇11、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的`判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab初三中考数学复习知识点归纳整理篇21、图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比率。

2、相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的.夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积比等于相似比的平方。

4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

初三中考数学复习知识点归纳整理篇3变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把Y=KX+B个函数的自变量X与对应的因变量Y的`值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、代数与函数1.数的性质:整数的除法、整除性及定理、分数的加减乘除、有理数的加减乘除、实数的性质。

2.代数式:代数式的定义、整式、分式、多项式、同类项、合并同类项、整式的加减乘除。

3.一次函数:一次函数的定义、一次函数的图象、一次函数的性质、解一次函数方程、应用题。

4.二次函数:二次函数的定义、二次函数的图象、二次函数的性质、解二次函数方程、应用题。

5.四则运算:整式的加减乘除、分式的加减乘除、根式的加减乘除。

二、平面几何1.角:角的定义、角的分类、角的性质、角度计量。

2.三角形:三角形的分类、三角形的性质、三角形的判定、三角形的面积计算、相似三角形。

3.四边形:四边形的分类、四边形的性质、平行四边形的性质、长方形、正方形、菱形。

4.圆:圆的性质、弦长定理、切线定理、扇形面积和弓形面积的计算。

5.计算:角度计算、线段比例计算、面积计算。

三、立体几何1.空间几何体:点、线、面、多面体的定义、性质、种类、展开图。

2.体积:立方体的体积计算、长方体的体积计算、棱柱的体积计算、棱锥的体积计算、圆柱的体积计算、球的体积计算。

四、数据与概率1.统计:数据的收集与整理、频数表、频率表、柱状图、折线图、扇形图。

2.概率:随机事件、样本空间、概率的定义、概率的计算、发生与不发生。

五、函数图象的认识和运用1.坐标系:直角坐标系、象限、坐标的含义。

2.函数:函数的概念、函数的图象、函数的性质、函数的运算。

3.函数关系:函数关系的表达、函数关系的应用。

4.反比例函数:反比例函数的性质、反比例函数的图象、反比例函数的应用。

六、数与量1.等比数列:等比数列的概念、等比数列的通项公式及性质、等比数列的前n项和的计算、应用题。

2.数轴,绝对值,数线图以上是中考数学知识点的一些提纲,总结了中考的数学考试内容,包括代数与函数、平面几何、立体几何、数据与概率、函数图象的认识和运用以及数与量等各个方面的知识点。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、整数1.整数的概念和性质:正整数、负整数、零、相反数2.整数的比较和大小关系3.整数的加法、减法、乘法和除法运算的性质和规律4.整数的混合运算5.整数的应用题:温度计算、存款取款等二、分数1.分数的概念和性质:分子、分母、相等分数、真分数、假分数、带分数2.分数的比较和大小关系:通分、比较大小3.分数的加法、减法、乘法和除法运算的性质和规律4.分数的混合运算5.分数的应用题:物品分配、水果切分等三、小数1.小数的概念和性质:有限小数、无限小数、循环小数2.小数的运算:加法、减法、乘法和除法3.小数与分数的互化4.小数的应用题:长度、面积、体积等计算四、比例与比例问题1.比例的概念和性质:比例关系、比例的延长线2.比例的计算:比例的等价、比例的放大和缩小、比例的分配3.比例的应用题:速度、时间、价格等计算五、百分数1.百分数的概念和性质:基数、百分数、百分数的减法和加法2.百分数的转化:百分数与小数、分数的互化3.百分数的应用题:折扣、利率、增长率等计算六、图形的认识1.点、线段、射线、直线、角的概念和性质2.平行线、垂直线和相交线的判定方法3.三角形、四边形、多边形的概念和性质4.圆的概念和性质:圆心、半径、直径、弧5.图形的角度:锐角、直角、钝角、平角6.图形的面积和周长:三角形、四边形、圆的面积和周长的计算七、代数式与方程式1.代数式的概念和性质:代数式的字母、常数项、变量项、项数、次数2.代数式的计算:同类项的合并、多项式的加法和减法3.方程式的概念和性质:等式、未知数、方程的解4.一步方程式和一元一次方程式的解法5.方程的应用题:问题翻译为方程求解八、排列组合与概率1.排列与组合的基本概念和计算公式2.排列和组合的应用题:选委员、摆放顺序等3.概率的概念和性质:样本空间、事件、概率的计算公式4.概率的应用题:抽卡概率、事件概率等计算九、数据与统计1.数据的概念和性质:一维数据、二维数据、数据的收集和整理2.数据的表示和分析:表格、折线图、条形图、饼图的绘制和分析3.平均数、中位数和众数的计算和应用4.统计问题的分析和解决方法。

九年级数学知识点复习提纲

九年级数学知识点复习提纲

九年级数学知识点复习提纲九年级数学知识点复习提纲在年少学习的日子里,大家对知识点应该都不陌生吧?知识点就是一些常考的内容,或者考试经常出题的地方。

掌握知识点是我们提高成绩的关键!下面是店铺帮大家整理的九年级数学知识点复习提纲,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

中考数学提纲知识点

中考数学提纲知识点

中考数学提纲知识点中考生已经开始备考了,很多同学都喜欢问初中各知识点怎样复习,其实只要自己写好知识点的复习提纲,规划好复习时间就肯定没问题的,下面小编给大家分享一些中考数学提纲知识点,希望能够帮助大家,欢迎阅读!中考数学提纲知识点【1】知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=根号3/2 。

2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

初三数学中考知识点复习

初三数学中考知识点复习

初三数学中考知识点复习对于初三的同学来说,中考数学的复习至关重要。

数学是一门系统性很强的学科,掌握好各个知识点,并且能够灵活运用,是取得好成绩的关键。

下面咱们就一起来梳理一下初三数学中考的重要知识点。

一、数与式1、实数实数的分类:有理数和无理数。

有理数包括整数和分数;无理数是无限不循环小数。

实数的运算:包括加、减、乘、除、乘方、开方等。

要特别注意运算顺序和运算法则。

平方根、算术平方根和立方根的概念及性质。

2、代数式整式:单项式和多项式的概念、系数、次数等。

整式的加减运算,乘法运算中的幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方)以及整式的乘法(单项式乘以单项式、单项式乘以多项式、多项式乘以多项式)。

分式:分式的概念、有意义的条件、分式的基本性质。

分式的约分、通分以及分式的加减乘除运算。

二次根式:二次根式的概念、性质。

二次根式的化简、运算。

二、方程与不等式1、方程一元一次方程:定义、解法(一般步骤)、应用。

二元一次方程组:解法(代入消元法、加减消元法)、应用。

一元二次方程:定义、一般形式、解法(直接开平方法、配方法、公式法、因式分解法)、根的判别式、根与系数的关系(韦达定理)、应用。

2、不等式不等式的性质。

一元一次不等式:解法、解集在数轴上的表示、应用。

一元一次不等式组:解法、解集的确定、应用。

三、函数1、平面直角坐标系坐标的概念、各象限内点的坐标特征、坐标轴上点的坐标特征。

点关于坐标轴、原点对称的坐标特征。

2、函数函数的概念、自变量的取值范围。

一次函数:定义、图象(直线)、性质、解析式的确定(待定系数法)、应用。

反比例函数:定义、图象(双曲线)、性质、解析式的确定、应用。

二次函数:定义、一般式、顶点式、交点式。

图象(抛物线)、性质(开口方向、对称轴、顶点坐标、增减性)、解析式的确定(待定系数法)、应用(求最值、与一元二次方程的关系)。

四、三角形1、三角形的基本概念三角形的分类(按边、角分)。

2024中考数学知识点总结

2024中考数学知识点总结

2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。

- 自然数、整数、有理数的加减法、乘除法的规则。

- 无理数的定义及有理数与无理数的运算。

2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。

- 正数和负数的乘法及除法。

- 负数的概念及运算。

3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。

- 整数的概念及整式的定义。

- 整式的加减法和乘法。

4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。

- 一元一次整式方程的实际应用。

二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。

- 圆的概念、圆心角、弧与弧长的关系。

2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。

- 图形的平移、旋转和镜像的性质及判断。

3. 直线、角、三角- 直线的概念及判断。

- 角的概念、相邻角、对顶角、对角线等性质及判断。

- 三角形的分类、判断和性质。

4. 相交线与平行线- 平行线与相交线的性质及判断。

- 平行线与平行线的性质及判断。

5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。

- 区间的概念及判断。

- 正数指数与幂以及具体问题的表示与计算。

三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。

- 函数的运算规则。

- 函数的自变量与因变量的关系。

2. 一次函数和二次函数- 一次函数的定义、图象及特征。

- 一次函数的性质及应用。

- 二次函数的定义、图象及特征。

3. 方程与函数- 方程与函数的关系及解方程的基本思路。

- 一次方程、二次方程的定义、方法及应用。

4. 极大极小值- 极大极小值的概念、条件。

- 一元二次函数的极大极小值的应用。

5. 图像的平移与缩放- 图像平移的概念、规律及图示。

- 图像缩放的概念、规律及图示。

6. 函数的定义域和值域- 函数定义域的概念及计算。

2023年中考数学总复习提纲(人教版)

2023年中考数学总复习提纲(人教版)

2023年中考数学总复习提纲(人教版)第一章:数与代数1. 整数和有理数- 整数的四则运算- 有理数的加减乘除运算2. 分数和小数- 分数的基本概念- 分数的加减乘除运算- 分数与小数的转换3. 数量与单位- 基本数量单位的认识- 不同单位之间的换算- 速度、密度、质量等实际问题的计算第二章:几何与图形1. 平面图形- 点、线、面的基本概念- 直线、点线面的位置关系- 四边形、三角形、圆的特征和性质2. 空间图形- 立体图形的基本概念- 立方体、长方体、圆柱体的特征和性质- 探索立体图形的表面积和体积公式3. 平面坐标系- 直角坐标系的认识- 平面坐标系中的点的位置表示- 利用坐标解决简单几何问题第三章:函数与方程1. 函数的初步认识- 函数的概念与常见例子- 函数的表达式和函数图象2. 一次函数与二次函数- 一次函数的定义和性质- 二次函数的定义和性质- 利用函数图象解决实际问题3. 方程与不等式- 一元一次方程与一元一次不等式- 解方程和不等式的基本步骤- 问题转化为方程或不等式的求解第四章:数据与统计1. 数据的整理和分析- 数据的收集方法与表示方式- 数据的整理和分类- 数据的分析和统计2. 图表的分析与应用- 条形图、折线图的意义与应用- 饼图、直方图的意义与应用- 利用图表解决实际问题3. 概率的初步认识- 事件与概率的概念- 等可能事件的概率计算- 实际问题中的概率计算以上是2023年中考数学总复习提纲(人教版)的大纲目录。

根据这个提纲进行复习将有助于你掌握数学的基础知识和解题技巧。

希望你认真学习,取得优异的成绩!加油!。

中考数学总复习提纲汇总

中考数学总复习提纲汇总

中考数学总复习提纲汇总(1)第一章实数★重点★ 实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D。

积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。

和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A。

直观地比较实数的大小;B。

明确体现绝对值意义;C。

建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A。

高级运算到低级运算;B。

(同级运算)从“左”到“右”(如5÷ ³5);C。

(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a。

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

中考数学复习提纲及建议

中考数学复习提纲及建议

中考数学复习提纲及建议中考数学复习提纲数学中考复习提纲(实数与数轴)1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

二、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

三、实数的运算 1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

数学中考复习提纲(有效数字和科学记数法)1、科学记数法:设N>0,则N= a×10(其中1≤a<10,n为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

2024初三数学备战中考复习知识点大全

2024初三数学备战中考复习知识点大全

2024初三数学备战中考复习知识点大全
一、数与代数
1.位值与面值
2.带余除法
3.有理数的加减乘除
4.等比数列、等差数列
5.代数式的基本概念
6.一次方程、二次方程(解法及应用)
7.一元一次不等式、一元二次不等式(解法及应用)
二、平面几何
1.角的概念及分类
2.直线的特殊位置及角
3.平行线、相交线的性质
4.同位角、内错角定理
5.等腰三角形、等边三角形
6.相似三角形及其性质
7.直角三角形的勾股定理及其应用
8.多边形的基本概念及特征
9.圆的基本概念及其性质
10.圆心角、弧长及扇形面积计算
11.圆内接四边形、圆内切正多边形
三、空间几何
1.空间坐标系
2.空间中点坐标计算
3.矢量的基本概念、表示方法及加、减法
4.矢量的数量积和向量积
5.三角形面积、高及周长计算
6.四面体、棱柱、棱锥及其侧面积、表面积和体积计算
7.球的基本概念及其性质
四、函数
1.一次函数的基本概念及其图像
2.二次函数的基本概念及其图像
3.分式函数的概念及其图像
4.反比例函数的概念及其图像
5.幂函数、指数函数及对数函数的概念及其图像
6.函数的复合及反函数的概念
7.绝对值函数的概念及其图像
五、统计与概率
1.数据的收集、整理、描述和分布
2.离散型随机变量及其数理期望
3.连续性随机变量及其概率密度函数
4.事件与概率、条件概率、全概率公式及贝叶斯公式
5.随机变量的基本分布及其应用
以上就是2024初三数学备战中考的考点大全,希望同学们好好复习并加上自己的实践与思考。

中考数学总复习知识点归纳

中考数学总复习知识点归纳

中考数学总复习知识点归纳中考数学是检验学生初中阶段数学知识掌握程度的重要环节,总复习时需要系统地归纳和梳理各个知识点。

以下是中考数学总复习的知识点归纳:一、数与代数1. 数的认识:包括整数、分数、小数、负数等基本概念。

2. 四则运算:掌握加、减、乘、除的基本法则和运算技巧。

3. 代数基础:包括代数式、方程、不等式等。

4. 因式分解:掌握提取公因式、公式法等因式分解方法。

5. 一元一次方程:解方程的基本步骤和应用。

6. 一元二次方程:包括直接开平方法、配方法、公式法等解法。

7. 不等式与不等式组:解不等式的基本技巧和应用。

二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本性质。

2. 立体图形:包括长方体、正方体、圆柱、圆锥、球等体积和表面积的计算。

3. 图形变换:包括平移、旋转、反射等几何变换。

4. 相似与全等:掌握相似三角形和全等三角形的判定和性质。

5. 圆的性质:包括圆周角、切线、弧长、扇形等。

三、统计与概率1. 数据的收集与处理:包括数据的收集方法、分类、统计图表的绘制。

2. 描述统计:包括平均数、中位数、众数、方差等统计量。

3. 概率的初步认识:包括事件的确定性与不确定性,概率的计算。

四、函数与图象1. 函数的概念:包括自变量、因变量、函数的定义域和值域。

2. 一次函数:包括一次函数的图象和性质。

3. 反比例函数:反比例函数的图象和性质。

4. 二次函数:包括顶点式、对称轴、开口方向等。

五、综合应用1. 实际问题解决:将数学知识应用于解决实际问题,如速度、距离、时间问题等。

2. 数学建模:初步了解数学建模的概念和基本方法。

结束语通过以上对中考数学知识点的归纳,希望能够帮助同学们在复习过程中更加有的放矢,系统地掌握和运用数学知识。

数学学习不仅仅是为了应对考试,更重要的是培养逻辑思维和解决问题的能力。

希望同学们能够在中考中取得优异的成绩,为今后的学习打下坚实的基础。

中考数学知识点复习提纲

中考数学知识点复习提纲

中考数学知识点复习提纲
一、整数与分数
1.整数的概念与性质
2.分数的概念与性质
3.整数与分数的大小比较及运算法则
4.整数与分数的混合运算
二、代数式与方程
1.代数式的概念与运算法则
2.一元一次方程的解法与应用
3.简单的二元一次方程组的解法与应用
三、图形的认识与计算
1.平面图形的基本性质:线段、角、三角形、四边形、多边形等
2.平面图形的周长与面积计算公式
3.三角形的相似与全等
4.圆的性质及计算公式
四、函数与图像
1.函数的概念与性质
2.一次函数的图像、性质与应用
3.二次函数的图像、性质与应用
4.图像的平移、翻折与对称性
五、数据与统计
1.数据的收集与整理
2.统计量的计算与应用:平均值、中位数、众数、范围等
3.直方图、饼图与折线图的绘制与分析
六、几何的变换
1.平移、旋转、翻折与对称的概念与性质
2.图形的变化规律与描述
3.平移、旋转、翻折与对称的几何变换作用下的图形关系与应用
七、二次根式与三角函数
1.平方根的概念、性质与运算法则
2.三角函数的概念与性质
3.三角函数的计算与应用
八、数学的应用与解决问题的方法
1.数学在生活中的应用:比例、利息、单位换算等
2.使用数学知识解决实际问题的基本思维方法和策略
3.利用数学模型与技巧解决实际问题
以上是中考数学知识点复习的提纲,详细的内容可以根据各个知识点编写对应的解题方法、公式推导、例题和习题等,以确保全面复习掌握数学知识。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、数与代数1.自然数、整数、有理数、实数的概念及性质;2.数的运算(加法、减法、乘法、除法);3.整数的除法运算规则;4.各种数的相互转化及计算;5.幂、指数的概念及运算规则;6.代数式的概念及展开、因式分解;7.一元一次方程的基本概念及解法;8.一元一次不等式的基本概念及解法。

二、几何1.点、线、面的基本概念;2.直线与平面的相交关系;3.角的概念及角的分类;4.三角形的边与角的关系;5.三角形的周长、面积的计算;6.四边形的性质及计算;7.圆的基本概念及计算;8.圆的切线与弦的性质;9.勾股定理及其应用;10.相似三角形的性质及计算;11.三角形的相似判别及构造;12.平行线、相交线及其性质;13.各种特殊四边形的性质及判定。

三、函数与图形1.函数的概念及性质;2.一次函数的图象与性质;3.二次函数的图象与性质;4.平面直角坐标系及其应用;5.线性函数与线性方程组的关系与解法;6.函数与方程的应用;7.简单图形的平移、旋转、对称及其应用;8.统计图表的分析与应用。

四、数据分析与统计1.数据的收集和整理;2.分组频数表的制作及分析;3.平均数、中位数、众数的计算及比较;4.极差、方差、标准差的计算及比较;5.统计图表的制作和分析。

五、立体几何1.空间图形的基本概念;2.空间图形的表面积和体积计算;3.圆柱、圆锥、球体的表面积和体积计算;4.空间图形的展开与几何体的拼接。

总结:以上是中考数学知识点的一个总结提纲,包括数与代数、几何、函数与图形、数据分析与统计、立体几何等几个方面。

在具体的学习中,还需要根据自己的实际情况,重点掌握和巩固各个知识点的定义、性质、计算方法和应用。

同时,通过大量的习题和题型训练,提高解题能力和思维灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学应知应会的知识点一元二次方程1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题: Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x ab x x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ ac = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ ac >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ):(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.AB C cba(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法:.0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x 1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x B sin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=cb =斜对;tanA=ba=邻对; cotA=a b =对邻. 2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB.3. 同角三角函数关系:sin 2A+cos 2A =1; tanA·co tA =1. ※ tanA=A cos A sin ※ cotA=Asin Acos 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数 值,要熟练记忆它们..正弦函数值范围:0 1; 余弦函数值范围: 1 0;正切函数值范围:0 无穷大; 余切函数值范围:无穷大 0.7.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.※ 8. 关于直角三角形的两个公式: Rt △ABC 中: 若∠C=90°,.:m :R :r .m 2cR 2c b a r c c 斜边上中线外接圆半径,内切圆半径,;==-+= 9.坡度: i = 1:m = h/l = tan α; 坡角: α.10. 方位角:11.仰角与俯角:12.解斜三角形:已知“SAS ” “SSS ” “ASA ” “AAS ” 条件的任意三角形都可以经过“斜化直”求出其余的边和角.※ 13.解符合“SSA ”条件的三角形:若三角形存在且符合“SSA ”条件,则可分三种情况:(1)∠A ≥90°,图形唯一可解; (2) ∠A <90°,∠A 的对边大于或等于它的已知邻边,图形唯一可解;(3)∠A <90°,∠A 的对边小于它的已知邻边,图形分两类可解. 14.解三角形的基本思路: (1)“斜化直,一般化特殊” ------- 加辅助线的依据; 北东北偏西30南偏东70仰角俯角水平线铅垂线l hai=1:mK3 KKKK2 K230°45°60°ABC ABC(2)合理设“辅助元k ”,并利用k 进一步转化是分析三角形问题的常用方法-------转化思想;(3)三角函数的定义,几何定理,公式,相似形等都存在着大量的相等关系,利用其列方程(或方程组)是解决数学问题的常用方法---------方程思想.函数及其图象一 函数基本概念1.函数定义:设在某个变化过程中,有两个变量x,、y, 如对x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的函数,x 是自变量. ※2.相同函数三个条件:(1)自变量范围相同;(2)函数值范围相同;(3)相同的自变量值所对应的函数值也相同.※3. 函数的确定:对于 y=kx 2 (k ≠0), 如x 是自变量,这个函数是二次函数;如x 2是自变量,这个函数是一次函数中的正比例函数.4.平面直角坐标系:(1)平面上点的坐标是一对有序实数,表示为: M (x,y ),x 叫横坐标,y叫纵坐标; (2)一点,两轴,(四半轴),四象限,象限中点的坐标符号规律如右图: (3) x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 即“x 轴上的点纵为0,y 轴上的点横为0”;反之也成立;(4)象限角平分线上点M(x,y) 的坐标特征:x=y <=> M 在一三象限角平分线上; x=-y <=> M在二四象限角平分线上. (5)对称两点M(x 1,y 1), N(x 2,y 2) 的坐标特征:关于y 轴对称的两点 <=> 横相反,纵相同;关于x 轴对称的两点 <=> 纵相反,横相同;关于原点对称的两点 <=> 横、纵都相反. 5.坐标系中常用的距离几个公式 -------“点求距”(1)如图,轴上两点M 、N 之间的距离:MN=|x 1-x 2|=x 大-x 小 . (2)如图, 象限上的点M (x,y ):到y 轴距离:d y =|x|; 到x 轴距离: d x =|y|;22y x r +=到原点的距离:.(3)如图,轴上的点M (0,y )、N (x,0)到原点的距离: MO=|y|; NO=|x|.※(4)如图,平面上任意两点M (x 2,y 2)、N (x 2,y 2)之间的距离: .)y y ()x x (d 221221-+-=※ 6. 几个直线方程 :y 轴 <=> 直线 x=0 ; x 轴 <=> 直线 y=0 ; 与y 轴平行,距离为∣a ∣的直线 <=> 直线 x=a ; 与x 轴平行,距离为∣b ∣的直线 <=> 直线 y=b.7. 函数的图象:(1) 把自变量x 标系中找出点的位置,这样取得的所有的点组成的图形叫函数的图象;(2) 图象上的点都适合函数解析式,适合函数解析式的点都在函数图象上;由此可得“图象上的点就能代入”-------重要代入!(3) 坐标平面上,横轴叫自变量轴,纵轴叫函数轴;利用已知的图象,可由自变量值查出函数值,也可由函数值查出x y o + +_ _-- ++ -xyo M(x,y)r xyo M(x,y)N(x,y)C自变量值;可由自变量取值范围查出对应函数值取值范围,也可由函数值取值范围查出对应自变量取值范围;(4) 函数的图象由左至右如果是上坡,那么y随x增大而增大(叫递增函数);函数的图象由左至右如果是下坡,那么y随x增大而减小(叫递减函数).8. 自变量取值范围与函数取值范围:一次函数1. 一次函数的一般形式:y=kx+b . (k≠0)2. 关于一次函数的几个概念:y=kx+b (k≠0)的图象是一条直线,所以也叫直线y=kx+b,图象必过y轴上的点( 0,b )和x轴上的点( -b/k,0 );注意:如图,这两个点也是画直线图象时应取的两个点. b叫直线y=kx+b (k≠0)在y轴上的截距,b的本质是直线与y轴交点的纵坐标,知道截距即知道解析式中b的值.3.y=kx+b (k≠0) 中,k,b符号与图象位置的关系:yxok>0, b>0k>0, b<0图象过一二三象限,图象上坡.图象过一三四象限,图象上坡.图象过一二四象限,图象下坡.图象过二三四象限,图象下坡.4. 两直线平行:两直线平行 <=> k1=k2※两直线垂直<=> k1k2=-1.5. 直线的平移:若m>0,n>0, 那么一次函数y=kx+b图象向上平移m个单位长度得y=kx+b+m;向下平移n个单位长度得y=kx+b-n (直线平移时,k值不变).6.函数习题的四个基本功:(1) 式求点:已知某直线的具体解析式,设y=0,可求出直线与x轴的交点坐标(x0 ,0);设x=0,可求出直线与y轴的交点坐标(0,y0);已知两条直线的具体解析式,可通过列二元一次方程组求出两直线的交点坐标(x0 ,y0);交点坐标的本质是一个方程组的公共解;(2) 点求式:已知一次函数图象上的两个点,可设这个函数为y=kx+b,然后代入这两个点的坐标,得到关于k、b的两个方程,通过解方程组求出k、b,从而求出解析式 ------ 待定系数法;xy(x,y)(0,b)(-b/k, 0)b-b/k,即取点对角 0(3) 距求点:已知点M(x 0 ,y 0)到x 轴,y 轴的距离和所在象限,可求出点M 的坐标;已知坐标轴上的点P 到原点的距离和所在半轴,可求出点P 的坐标;(4) 点求距:函数题经常和几何相结合,利用点的坐标与它所在的象限或半轴特征可求有关线段的长,从而使得函数问题几何化.正比例函数1.正比例函数的一般形式:y=kx (k ≠0); 属于一次函数的特殊情况;(即b=0的一次函数)它的图象是一条过原点的直线;也叫直线y=kx.2.画正比例函数的图象:正比例函数y=kx (k ≠0)的图象必过(0,0)点和(1,k )点,注意:如图,这两个点也是画正比例 函数图象时应取的两个点,即列表如右:3.y=kx (k ≠0)中,k 的符号与图象位置的关系:k>0k<0.图象过二四象限,图象下坡.4. 求正比例函数解析式:已知正比例函数图象上的一点,可设这个正比例函数为y=kx,把已知点的坐标代入后, 可求k, 从而求出具体的函数解析式------ 待定系数法.二次函数1. 二次函数的一般形式:y=ax 2+bx+c.(a ≠0)2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax 2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.3. y=ax 2 (a ≠0)的特性:当y=ax 2+bx+c (a ≠0)中的b=0且c=0时二次函数为y=ax 2(a ≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y 轴对称;(2)顶点(0,0);(3)y=ax 2(a≠0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax 2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0).4. 二次函数y=ax 2+bx+c (a ≠0)的图象及几个重要点的公式:x y (x, y)001K(0,0)(1,K)5. 二次函数y=ax 2+bx+c (a ≠0)中,a 、b 、c 与Δ的符号与图象的关系: (1) a >0 <=> 抛物线开口向上; a <0 <=> 抛物线开口向下;(2) c >0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;c <0 <=> 抛物线从原点下方通过;(3) a, b 异号 <=> 对称轴在y 轴的右侧; a, b 同号 <=> 对称轴在y 轴的左侧;b=0 <=> 对称轴是y 轴;(4) Δ>0 <=> 抛物线与x 轴有两个交点;Δ=0 <=> 抛物线与x 轴有一个交点(即相切); Δ<0 <=> 抛物线与x 轴无交点.6.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax 2+bx+c ,并把这三点的坐标代入,解关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值, 从而求出解析式-------待定系数法.8.二次函数的顶点式: y=a(x-h)2+k (a ≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k ),对称轴方程 x=h 和函数的最值 y 最值= k.9.求二次函数的解析式:已知二次函数的顶点坐标(x 0,y 0)和图象上的另一点的坐标,可设解析式为y=a(x -x 0)2+ y 0,再代入另一点的坐标求a ,从而求出解析式.(注意:习题无特殊说明,最后结果要求化为一般式)10. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k 的图象平行移动时,改变的是h, k 的值, a 值不变,具体规律如下:k 值增大 <=> 图象向上平移; k 值减小 <=> 图象向下平移; (x-h )值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移. 11. 二次函数的双根式:(即交点式) y=a(x-x 1)(x-x 2) (a ≠0);由双根式直接可得二次函数图象与x 轴的交点(x 1,0),(x 2,0).12. 求二次函数的解析式:已知二次函数图象与x 轴的交点坐标(x 1,0),(x 2,0)和图象上的另一点的坐标,可设解析式为y= a(x-x 1)(x-x 2),再代入另一点的坐标求a ,从而求出解析式. (注意:习题最后结果要求化为一般式) 13.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.反比例函数1. 反比例函数的一般形式:);0k (kx y xky 1≠==-或图象叫双曲线. ※ 2. 关于反比例函数图象的性质: 反比例函数y=kx -1中自变量x 不能取0, 故函数图象与y 轴无交点; 函数值y 也不会是0, 故图象与x 轴也不相交.3. 反比例函数中K 的符号与图象所在象限的关系:图象过二四象限,图象上坡.图象过一三象限,图象下坡.k>0k<04. 求反比例函数的解析式:已知反比例函数图象上的一点,即可设解析式y=kx -1, 代入这一点可求k 值,从而求出解析式.函数综合题1.数学思想在函数问题中的应用:数学思想经常在函数问题中得到体现,例如:分析函数习题常常需要先估画符合题意的图象,利用数形结合降低难度;而点求式、式求点、点求距、距求点等基本操作则是转化思想在函数中应用;当函数问题与几何问题相结合时,方程思想则成为解决问题的基本思路;函数习题中,当图象与图形不唯一、点位置不唯一、可知条件不唯一时,往往造成函数问题的分类.2.数学方法在函数问题中的应用:建立坐标系、建立新函数、函数问题几何化、挖掘隐含条件、分类讨论、相等关系找方程、不等关系找不等式、等量代换、配方、换元、待定系数法、等各种数学方法在函数中经常得到应用,了解这些数学方法是十分必要的.3.函数与方程的关系:正比例函数y=kx (k ≠0)、一次函数y=kx+b (k ≠0)都可以看作二元一次方程,而二次函数y=ax 2+bx+c (a ≠0)可以看作二元二次方程,反比例函数)0k (xky ≠-=可以看作分式方程,这些函数图象之间的交点,就是把它们联立为方程组时的公共解. 4.二次函数与一元二次方程的关系:(1)如二次函数y=ax 2+bx+c (a ≠0)中的Δ>0时,图象与x 轴相交,函数值y=0,此时, 二次函数转化为一元二次方程ax 2+bx+c=0 (a ≠0),这个方程的两个根x 1 、x 2是二次函数y=ax 2+bx+c 与x 轴相交两点的横坐标,交点坐标为(x 1 ,0)(x 2 ,0);(2)当研究二次函数的图象与x 轴相交时的有关问题时,应立即把函数转化为它所对应的一元二次方程,此时,一元二次方程的求根公式,Δ值,根系关系等都可用于这个二次函数.(3)如二次函数y=ax 2+bx+c (a ≠0)中的Δ>0时,图象与x 轴相交于两点A (x 1 ,0),B (x 2 ,0)有重要关系式: OA=|x 1|, OB=|x 2|,若需要去掉绝对值符号,则必须据题意做进一步判断;同样,图象与y 轴交点 C(0,c),也有关系式: OC=|c|. 5.二元二次方程组解的判断:一个二元一次方程和一个二元二次方程组成的方程组,若消去一个未知数,则转化为一元二次方程,此时的Δ值将决定原方程组解的情况,即:Δ>0 <=> 方程组有两个解; Δ=0 <=>方程组有一个解;Δ<0 <=>方程组无实解.初三数学应知应会的知识点 ( 圆 )几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形.三 公式: 1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2.(4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ;两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:。

相关文档
最新文档