纳米技术的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米技术的应用

纳米技术在各领域的应用简述

纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”。

纳米,只是一个长度单位,1微米为千分之一毫米,1纳米又等于千分之一微米,相当于头发丝的十万分之一,没有任何技术属性。因此,单纯的某一纳米材料若没有特殊的结构和性能表现,还不能称为纳米技术。纳米技术,是指通过特定的技术设计,在纳米粒子的表面实现原子/分子的排列组成,使其产生某种特殊结构,并表现特异的技术性能或功能,这样的纳米材料才可称为是纳米技术。

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

一.纳米技术在化工催化领域的应用

以铂,铑,银,钯等贵金属,以及Ni,Fe,Co等非贵金属纳米颗粒作为催化剂,可加速高分子高聚物的氢化反应。研究表明,铑纳米颗粒在氢化反应中具有极高的活性和良好的选择性。

金属纳米粉粒一般十分活泼,可作为助燃剂在材料中使用,也可掺杂到高能密度材料中,增加爆炸效率;此外,它还可以作为引爆剂。为了提高热燃烧效率,金属纳米颗粒和半导体纳米颗粒常常被掺杂到火箭助推器和煤中,以提高燃烧的效率。现在,纳米银和镍粉已被广泛应用于火箭燃料作助燃剂。纳米颗粒作为光催化剂,有很多优点。首先是粒径小,比表面积大,光催化效率高。其次,纳米颗粒生成的电子、空穴在达到表面结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。此外纳米颗粒分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移,质子转移,半导体能级结构与表面密度的影响。

粉纳米静电屏蔽材料,是纳米技术的另一重要应用。另外,如将纳米TiO

2

体按一定比例加到化妆品中,则可以有效的遮蔽紫外线。研究人员还发现,可以利用纳米碳管独特的孔状结构、大的比表面、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。

二.纳米技术在陶瓷、微电子领域的应用

1)陶瓷领域中的应用

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。

由于传统陶瓷材料质地较脆,韧性和强度都较差,因而使其应用受到了较大限制,随着纳米技术的广泛应用,纳米陶瓷随之产生。纳米陶瓷,利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响,为代替工程陶瓷的应用开拓了新领域。目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。

纳米陶瓷材料的结构与常规材料相比发生了很大变化,颗粒组元细小到纳米数量级,界面组元大幅度增加,可使材料的强度、韧性和超塑性等力学性能大为提高,并对材料的热学、光学、磁学、电学等性能产生重要的影响。纳米陶瓷的特性主要在于力学性能方面,包括纳米陶瓷材料的硬度,断裂韧度和低温延展性等。纳米级陶瓷复合材料的力学性能,特别是在高温下使硬度、强度得以较大的提高。有关研究表明,纳米陶瓷具有在较低温度下烧结就能达到致密化的优越性,而且纳米陶瓷出现将有助于解决陶瓷的强化和增韧问题。

在室温压缩时,纳米颗粒已有很好的结合,高于500℃很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值更好,而烧结温度却要比工程陶瓷低400~600℃,且烧结不需要任何的添加剂。其硬度和断裂韧度随烧结温度的增加(即孔隙度的降低)而增加,故低温烧结能获得好的力学性能。

通常,硬化处理使材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由孔隙的消除来形成,这样就增加了材料的整体强度。因此,如果陶瓷材料以纳米晶的形式出现,可观察到通常为脆性的陶瓷可变成延展性的,在室温下就允许有大的弹性形变。

由于纳米陶瓷具有的独特性能,如做外墙用的建筑陶瓷材料则具有自清洁和防雾功能。随着高技术的不断出现,人们对纳米陶瓷寄予很大希望,世界各国的科研工作者正在不断研究开发纳米陶瓷粉体并以此为原料合成高技术纳米陶瓷。

2)微电子领域的应用

纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米材料的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。从80年代开始,科学家就开始探索特征尺寸为纳米量级的电子学,纳米电子学主要研究以扫描隧道显微镜为工具的单原子或单分子操纵技术。这些技术都有可能在纳米量级进行加工,目前已形成纳米量级的、信息存储器,存储状态已维持一个月以上,希图用此

技术去制作16GB的存储器。德国的福克斯博士等更是制出了原子开关,达到了比现今芯片高100万倍的存储容量,获得了莫里斯奖。不难看出系统集成芯片的革命终其所需,需要基础纳米技术的发展以及成熟。如果说微米尺度的加工和结构材料是当代微电子工业的支柱,那么纳米技术(包括制备和加工等)和纳米材料将成为下一代微电子学器件的基础。在纳米科技发展中,纳米材料是它的前导。纳米材料集中体现了小尺寸、复杂构型、高集成度和强相互作用以及高比表面积

等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,会产生全新的物理化学现象。量子力学告诉我们,电子与光同时都具有粒子波的特性,今天的微电子学和光电子器件将缩到0.1线宽,电子的波动性质再也不能忽视,把电子视为一种纯粹粒子的半导体理论基础已经动摇。这时电子所表现出来的波动特征和拥有的量子功能就是纳米电子学的任务。纳米电子学有更多诱人之处。而当半导体材料的尺度缩小到纳米范围时,其物理、化学性质将发生显著变化,并呈现出由高表面积或量子效应引起的独特性能。

如果说微米尺度的加工和结构材料是当代微电子工业的支柱,那么纳米技术(包括制备和加工等)和纳米材料将成为下一代微电子学器件的基础。在纳米科技发展中,纳米材料是它的前导。纳米材料集中体现了小尺寸、复杂构型、高集成度和强相互作用以及高比表面积等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,会产生全新的物理化学现象。量子力学告诉我们,电子与光同时都具有粒子波的特性,今天的微电子学和光电子器件将缩到。0.1线宽,电子的波动性质再也不能忽视,把电子视为一种纯粹粒子的半导体理论基础已经动摇。这时电子所表现出来的波动特征和拥有的量子功能就是纳米电子学的任务。纳米电子学有更多诱人之处。而当半导体材料的尺度缩小到纳米范围时,其物理、化学性质将发生显著变化,并呈现出由高表面积或量子效应引起的独特性能。科学家们已经预言,纳米电子学将导致一场电子技术的革命!

三.纳米技术在医药学、生物领域的应用

1)纳米技术在医药,医学领域的应用

目前纳米材料在生物医学领域已经得到广泛的应用,在基础医学、药物学、临床医学和预防医学方面,纳米材料作用的发挥都已不容忽视。纳米材料在生物医学中检测、诊断。药物治疗以及健康预防等方面都取得了很好的发展。

纳米材料在医学检验诊断方面的应用:纳米材料在医学检验诊断技术方面的应用生物医学起源于诊断,没有很好的诊断手段就没有很好的治疗和预防,目前随着科学技术的发展,诊断手段越来越高明、先进,得到了前所未有的发展。纳米材料在检验诊断中主要应用于三个方面:⑴利用纳米材料跟踪生物体内活动,对生物体内元素的积累和排除作出判断。⑵利用纳米颗粒极高的传感灵敏效应对疾病进行早期诊断。⑶利用纳米材料的特性去化验检测试样从而辅

相关文档
最新文档