数学与建筑的关系教案资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与建筑的关系

几千年来,数学一直是用于设计和建造的一个很宝贵的工具。它一直是建筑设计思想的一种来源,也是建筑师用来得以排除建筑上的试错技术的手段。数学与建筑,就象混凝土搅拌后砂石与水泥相互粘合那样,有着一种无形的十分密切的情结。在这里,数学这一基础学科,作为人类认识自然、理解自然、掌握自然,以及征服自然的钥匙和工具,也早已渗透到建筑学科的所有领域。数学为建筑服务,建筑也离不开数学。

下面从以下几个方面阐述一下数学与建筑之间的关系。

第一方面,什么是数学?谈起数学,很自然会联想到小学里学过的算术,初中时学的代数、平面几何以及中专阶段讲到的三角、立体几何、平面解析几何和一元微积分学等等。这些数学内容由浅入深,由少到多,由简单到复杂,五花八门,琳琅满目。然而,把这些内容仔细分析一下,数学分为初等数学与高等数学两大部分。初等数学中主要包含两部分:几何学与代数学。几何学是研究空间形式的学科,而代数学则是研究数量关系的学科。初等数学基本上是常量的数学。高等数学含有非常丰富的内容,以大学本科所学为限,它主要包含:解析几何:用代数方法研究几何,其中平面解析几何部分内容已放到中学。线性代数:研究如何解线性方法组及有关的问题。高等代数:研究方程式的求根问题。微积分:研究变速运动及曲边形的求积问题。

作为微积分的延伸,物理类各系还要讲授常微分方程与偏微分方程。概率论与数理统计:研究随机现象,依据数据进行推理。所有这些学科构成高等数学的基础部分,在此基础上建立了高等数学的宏伟大厦。对于我们建筑来说,建筑与数学的那份交情,老早就是根深蒂固的。但是,若要与上面列举的新兴边缘学科比较,则到目前为止还是不足以自成体系的。对于我们工科学校来说,最重要的是应该去了解并掌握与专业教学有关的数学内容,使之作为一门重要的工具课,能学以致用,学以够用,更好地为专业服务。

总之,数学是什么?说得具体一些,数学是以数和形的性质、变化、变换和它们的关系作为研究对象,探索它们的有关规律,给出对象性质的系统分析和描述,并在此基础上分实际,培训得具体解法的科学。如果换一个角度,数学也可看成是对客物质世界的数量关系和空间形式的一种抽象。

第二个方面,什么是建筑?“建筑”——指建筑物和构筑物的通称。建筑物,这是为了满足社会需要,利用所掌握的物质技术手段,在科学规律和美学法则支配下,通过对空间的限定组织而创造的人为的社会生活环境。构筑物,是指人们不直接在内进行生产和生活的建筑。如烟囱、水塔、堤坝等。建筑从形态学来说,构成建筑形式的基本要素为:点、线、面、体。点是所有形式之中的原生要素,从点开始,其它要素都是点派生出来的。例如,一个点展开变成一条线,一条线展开变成一个面,一个面展

开变成一个体。建筑的所有形态,都是依据点、线、面、体四个基本要素构成的,体现的就是一个“形”字。建筑从工程学说,侧重的是工程计算,这是建筑构成的基础,也是建筑构成的手段。例如,把点变成线,把线变成面,把面变成体的量度,是建筑构成的重要特征。这在建筑工程中,是计算的基本内容。这里,除建筑构成已表现出来的长度、面积、体积等特征外,“量度”还反映了重量、角度、强度等“量”和其它特征。这些归纳起来,便是“数”。

总之,建筑中的“数”与“形”,是对客观物质世界的数量关系和空间形式的一种表现,是人类为了适应环境的一种创造。

第三个方面,数学与建筑有什么联系?

如前所叙,同样是“数”与“形”,一种对其抽象,一种对其表现。一种是其抽象,一种对其表现。表现依据了抽象,抽象来自表现。在建筑工程的实践中,我们会遇到各种各样“数”与“形”的问题。例如,在房屋设计中,既要进行各种技术经济指标以及荷载、内力、构件截面等数量的分析与计算,又要进行建筑、结构、水暖电工等图形的分析与绘制;在组织施工中,既要进行建筑资源(如材料量、劳动力……)等数量的分析与计算,又要进行建筑资源使用的时间安排和空间布置等的分析与绘制……。在实现建筑工业现代化的过程中,我们将会遇到更多的“数”与“形”的问题。

这里,对于我们建筑类中专学校来说,在各类专业课程的讲

授与学习当中,数学知识的应用说是比比皆是的。例如,劳动力的安排、施工进度、配料、支座反力,需要一次代数方程的计算;生产增长率,简支梁受压区高度,需要二次代数方程的计算;劳动生产率、钢筋锚固锚长度、配料允许范围的计算,建筑材料的代换,需要代数不等式的应用;土方施工中“零点”位置的确定,变截面梁钢箍高度的计算,建筑构件形体及自重的计算,需要大量的几何及三角计算;均匀荷载作用位置的函数及幂函数的应用。

下面,我们再来讨论一下建筑与高等数学的联系。从中专数学第三册第十四章“极限与连续”开始,数学内容便进入到高等数学范畴。这里,通过导数的学习,为建筑力学中梁的弯矩及挠度计算提供了各种各样的便利;对于导数的应用及最大值、最小值的讨论,又为建筑施工中人力、物力、财力的合理使用找到了较佳办法;对于弧长微分与曲率的计算,可得到荷载作用下梁的弯曲程度的精解;对于积分运算、概率与统计、行列式、矩阵与线性方程、微分方程等内容,在建筑力学和建筑结构计算中,建设方案或生产计划的决策中,施工网络及建筑产品或用品的概率分析中,都有着大量的广泛的应用。

这里,还需说明的是,在建筑美学中,有一个重要的奇特的常数叫0.618,这个数字又称把一条线段分割为两部分,使其中

一部分与全长之比等于另一部分与这部分之比。其比值是

21

5 ,

取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,a:b=(a+b):a

通常用希腊字母Ф表示这个值。有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较

相关文档
最新文档