初中数学基础知识总结
初中数学基础知识点全总结
初中数学基础知识点全总结初中数学是整个数学学习体系中的重要基础阶段,掌握好基础知识点对于后续的学习至关重要。
下面将对初中数学的基础知识点进行全面总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除和乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得零。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
除法法则:除以一个数等于乘以这个数的倒数;零不能作除数。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,零的立方根是零。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算:整式的加减实质是合并同类项;整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;整式的除法包括单项式除以单项式、多项式除以单项式。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
初中数学常识知识点汇总
初中数学常识知识点汇总初中数学是学生数学学习的基础阶段,涵盖了众多的知识点。
在本文中,我将为大家总结一些初中数学的常识知识点,希望能帮助大家理解和掌握数学的基本概念和方法。
一、数与运算1. 自然数:自然数是0和正整数的集合,用N表示。
2. 整数:整数包括正整数、零和负整数,用Z表示。
3. 有理数:有理数包括整数和分数,用Q表示。
4. 实数:实数包括有理数和无理数,用R表示。
5. 加法和减法原理:加法和减法原理是数学运算的基础,它们决定了加减法运算的法则。
二、代数1. 代数式:代数式是由数和字母以及运算符号组成的表达式,可以进行各种数学运算。
2. 代数方程:代数方程是一个含有未知数的等式。
3. 一元一次方程:一元一次方程是指未知数的最高幂次为一的方程,它可以用解代数方程的方法解出未知数的值。
4. 二元一次方程组:二元一次方程组是包含两个未知数的方程组,可以通过消元法或代入法解出未知数的值。
三、几何1. 平面几何:平面几何是研究二维图形的性质和关系的数学分支。
2. 长度和面积:长度是指直线段的度量,面积是指二维图形所围成的区域的大小。
3. 三角形:三角形是由三条边和三个内角所确定的图形,它的性质包括边长关系、内角和等。
4. 直角三角形:直角三角形是一种特殊的三角形,其中一个角为直角(90度)。
5. 圆:圆是平面上离一个固定点(圆心)距离相等的点的轨迹。
四、概率与统计1. 概率:概率是事件发生的可能性的度量。
2. 事件与样本空间:事件是指试验中可能发生的一个结果,样本空间是指试验的所有可能结果的集合。
3. 随机事件:随机事件是指在试验过程中发生或不发生的事件,其结果是随机的。
4. 随机变量:随机变量是指试验结果的数值描述,例如掷一枚硬币的结果可以用0和1表示。
五、函数和图像1. 函数:函数是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的元素上。
2. 自变量和因变量:在函数中,自变量是输入值,因变量是输出值。
初中数学知识点总结5篇
初中数学知识点总结5篇初中数学知识点总结【篇1】棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
初中数学知识点总结【篇2】幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于_0,则a可以是任意实数;排除了为0这种可能,即对于_0_=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
初中数学考点知识总结(最新7篇)
初中数学考点知识总结(最新7篇)初中数学知识点总结篇一知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。
例如:0、3.4、9/10、π(圆周率)。
非负数非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的定值等于本身。
常见的非负数实数的定值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
初中数学知识点总结篇二平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上须相同。
③象限的规定:右上为一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
最完整初中数学知识点总结及公式大全
最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学基础知识点总汇
初中数学基础知识点总汇一、数的整数运算1.整数的概念和性质2.整数加法、减法、乘法和除法的运算规则3.整数的大小比较和绝对值的求法二、分数的运算1.分数的概念和性质2.分数的约简与扩展3.分数的四则运算:加法、减法、乘法和除法4.分数的大小比较和分数的转化三、小数的运算1.小数的概念和性质2.小数和分数的关系3.小数的四则运算:加法、减法、乘法和除法4.小数的大小比较和小数的转化四、代数式与多项式1.代数式的概念和性质2.代数式的加法、减法、乘法和除法3.多项式的概念和性质4.多项式的加法、减法和乘法5.多项式的约简和合并同类项五、一元一次方程与方程组1.一元一次方程的概念和性质2.一元一次方程的解法:移项法和因式分解法3.一元一次方程的应用4.一次方程组的概念和性质5.一次方程组的解法:代入法、消元法和等式相加减法6.一次方程组的应用六、比例与比例应用1.比例的概念和性质2.比例的基本性质和应用3.各种类型的比例问题:找比例因子、求未知数和补充条件七、百分数与百分数应用1.百分数的概念和性质2.百分数和分数、小数的相互转化3.百分数的四则运算:加法、减法、乘法和除法4.百分数的应用:求比例、百分数利息、折扣、利润等八、图形的认识与计算1.点、线、面的概念和性质2.二维图形的认识和性质:直线、射线、线段、角、多边形、圆等3.二维图形的计算:周长、面积九、数据的整理与统计1.数据的收集和整理:频数表、频率表、条形统计图、折线统计图2.数据的分析与解读:中心值、离中趋势、分布图示法3.概率与统计:概率的计算、事件的独立和不独立性以上是初中数学基础知识点的总汇,涵盖了整数运算、分数运算、小数运算、代数式与多项式、一元一次方程与方程组、比例与比例应用、百分数与百分数应用、图形的认识与计算、数据的整理与统计等方面的内容。
这些知识点是初中数学学习的基础,掌握好这些知识点对于高中和大学数学的学习非常重要。
初中数学知识点总结文档免费
初中数学知识点总结文档免费一、数与代数1. 整数和有理数- 整数包括正整数、负整数和零。
- 有理数是由整数和分数构成的数集,包括正有理数、负有理数和零。
2. 实数- 实数包括有理数和无理数,无理数是不能表示为分数形式的数,如圆周率π。
- 实数的运算包括加法、减法、乘法和除法。
3. 代数表达式- 代数表达式是由数和字母通过加、减、乘、除、乘方和开方等运算连接而成的式子。
- 单项式和多项式是代数表达式的两种基本形式。
4. 一元一次方程和不等式- 一元一次方程是指只含有一个未知数,且未知数的最高次数为一的方程。
- 一元一次不等式是指不等号左边是未知数的一次多项式,右边是常数的不等式。
5. 二元一次方程组- 二元一次方程组由两个含有两个未知数的一次方程构成。
- 解二元一次方程组的方法有代入法、消元法等。
6. 函数- 函数是一种特殊的关系,表示为y=f(x),其中x是自变量,y是因变量。
- 函数的图像可以是直线、曲线等,通过图像可以直观地理解函数的性质。
二、几何1. 平面图形- 点、线、面是构成平面图形的基本元素。
- 直线、射线、线段、角、三角形、四边形等是常见的平面图形。
2. 圆的性质- 圆是由一个固定点(圆心)和所有与该点距离相等的点构成的闭合曲线。
- 圆的半径、直径、弦、弧、切线等是圆的基本要素。
3. 面积和体积的计算- 不同图形的面积和体积有相应的计算公式,如矩形面积=长×宽,圆柱体积=底面积×高。
4. 相似和全等- 全等图形是指两个图形在形状和大小上完全相同。
- 相似图形是指两个图形在形状上相同,但大小可能不同。
5. 三角形的性质- 三角形是平面上由三条线段围成的图形,根据边和角的不同,三角形有多种分类。
- 三角形的内角和为180度,外角和为360度。
6. 圆与直线、圆与圆的位置关系- 圆与直线的位置关系包括相离、相切和相交。
- 两圆的位置关系根据圆心距和半径的大小关系可分为内含、外离、相交和内切。
整个初中数学知识点总结
整个初中数学知识点总结一、数与代数1. 有理数- 整数和分数的概念- 有理数的加、减、乘、除运算- 绝对值和相反数- 有理数的比较和排序2. 整数- 素数和合数- 奇数和偶数- 整数的因数和倍数- 质因数分解3. 分数和小数- 分数的加减乘除运算- 分数与小数的互化- 小数的四则运算4. 代数表达式- 字母表示数- 单项式和多项式- 代数式的加减运算- 乘法公式(平方差、完全平方等)5. 一元一次方程- 方程的建立和解法- 实际问题中的一元一次方程6. 二元一次方程组- 代入法和消元法- 线性方程组的解的讨论7. 不等式- 不等式的概念和性质- 不等式的解集表示- 一元一次不等式及其解法8. 函数- 函数的概念- 函数的图像和性质- 一次函数和二次函数- 反比例函数二、几何1. 平面几何- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角、圆心角2. 几何图形的计算- 面积和体积的计算公式- 三角形、四边形和圆的面积 - 长方体、立方体和圆柱的体积3. 几何变换- 平移、旋转和翻转- 相似变换和全等变换4. 解析几何- 坐标系的概念- 点的坐标和距离公式- 直线和圆的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)2. 概率- 概率的基本概念- 事件的概率计算- 随机事件的概率四、综合应用题1. 数列- 等差数列和等比数列的概念- 数列的通项公式和求和公式2. 实际问题解决- 应用题的解题策略- 利率、投资、贷款等实际问题3. 数学思维- 逻辑推理和证明- 数学归纳法- 反证法以上是初中数学的主要知识点概述,每个部分都有其重要性和相互之间的联系。
掌握这些知识点对于学生来说至关重要,它们不仅是数学学科的基础,也是解决实际问题的重要工具。
在学习和复习时,学生应该注重理解和应用,通过大量的练习来巩固和深化这些知识点。
数学知识点总结初中基础
数学知识点总结初中基础一、数与代数1. 整数s和有理数- 整数包括正整数、零和负整数,是实数的离散部分。
- 有理数是由整数和分数构成的数集,可以表示为两个整数的比,形式为a/b,其中a和b是整数,b不等于零。
2. 无理数- 无理数是不能表示为简单分数的实数,例如圆周率π和黄金比例φ。
3. 代数表达式- 代数表达式是由数字、字母(代表变量)和运算符(加、减、乘、除)组成的数学表达式。
4. 方程与不等式- 方程是两个表达式通过等号连接的式子,求解方程就是找到使得等式成立的变量值。
- 不等式表示两个表达式之间的大小关系,使用符号“<”或“>”来表示。
5. 函数- 函数是一种特殊的关系,每个输入值(自变量)对应一个输出值(因变量)。
- 函数的图像是坐标平面上的点集,其中每个点的横纵坐标满足函数关系。
二、几何1. 平面几何- 点、线、面是构成平面几何的基本元素。
- 直线、射线和线段是线的基本形式,其中线段是有限长度的直线部分。
2. 三角形- 三角形是三条线段首尾相连形成的图形,根据边长和角度的不同,三角形有多种分类,如等边三角形、等腰三角形和直角三角形。
3. 圆- 圆是由所有与给定点(圆心)距离相等的点组成的平面图形。
- 圆的周长(圆周)和面积的计算公式分别是C=2πr和A=πr²,其中r是圆的半径。
4. 四边形- 四边形是由四条线段首尾相连形成的图形,常见的四边形有正方形、长方形、菱形和梯形。
5. 几何变换- 几何变换包括平移(移动)、旋转(绕一点转动)、轴对称(关于某条直线对称)和缩放(放大或缩小)。
三、统计与概率1. 数据的收集和整理- 数据可以通过观察、实验和调查等方式收集。
- 数据整理通常包括分类、汇总和制表等步骤。
2. 描述性统计- 描述性统计包括计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差)。
3. 概率- 概率是衡量事件发生可能性的数值,通常介于0和1之间。
初中数学所有知识点归纳
初中数学所有知识点归纳一、数与式的计算1.自然数、整数、有理数的概念及其运算;2.分数、小数的概念及其运算;3.乘方的概念及其性质;4.根号的概念及其运算;5.比例与比例的性质。
二、代数式与简单方程1.代数式的概念、表示方法及其运算;2.同类项的概念及其运算;3.一元一次方程的概念及其解法;4.平方差公式。
三、平面图形的认识1.平面图形的概念、分类及其性质;2.直角三角形及其性质;3.全等图形的概念及其判定条件;4.相似图形的概念及其判定条件;5.对称与轴对称图形。
四、空间几何体1.空间图形的概念、分类及其性质;2.棱柱、棱锥、棱台、圆柱、圆锥、球体的性质与计算;3.截矩体、正多面体。
五、数据和概率1.统计与统计图表的制作;2.频数、频率和众数的概念;3.概率的概念和计算。
六、函数初步1.函数的概念及其表示方法;2.函数的特征值与图象。
七、平面向量1.向量的概念及其运算;2.向量的共线、共面、平行、垂直的判定;3.向量的夹角及其性质。
八、三角函数1.角度的概念及其计算;2.三角函数的概念、计算及其性质;3.特殊角的计算;4.三角函数的图象。
九、立体几何初步1.点、线、面的概念及其关系;2.立体角的概念及其计算;3.多面体及其性质。
总结:初中数学知识点在数与式的计算、代数式与简单方程、平面图形的认识、空间几何体、数据和概率、函数初步、平面向量、三角函数和立体几何等方面进行了全面而系统的学习。
学生通过掌握这些知识点,能够更好地理解数学的基本概念和运算规则,提高数学解题能力和逻辑思维能力。
同时,初中数学知识点的学习也为学生打下了进一步学习高中数学的基础,为将来的学习和发展奠定了坚实的基础。
初中数学知识点总结大全
初中数学知识点总结大全一、数与代数1. 有理数- 整数:正整数、负整数、零- 有理数的概念:整数与分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则- 有理数的比较大小2. 整式与分式- 单项式:定义、系数、次数- 多项式:定义、次数、项数、升幂排列与降幂排列 - 多项式的加法、减法、乘法- 分式:定义、值、简化- 分式的加法、减法、乘法3. 一元一次方程与不等式- 一元一次方程的解法- 方程的解、增根、无解- 不等式的概念与性质- 不等式的解集表示- 一元一次不等式与一元一次方程的解法比较4. 二元一次方程组- 代入法解二元一次方程组- 加减消元法解二元一次方程组- 三元一次方程组的解法5. 函数- 函数的概念:定义、函数关系式- 函数的表示方法:表格法、图形法、解析式法- 函数的性质:定义域、值域、单调性、奇偶性- 线性函数、二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角、内错角- 直线与角的关系:平行线、相交线- 三角形的分类与性质:等边三角形、等腰三角形、直角三角形 - 四边形的分类与性质:正方形、长方形、菱形、梯形、平行四边形2. 圆的基本性质- 圆的定义:圆心、半径、直径- 圆的对称性- 圆周角与圆心角的关系- 弦、直径、弦心距、切线的关系3. 面积与体积- 平面图形的面积计算公式:三角形、四边形、圆、扇形- 空间图形的体积计算公式:长方体、正方体、圆柱、圆锥、球4. 相似与全等- 全等图形的判定条件:SSS、SAS、ASA、AAS、HL- 相似图形的判定条件:SSS、SAS、ASA- 相似三角形的性质:对应角相等、对应边成比例- 相似多边形的性质5. 解析几何- 坐标系的基本概念:直角坐标系、坐标点- 点的位置由坐标确定- 直线方程的表达方式:点斜式、两点式、截距式- 圆的方程:标准方程、一般方程三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制:条形图、折线图、饼图- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 可能性的表示:概率- 概率的基本性质- 计算简单事件的概率:等可能事件的概率计算以上是初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率三个大的领域。
初中数学知识点大全总结整理
初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。
初中数学知识点之基础知识点总结6篇
初中数学知识点之基础知识点总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,混合运算等。
3. 数的大小比较:数的大小比较规则,数的大小排列等。
4. 数的发展历史:数的发展历程,数的应用场景等。
二、几何与图形1. 几何基本概念:点、线、面、体,角、三角形、四边形、圆等。
2. 几何图形性质:图形的基本性质,如三角形的内角和为180度等。
3. 几何图形变换:图形的平移、旋转、对称等变换。
4. 几何图形计算:图形的周长、面积、体积等计算。
5. 几何图形证明:图形的几何证明,如三角形的相似与全等证明等。
三、函数与方程1. 函数基本概念:函数及其定义域、值域,函数的表示方法等。
2. 函数的性质:函数的单调性、奇偶性、周期性等性质。
3. 方程的解法:解方程的方法,如一元二次方程的求根公式等。
4. 函数与方程的应用:函数与方程在实际问题中的应用,如工程问题、经济问题等。
四、数据与概率1. 数据的基本概念:数据及其分类,数据的表示方法等。
2. 数据的收集与整理:数据的收集方法,数据的整理技巧等。
3. 数据的分析与运用:数据的分析方法,如平均数、中位数、众数等统计量的计算及应用;数据的运用场景,如决策分析、市场分析等。
4. 概率的基本概念:概率及其计算方法,如古典概型、几何概型等。
5. 概率的应用:概率在实际问题中的应用,如彩票中奖概率计算等。
五、模型与思想1. 模型的基本概念:模型及其分类,模型的建立方法等。
2. 模型的运用:模型在实际问题中的应用,如建立函数模型解决实际问题等。
3. 数学思想:数学的基本思想,如数形结合思想、分类讨论思想等。
4. 数学方法的运用:数学方法在实际问题中的应用,如归纳法在数学证明中的应用等。
六、综合与实践1. 综合题的解答技巧:如何解答涉及多个知识点的综合题。
2. 实践活动的组织与实施:如何组织和实施数学实践活动,如数学竞赛的准备和参加等。
初中数学必背知识点及总结
初中数学必背知识点及总结初中数学是学生在数学学科中的基础阶段,这一阶段的数学知识点较为基础,但却是后续学习的基础和支撑。
初中数学的主要知识点包括数与代数、函数与方程、几何与图形、数据与概率等。
以下是初中数学必背知识点及其总结。
一、数与代数1. 整数整数是由自然数、零和负整数组成,用于表示数量和大小。
整数的加、减、乘、除运算是初中数学的基础知识。
其中,求两个整数的和、差、积、商是初中数学必背知识点。
2. 分数分数是指由分母和分子组成的数,用来表示部分或比例。
分数的加减乘除是初中数学的基础知识,求和、差、积、商都是初中数学必须掌握的知识点。
3. 小数小数是表示不完整的数,小数点后的数字表示不完整的部分。
小数的加、减、乘、除同样也是初中数学的基础知识,求和、差、积、商也是初中数学必须掌握的知识点。
4. 数量关系数与量的关系包括数的大小比较、数的倍数、约数、公约数、最大公约数等关系。
这些知识点是初中数学必须掌握的基础知识。
5. 代数代数是数学中的一大分支,包括代数式、代数方程、代数不等式等。
代数式的展开与因式分解、代数方程的解、代数不等式的解是初中数学必须掌握的知识点。
二、函数与方程1. 函数函数是一种数学关系,可以用图像、公式、表格等形式表示。
初中数学要求学生了解函数的概念、图像和性质,并能够解决与函数相关的问题。
2. 方程与不等式方程是用字母表示的等式,包括一元一次方程、一元二次方程、二元一次方程等。
不等式是一种数学式子,包括一元一次不等式、一元二次不等式等。
求解方程与不等式是初中数学的重要知识点。
三、几何与图形1. 几何图形线段、角、三角形、四边形、圆等是初中数学中常见的几何图形。
了解几何图形的性质、计算面积和周长是初中数学必须掌握的知识点。
2. 合作问题平行线、相似三角形、直角三角形、全等三角形等是初中数学中的重要知识点。
掌握三角形的性质、判定方法和计算问题是初中数学的重要内容。
3. 圆理解圆的定义、性质、圆周率和计算问题是初中数学必须掌握的知识点。
初中数学基础知识点总结
初中数学基础知识点总结一、整数与有理数1. 整数的概念及性质:整数的概念、绝对值、整数的比较大小、整数的加减法、整数的乘除法、整数的幂运算。
2. 有理数的概念及性质:有理数的概念、有理数的加减法、有理数的乘除法、有理数的大小比较、绝对值与相反数。
二、整式与分式1. 代数式与整式:代数式的概念、整式的概念及性质、整式的加减法、整式的乘法。
2. 分式的概念及性质:分式的概念、分式的运算、简化与整除、分式方程。
三、方程与不等式1. 一元一次方程:方程的概念、一元一次方程的解集、一元一次方程的性质、一元一次方程的应用。
2. 一元一次不等式:不等式的概念、一元一次不等式的解集、一元一次不等式的性质、一元一次不等式的应用。
3. 一元二次方程:一元二次方程的解、一元二次方程的判别式与性质、一元二次方程的应用。
4. 一元二次不等式:一元二次不等式的解、一元二次不等式的性质、一元二次不等式的应用。
四、数列与函数1. 数列的概念及性质:数列的概念、数列的通项公式、数列的递推关系、数列的等差数列与等比数列。
2. 等差数列与等差数列:等差数列的概念、等差数列的通项公式、等差数列的求和公式、等差数列的性质、等差数列的应用。
3. 等比数列与等比数列:等比数列的概念、等比数列的通项公式、等比数列的求和公式、等比数列的性质、等比数列的应用。
4. 函数的概念与性质:函数的概念、函数的表示、函数的性质、函数的特性。
五、几何图形与几何变换1. 二维几何图形:点、线、角、三角形、四边形、圆的概念与性质。
2. 三维几何图形:长方体、正方体、棱柱、棱锥、球体的概念与性质。
3. 几何变换:平移、旋转、对称的概念与性质。
六、统计与概率1. 统计:统计的概念、频数与频率、统计图表、平均数与中位数。
2. 概率:概率的概念、概率的计算、事件的相互关系、概率与统计的应用。
七、几何证明与简单推理1. 几何证明的基本思想与方法:假设、引理、定理、证明方法。
初中数学基本知识点总结精简版
初中数学基本知识点总结精简版一、数与代数。
1. 有理数。
- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数互为相反数,a的相反数是 -a,0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:a^n表示n个a相乘,其中a是底数,n是指数。
2. 实数。
- 无理数:无限不循环小数,如√(2)、π等。
- 实数的分类:有理数和无理数。
- 实数与数轴上的点一一对应。
- 实数的运算:在有理数运算的基础上,进行根式运算(如√(a)·√(b)=√(ab)(a≥0,b≥0),(√(a))/(√(b))=√(frac{a){b}}(a≥0,b>0))等。
3. 代数式。
- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式,单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数。
- 多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里次数最高项的次数叫做多项式的次数。
初中数学基础知识点总结大全
初中数学基础知识点总结大全一、数的四则运算1.加法:加法的性质、加法的运算法则(交换律、结合律、单位元等)、加法的简便算法(补数法等)2.减法:减法的性质、减法的运算法则(加法法则、移项法则等)、减法的简便算法(补数法等)3.乘法:乘法的性质、乘法的运算法则(交换律、结合律、乘法分配律等)、乘法的简便算法(口诀、竖式等)4.除法:除法的性质、除法的运算法则(被除数不变法则、移项法则等)、除法的简便算法(长除法等)二、小数与分数1.小数的加减乘除及应用2.分数的加减乘除及应用3.分数与小数的互化三、倍数和约数1.倍数的概念及运算2.最大公约数和最小公倍数的求法四、整数运算1.整数的加减乘除及应用2.整数的四则运算规则3.整数的混合运算4.分数与整数的混合运算五、代数式与方程式1.代数式的概念及常见表达形式2.代数式的加减乘除与应用3.方程式的概念及解方程的方法六、比与比例1.比与比值的概念及运算2.比例的概念及运算(比例的三种基本形式)3.百分数与比例的互化4.倒数与比例的关系七、平方和平方根1.平方数与完全平方式2.平方根与开方3.完全平方式的性质与运算八、图形的认识与计算1.直线、线段、射线与角的认识2.角的分类及其性质3.三角形的分类及其性质(直角三角形、等边三角形、等腰三角形等)4.四边形的分类及其性质(矩形、平行四边形、菱形等)5.圆的认识及其性质(半径、直径、周长、面积等)九、数据的收集与分析1.统计调查与数据的收集2.数据的整理与分类3.数据的图形表示(条形图、饼图、折线图等)4.中心与离散趋势的度量(平均数、中位数、众数、极差等)十、方程和不等式1.一元一次方程的解法与应用2.一元一次不等式的解法与应用3.二元一次方程组的解法与应用4.一次不等式组的解法与应用十一、几何变形1.直线与平行线的性质2.三角形的相似与全等性质3.平行四边形与相应角的性质4.圆与切线的性质以上是初中数学的基础知识点总结,涵盖了数的四则运算、小数与分数、倍数和约数、整数运算、代数式与方程式、比与比例、平方和平方根、图形的认识与计算、数据的收集与分析、方程和不等式、几何变形等各方面。
初中数学基础知识点总结大全
一、基本知识㈠、数与代数A、数与式:1、有理数有理数:Ⅰ、整数→正整数/0/负整数Ⅱ、分数→正分数/负分数数轴:Ⅰ、画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
Ⅱ、任何一个有理数都可以用数轴上的一个点来表示。
Ⅲ、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
Ⅳ、数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:Ⅰ、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
Ⅱ、正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:Ⅰ、同号相加,取相同的符号,把绝对值相加。
Ⅱ、异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
Ⅲ、一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:Ⅰ、两数相乘,同号得正,异号得负,绝对值相乘。
Ⅱ、任何数与0相乘得0。
Ⅲ、乘积为1的两个有理数互为倒数。
除法:Ⅰ、除以一个数等于乘以一个数的倒数。
Ⅱ、0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:Ⅰ、如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
Ⅱ、如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
Ⅲ、一个正数有2个平方根/0的平方根为0/负数没有平方根。
Ⅳ、求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:Ⅰ、如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
Ⅱ、正数的立方根是正数、0的立方根是0、负数的立方根是负数。
初中数学知识点总结精选
初中数学知识点总结精选数学已成为许多国家及地区的(教育)范畴中的一部分。
它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。
今天在这给大家整理了一些初中数学知识点(总结),我们一起来看看吧!初中数学知识点总结第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题常常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
初中数学知识点总结大全3篇
初中数学知识点总结大全第一篇:初中数学基础知识初中数学是基础知识,掌握好它是学习数学的第一步。
以下是初中数学基础知识点总结:1.整数:自然数及其负数和0。
2.分数:数轴上两个整数之间的有理数,由分子和分母组成,分母不为0。
3.小数:有限小数和无限循环小数。
4.代数式:由数字、字母和运算符组成的式子。
5.多项式:含有一项或多项代数式的式子,其中每项的指数只能是自然数。
6.函数关系:自变数和因变数之间的关系,如 y=x+3 、y=x^2 。
7.平方根:一个数的平方根是满足该数的平方等于这个数的数值。
8.三角函数:正弦、余弦、正切和余切。
以上是初中数学基础知识的总结,它们是学习高一高二数学的基础。
第二篇:初中代数知识点代数是初中数学的重要部分,以下是初中代数知识点总结:1. 开平方:一个非负数的非负平方根。
2. 平方差公式:(a+b)² = a²+2ab+b²、 (a-b)² = a²-2ab+b²。
3. 因式分解:把式子写成乘积的形式,如 a²-b²=(a+b)(a-b) 。
4. 基本等式:解代数式的常见基础,如(a+b)²=a²+2ab+b²、 (a-b)²=a²-2ab+b²、 a²-b²=(a+b)(a-b)。
5. 不等式:含有一个或多个未知数,并用大于、小于或不等于号连接的表示不同数大小关系的式子。
6. 一次方程:形如 ax+b=cx+d 的式子,其中 x 是一个未知数。
7. 二次方程:形如 ax²+bx+c=0 的式子,其中a≠0 ,x 是一个未知数。
8. 不等式组:由一组不等式构成的方程组,如 y>x-1 、y<2x+1 。
以上是初中代数知识点的总结,这些知识点是学习高中数学的基础。
第三篇:初中几何知识点初中几何是数学中的重要部分,以下是初中几何知识点总结:1. 两角和公式:sin(x+y)=sinx*cosy+cosx*siny cos(x+y)=cosx*cosy-sinx*siny tan(x+y)=(tanx+tany)/(1-tanxtany)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 数与式考点一、概念及分类1、实数按定义分类 正整数 整数 零有理数 负整数 实数 正分数分数 有限小数和无限循环小数负分数 正无理数无理数 无限不循环小数 负无理数 2、实数按正负分类正整数 正有理数正实数 正分数正无理数实数 零负整数 负有理数负分数 负实数负无理数在理解无理数时,要抓住“无限不循环”这一本质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等,一定要注意后面要带省略号; (4)某些三角函数,如sin60o 等 考点二、数轴、倒数、相反数、绝对值1、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
对应:实数和数轴上的点是一 一对应的关系。
2、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
a 的倒数为a1。
3、相反数:如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
相反数等于本身的数是0,任何数都有相反数。
a 的相反数为-a 。
4、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
绝对值等于本身的是正数和零。
化简绝对值的一般步骤:(1)由条件判断绝对值里的式子的正负即绝对值里的式子与0作比较,(2)化简一个个的小绝对值,(3)绝对值化小括号,(4)去括号,合并同类项。
考点三、平方数、立方数、平方根、算数平方根和立方根1、平方数正数的平方为正数,0的平方为0,负数的平方为正数。
平方后等于本身的数是0,1。
2、立方数正数的立方为正数,0的立方为0,负数的立方为负数。
立方后等于本身的数是0,1,-1。
3、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
正数a 的平方根记做“a ±”。
正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
平方根为本身的数是0.4、算术平方根如果一个正数的平方等于a ,那么这个数叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零,负数没有算术平方根。
正数a 的算术平方根记做“a ”。
算术平方根为本身的数是0和1。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0)a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
a 的立方根记做“3a ”。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
立方根等于本身的数是0,1,-1。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点五、实数大小的比较(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>,即两个负数,绝对值大的反而小。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
(6)类别比较法:正数大于零,负数小于零,正数大于一切负数。
考点六、非负数(1)非负数式子有三个:2a ,a ,a (a ≥0)。
(2)若几个非负式子和为零,则每个式子均为0。
考点七、实数的运算1.基本运算有:加减乘除乘方开方。
3.实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
第二部分 代数式(初中阶段式的最大范围是代数式) 考点一、概念及分类代数式按定义分类 整式里有单项式、多项式两种。
共学了加减乘除四种运算。
乘法运算 整式 有同底数幂的乘法、单项式x 单项式,单项式x 多项式,多项式x 多 有理式 项式,除法运算有同底数幂除法,单项式除以单项式,多项式除以单项式。
代数式 分式里只学了分式的加减乘除运算。
分式无理式 只学了二次根式的运算(包括加减乘除) 考点二、整式的有关概念1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a235-是6次单项式。
3、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
如36x 4y 3z+3x 5yz 3-4xy-1叫做九次四项式。
4.多项式的升降幂排列:指的是按某一个字母的指数从大到小排列叫降幂排列,从小到大排列叫升幂排列。
5.整式的概念:单项式和多项式统称整式。
6.代数式的值:用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
7.同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
考点二:整式的运算1.整式的加减法:(1)去括号;(2)合并同类项;(3)按降幂排列。
2.整式的乘法:同底数幂乘法:),(都是正整数n m a a an m n m+=• 幂的乘方:),(都是正整数)(n m a a mn nm =积的乘方 :)()(都是正整数n b a ab n n n =单项式乘以单项式:系数相乘做积的系数,相同字母相乘,对于只在一个单项式中存在的字母连同它的指数作为积的一个因式。
单项式乘以多项式:用单项式去乘以多项式中的每一项,再把所得的积相加。
多项式乘以多项式:用一个多项式中的每一项去乘另一个多项式中的每一项,再把所得的积相加。
几种特殊形式的多项式乘以多项式:平方差公式:(相同项的平方减去相反项的平方)22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-3.整式的除法:同底数幂除法:底数不变,指数相减。
)0,,(≠=÷-a n m a a an m n m都是正整数单项式除以单项式:系数相除,相同字母相除,对于只在被除式里存在的字母连同它的指数作为商的一个因式。
多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加。
注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a app ≠=≠=- 4.幂的性质同底数幂乘法:),(都是正整数n m a a a n m n m +=• 幂的乘方:),(都是正整数)(n m a a mn nm =积的乘方 :)()(都是正整数n b a ab n n n = 同底数幂除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数),0(1);0(10为正整数p a a a a a pp ≠=≠=- 考点三、因式分解 (整式的一种变形)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法(1)提公因式法:公因式是系数的最大公约数与相同字母的最低次幂的积。
(2)运用公式法:包括平方差公式))((22b a b a b a -+=-完全平方公式222)(2b a b ab a +=++ 222)(2b a b ab a -=+-十字相乘法(口诀:首尾分解,交叉相乘,求和凑中,横写因式。
)(3)分组分解法:四项式分组分解:二二分,分后提取新的大公因;一三分,分后套用平方差公式。
3、因式分解的一般步骤:一提。
如果多项式的各项有公因式,那么先提取公因式。
二套。
提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用平方差公式法分解因式;3项式可以尝试运用完全平方公式法和十字相乘法分解因式;三分。
如果多于三项可考虑分组分解法。
四查。
只查多项式因式,一查是否为化简的最后结果,二查会否为因式分解的最后结果。
考点四、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成BA的形式,如果B 中含有字母,式子BA就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bc ad c d b a d c b a bd ac d c b a =⨯=÷=⨯);()(为整数n ba b a n nn =;cba cbc a ±=±bdbcad d c b a ±=± 4.分式的乘除步骤:(1)统一为乘法;(2)把分子分母都因式分解;(3)约分;(4)用分子的积做分子,用分母的积做分母。
5.分式的加减的步骤:(1)统一成最简公分母,即各个分母系数的最小公倍数与所有字母的最高次幂的积; (2)分母不变,分子相加减;(3)处理分子,先化简,再因式分解; (4)约去分子与分母的公因式 考点五、二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。