l短波通信的发展历史及现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l短波通信的发展历史及现状
短波通信(Short-wave Communication),也被称为高频通信,一般指的是利用波长范围为100m到10m(相应的频率范围为3MHz 到30MHz)的电磁波的无线通信。短波的传播方式主有两种:一个为地波,另一个为天波。其中地波沿着地球表面进行传播,这种方式的传播距离主要由地表介质特性决定。因为地波的衰减随着频率的升高而增强,短波以地波方式传播时,使用常用的发射功率,短波的传播距离最多只有几百公里,所以地波不是短波通信中使用的主要传播方式。然而地波传播不需要经常改变无线通信的工作频率,但需考虑障碍物的影响,这也是其与天波传播方式不同的地方。
1901年,意大利无线电工程师马可尼在英国与纽芬兰之间(距离为3400Km),实现了跨越整个大西洋的无线电通信。在这以后,因为无线电短波通信设备的价格低廉、便携性强、操作简单和灵活等优点,无线电短波通信迅速发展成为远距离无线通信的主要技术。从第二次世界大战开始一直到20世纪6O年代的这一段时间是短波无线通信发展的黄金时期,该技术广泛地应用于军事、广播、商业、气象等诸多领域,世界上许多国家并建立了覆盖本地区或世界性的专用通信网或公用通信网。但自从20世纪60年代以后,卫星通信等新兴远距离通信技术的出现使得短波通信的缺点越来越多地暴露出来:带宽较窄,射频频谱资源紧张,存在信道间干扰问题,易被窃听等等。相反的是,新型卫星通信技术
具有信道稳定、可靠性高、通信质量好、信道容量大等优点,许多本来是属于短波通信的重要业务逐步被卫星通信所取代。在20世纪60至7O年代,短波无线通信技术的研究与应用陷入低谷。但电子战、卫星战等战争方式的出现,使得人们发现一旦发生战争,各种通信系统都有可能被破坏,就是卫星也不能避免,如果过分依赖卫星作为中继站进行无线通信,在战时卫星一旦被摧毁,那么整个通信系统将瘫痪,后果是不堪设想的。短波自身的特点决定其是唯一不受网络枢纽和有源中继体制约的远程通信手段,该技术的抗打击能力和自主通信能力超出其他通信方式,再加之卫星通信技术成本很高,而短波通信技术起点较低、价格低廉,一般的国家均能进行部署和使用。短波无线通信和卫星通信一样,都能够实现全球的通信,基于以上原因,人们对短波无线通信的发挥的作用又重新予以重视。
随着微电子技术、计算机技术和数字信号处理技术的不断发展,短波无线通信技术在自适应收发信机、自适应调制解调器、自适应均衡及检测、白适应天线阵等方面上取得了突破,使得短波无线通信技术有可能解决高干扰电平、衰落和多径传播等信道时变特性方面的问题,向着数字化、低误码率、高速率的方向继续发展。
2现有短波通信存在的缺陷
2.1地球电离层对短波通信的影响太阳的辐射使得地球大气层中的氮原子、氧原子失去电子,变成离子这些离子态的气体在地
球上空形成了电离层。正是因为短波通信电磁波信号在地球电离层的折射现象,人们才可以利用短波进行长距离的无线通信。在这些电离层中离地面最近的一层,平均厚度为1公里。这层电离层在日间中午时电离程度达到最高,到了晚上,电离层内的正负离子逐渐复合,这层电离层也随之消失。这一层电离层只吸收电磁波信号的能量,但并不进行反射。一般情况下这层电离层的电离化的程度越高,其吸收无线电波能量的能力也就越强。第二层电离层的距离地面约为100公里,其平均厚度约为25公里,电离程度高于第一层,在没有太阳光照射的时候(例如夜间),这层电离层失去离子的速度很快,所以它也是主要在白天对短波通信的传播产生影响。但是第二层与第一层不同,它不会吸收较低频率的短波通信电磁波信号的能量而让较高频率的电磁波通过,而第二层可以把电磁波反射回地面。一般在晚间电离层可以把频率范围在10MHz到30MHz的信号反射到地面上。因为这个时候第一次层电离层消失,第二层电离层也变得很弱。电波经由发射机的天线发射后,利用电离层反射回地球表面,这段距离称为跳跃距离(简称为跳距),电磁波信号经一次反射(也就是一个跳距)最多可传输达到4000Km,短波电磁波信号经过多次反射后便可以作环球传播。电离层的反射角与跳距有关,而反射角又与发射机天线的仰角又关,仰角越小,则反射角越大,跳距也就越远。当前电离层的条件直接影响着不同频率的无线通信电磁波信号的传播。太阳黑子活动可以使得地球电离层反射短波信号的能力增
强,除此之外,太阳流也会使电离层扰动,进而导致电磁暴。这种情况下,电离层会吸收短波的信号,而不是传播信号,影响着短波无线通信的进行。
2.2多径传播对短波通信的影响电磁波通过多条不同的路径同时进行传播最终到达终端接收机的现象称为多径传播。由于这些传播的路径长度不同,所以每一路电磁波信号到达接收机的时间不同。不同路径间的最大时延之差也称作多径时延。多径传播现象通常会造成数字通信中码元的重叠问题,进而造成判决错误和误码的发生,影响了无线通信速率的提高和通信的可靠度。常见的多径传播现象有:单跳传播和多跳传播、低角射线和高角射线、寻常波和非寻常波等等。由于短波无线通信设备的天线波束较宽,射线的发散性也就较大,又因为地球电离层是分层的,所以在一条短波无线通信的电磁波信号传播中存在着不同的传播路径,也就是存在多径传播现象。短波无线通信中的多径传播会产生两个间题:一是衰落,另一个是延时。短波电磁波信号在地球的电离层内传播时,由于电离层电特性变化的随机性,造成不同信号的传播路径和能量吸收的随机变化,使得接收机端的电平不规则变化,信号幅度呈现随机变化,这种问题称为衰落。衰落问题的产生对短波无线通信的可靠性、稳定性影响很大,有时甚至会导致通信中断。多径传播还使得传输信号失真或使信道的传输带宽受限。多径延时是指不同传播途径中最大的传输延时与最小-的传输延时之差,它的值与系统的频率、距离等条件有关。当
传播使用的电磁波频率达到系统所能承受的最高的频率,多径时延的值响应地也会减至最小,而传播方式也会与普通的单跳传播非常接近。如果系统的工作频率减小,同时也会造成多径时延值的升高。在多波无线通信中,多径时延会引起码元畸变,增大误码率等不利影响。
3短波通信的优化方法及发展趋势分析
3.1跳频技术抗干扰问题是现代短波无线通信中技术中的一个核心问题,特别是应用在军事通信领域时。扩展频谱通信(简称扩频通信)技术是一种有效的抗干扰方法,该技术通过利用与发送的信息无关的伪随机码使得发射信号频带宽度远大于基带信号频带宽度。主要的扩频通信方式主要有直接序列扩频、跳频和跳时等等。而在短波无线通信中主要以跳频为主,也有少量设备使用直接序列扩频、跳频或跳频和跳时相结合的技术。跳频通信是将无线通信的信道带宽分为不同相邻的频率间隔(也称为频隙)。在某个信号的传输间隔内,发送的信息占据一个或多个可用的频隙,以类似于伪随机码的方式进行,这样跳频序列可以在较宽的频带内进行跳变。基带信号被初步调制后再进入载波调制(也就是扩频调制)阶段,可变频率综合器经由跳频序列的控制,载波频率(即频率综合器的输出频率)随着跳频序列值的改变而改变。在接收机端,系统首先从发射机中发送的射频信号中恢复出跳频同步信号,使接收端的跳频序列控制的频率的变化与跳频信号同步,再利用本振信号解调接收到的跳频信号,进而获取基