Terminology of MOFs & CPs

合集下载

mof 电化学沉积

mof 电化学沉积

mof 电化学沉积英文回答:Metal-organic frameworks (MOFs) are a class of nanoporous materials that have attracted considerable attention due to their unique structural and chemical properties, which make them promising candidates forvarious applications, including energy storage, catalysis, drug delivery, and sensing. Electrochemical deposition (ECD) is a versatile technique that can be used to synthesize MOF thin films with controlled morphology, composition, and thickness. In this approach, a metal-organic precursor solution is electrolyzed in the presence of a substrate, which serves as the working electrode. The appliedpotential drives the electrodeposition process, leading to the formation of a MOF film on the substrate surface.The ECD of MOFs offers several advantages over other synthesis methods. Firstly, it allows for the precisecontrol of the film thickness and morphology by adjustingthe deposition parameters such as the applied potential, deposition time, and electrolyte concentration. Secondly, ECD enables the conformal coating of complex substrates with MOFs, which is particularly useful for applications such as microelectronics and sensor devices. Thirdly, the ECD process can be easily scaled up for large-area deposition, making it suitable for industrial-scale production.To date, a wide range of MOFs have been successfully synthesized using ECD, including zeolitic imidazolate frameworks (ZIFs), metal-organic polyhedra (MOPs), and covalent organic frameworks (COFs). The choice of MOF precursor and electrolyte solution depends on the desired film properties and the specific application. For instance, ZIFs can be synthesized using a zinc salt and an imidazole ligand in an aqueous solution, while MOPs require the use of metal ions and organic ligands in organic solvents.The electrochemical deposition of MOFs involves several key steps. Firstly, the substrate is cleaned and activated to ensure good adhesion of the MOF film. The metal-organicprecursor solution is then prepared by dissolving the appropriate metal salt and organic ligand in a suitable solvent. The precursor solution is typically deoxygenated to remove any dissolved oxygen that could interfere with the electrodeposition process.The electrochemical cell consists of the substrate as the working electrode, a counter electrode (typically a platinum or carbon rod), and a reference electrode (such as a saturated calomel electrode). The precursor solution is introduced into the electrochemical cell, and the desired deposition potential is applied to the working electrode. The electrodeposition process is monitored by measuring the current-time response.Once the desired deposition time has elapsed, the working electrode is removed from the electrochemical cell and rinsed with a suitable solvent to remove any remaining precursor solution. The MOF film can then be characterized using a variety of techniques, such as X-ray diffraction, scanning electron microscopy, and atomic force microscopy.The electrochemical deposition of MOFs is a powerful technique that offers a versatile and scalable approach for synthesizing MOF thin films with controlled properties.This technique has enabled the development of a wide rangeof MOF-based devices and applications, and it is expectedto play an increasingly important role in the future development of nanomaterials and functional materials.中文回答:金属有机骨架 (MOF) 的电化学沉积。

卟啉MOFs材料应用于肿瘤治疗领域的研究进展

卟啉MOFs材料应用于肿瘤治疗领域的研究进展

摘要:近年来,卟啉类金属有机框架(MOFs)作为一类新型的纳米材料,在肿瘤治疗领域得到了广泛关注。

卟啉MOFs 材料具有高的比表面积、多孔性、可控性和良好的生物相容性,被认为是一种极具潜力的肿瘤治疗新药。

本文通过综述相关的文献,总结卟啉MOFs 材料在肿瘤诊断和治疗方面的应用和研究进展。

主要介绍了卟啉MOFs 材料在光动力疗法、化学药物递送、免疫治疗以及肿瘤诊断等方面的进展和应用前景。

关键词:卟啉MOFs、比表面积、多孔性、生物相容性、肿瘤治疗一、Introduction肿瘤是世界性的重要健康问题,是危及人类健康和生命的疾病之一。

非常需要新型的治疗方法和药物来解决这个问题。

卟啉类金属有机框架(MOFs)材料具有高的比表面积、多孔性、可控性和良好的生物相容性等特点,已经被广泛应用于肿瘤治疗领域。

该材料可以作为一种极具潜力的肿瘤治疗新药,为肿瘤的治疗提供了新的思路和方法。

二、卟啉MOFs 材料的基本特性卟啉有机分子可以与锌等金属离子形成卟啉MOFs 材料,具有高的比表面积、多孔性、可控性和生物相容性等特点。

1.高比表面积卟啉MOFs 材料具有高的比表面积,这使得药物分子可以更好地吸附在其表面,并且增强了药物与癌细胞的作用效果。

2.多孔性卟啉MOFs 材料的多孔性使其具有更高的负载能力和更好的药物递送能力。

同时,它们的多孔性还可以提高肿瘤靶向和抗肿瘤效果。

3.可控性卟啉MOFs 材料可以通过控制反应条件和金属离子种类来调节大小、孔径大小和功能基团等参数,从而实现多种不同的肿瘤治疗策略和递送方式。

4.生物相容性卟啉MOFs 材料可以通过修饰表面基团、表面修饰等方式增强其生物相容性和靶向性,从而更有效地治疗肿瘤。

三、卟啉MOFs 材料在肿瘤治疗中的应用1. 光动力疗法光动力疗法(PDT)是一种以光敏剂作为介质,利用光学和化学的相互作用杀灭癌细胞的疗法。

卟啉MOFs 材料由于其强的吸光性和延长激发寿命等优势,被认为是一种用于光动力疗法的理想光敏剂。

mof衍生单原子催化剂专一生成单线态氧

mof衍生单原子催化剂专一生成单线态氧

mof衍生单原子催化剂专一生成单线态氧嘿,大家好,今天我们聊聊一个听起来有点高大上的话题——MOF衍生单原子催化剂专一生成单线态氧。

听上去是不是很复杂?别急,慢慢来,咱们一步步拆解,看看这个东西到底有啥用。

MOF,大家知道吗?是金属有机框架的简称。

简单点说,它是一种由金属离子和有机分子组成的超强材料,可以用来做催化剂。

而单原子催化剂嘛,就是把催化剂搞得像个“微型工厂”,一个原子都能发挥巨大作用,效率那是杠杠的。

好了,废话不多说,咱们就从MOF说起,先看看它是咋个回事。

MOF可真不简单。

它不仅结构特殊,而且有着非常大的比表面积。

这个“大”可不是普通的“大”,它比一块海绵吸水的能力还强——你可以想象它的表面上有无数的小“窝窝”,可以抓住大量的分子。

说到这里,可能有朋友会想,“这玩意能干啥?”哈哈,别急,咱接着往下看。

MOF之所以被推到风口浪尖上,最关键的原因是它在催化方面的表现。

它不仅能加速一些化学反应,还能让反应更高效,这可不是一般的“快”,而是特别精准、特别专一。

现在说到单线态氧,可能有点懵。

单线态氧是什么?它其实是一种氧的特殊状态,比普通的氧更“活跃”,就像是个充满电的超能战士,随时准备反击。

这玩意儿在很多化学反应里能发挥大作用,比如在治疗一些疾病或者分解污染物的时候,单线态氧就成了“神兵天将”。

不过,要是直接用普通的氧气来产生单线态氧,那就有点像试图用破自行车去跑马拉松,效率低得吓人。

这时候,MOF衍生单原子催化剂就派上了用场。

它能够通过催化反应精确地控制氧的状态,把普通的氧气转化成单线态氧,而且速度特别快,效果特别好。

这就像是有一个超级精准的“空气变形器”,能把氧气的能量引导到最有效的地方。

你可以想象,如果没有MOF催化剂,这种转换可能需要上千年的时间,而有了它,几秒钟就搞定。

这么强大的催化能力,真的是让人刮目相看。

那这种催化剂到底是怎么工作的呢?其实原理也不复杂。

MOF中的金属原子就像是反应的指挥官,它们带着有机分子搭建了一个精密的结构,就像是一个分子“迷宫”。

《MOF及其衍生物修饰BiVO4半导体增强光电化学水分解研究》范文

《MOF及其衍生物修饰BiVO4半导体增强光电化学水分解研究》范文

《MOF及其衍生物修饰BiVO4半导体增强光电化学水分解研究》篇一一、引言随着全球能源需求的持续增长和传统能源的日益枯竭,寻找可持续、清洁的能源已成为科研工作者的首要任务。

光电化学水分解技术作为一种绿色、高效的能源转换技术,其核心在于高效的光催化剂。

近年来,金属有机框架(MOF)及其衍生物因其独特的结构和性质,在光催化领域展现出巨大的应用潜力。

本文将重点研究MOF及其衍生物修饰BiVO4半导体在增强光电化学水分解方面的应用。

二、MOF及其衍生物概述MOF(金属有机框架)是一种由金属离子或金属簇与有机配体通过配位键形成的具有周期性网络结构的晶体材料。

其结构多样、孔隙率高、比表面积大,且具有优异的吸附性能和催化活性。

MOF的衍生物,如金属氧化物、硫化物等,也因其独特的物理化学性质在光催化领域受到广泛关注。

三、BiVO4半导体的性质及应用BiVO4是一种具有较高光催化活性的n型半导体材料,其能带结构适合于光电化学水分解。

然而,BiVO4半导体也存在一些缺点,如光生电子-空穴对复合率高、比表面积小等。

这些问题限制了其在实际应用中的性能。

四、MOF及其衍生物修饰BiVO4半导体的方法与机制为解决BiVO4半导体的上述问题,研究人员尝试采用MOF 及其衍生物进行修饰。

修饰方法主要包括物理吸附法、原位生长法等。

通过这些方法,可以在BiVO4表面引入大量的活性位点,提高光生电子-空穴对的分离效率,同时扩大比表面积,提高光催化性能。

五、实验设计与方法本部分详细介绍了实验设计和方法,包括材料制备、表征手段、光电化学性能测试等。

首先,通过不同的方法制备出MOF 及其衍生物修饰的BiVO4光催化剂;然后,利用XRD、SEM、TEM等手段对材料进行表征;最后,通过光电化学测试评估其性能。

六、结果与讨论本部分详细分析了实验结果,并讨论了MOF及其衍生物对BiVO4光催化剂性能的影响机制。

实验结果表明,MOF及其衍生物的引入可以显著提高BiVO4的光电化学性能。

MOF基原位衍生的单原子材料及其催化性能研究共3篇

MOF基原位衍生的单原子材料及其催化性能研究共3篇

MOF基原位衍生的单原子材料及其催化性能研究共3篇MOF基原位衍生的单原子材料及其催化性能研究1MOF基原位衍生的单原子材料及其催化性能研究近年来,随着化学催化的发展,高效、低成本的催化材料成为了研究的热点。

单原子催化已经成为实现高效催化的一个新趋势,而MOF(金属有机框架)修饰后的单原子催化剂由于其独特的控制单原子加工的结构,因此成为了催化研究中的一个热门话题。

本文主要介绍了MOF基的原位衍生单原子材料及其催化性能的研究。

MOF材料作为一种有机金属框架材料,其具有高比表面积、可调控孔径大小、表面活性中心丰富等特点,因此其在催化领域中已经得到了广泛应用。

而其中的原位衍生单原子材料由于其优异的催化性能和稳定性,成为了MOF材料中的重要研究方向。

对于MOF基原位衍生的单原子材料,其制备方法主要有两种。

一种是将单原子逐步沉积到MOF中,通过表征对比来确定单原子位置。

另一种是直接将单原子修饰至MOF骨架上,通过原位表征方法来确定单原子位置。

在制备方法上目前主要采用后者。

在MOF基原位衍生的单原子材料中,单原子可以稳定地存在于MOF孔道中,并且通过控制MOF孔道大小和单原子配位方式,使单原子与MOF之间的相互作用得到增强,具有很高的催化活性和选择性。

例如,目前已经报道了以MOF作为载体的单原子铜材料Cu-MOF-74的制备及其应用。

表征结果表明,在其催化剂中,Cu原子呈现单原子状态并被紧密嵌入到MOF孔道中,从而使其表现出了活性和选择性的高效性。

同时,在催化性能方面,MOF基原位衍生的单原子材料的催化性能远高于MOF材料和金属纳米粒子催化剂。

MOF基原位衍生的单原子材料通过其单原子结构和MOF材料孔道的协同作用,实现了高效转化分子,并且具有优异的催化选择性。

例如,某些MOF单原子材料显示出了非常高的CO2还原反应催化性能,实现了从CO2到CO的高效转化,这一结果得益于单原子结构对于CO2与还原剂分子的反应中心的定向性控制。

调制mof纳米酶缺陷的方法

调制mof纳米酶缺陷的方法

调制mof纳米酶缺陷的方法1.引言1.1 概述MOF纳米酶(Metal-Organic Framework Nanozymes)是一种新型的纳米催化剂,具有较高的稳定性和催化活性。

它们由金属有机框架(Metal-Organic Frameworks, MOFs)材料构建而成,具有大比表面积、丰富的孔道结构以及可调控的化学组成等特点。

MOF纳米酶可模拟天然酶的催化活性,并能通过人工调制其缺陷来进一步提高催化性能,因此受到了广泛的研究关注。

近年来,随着纳米科技的发展和应用的不断拓展,MOF纳米酶作为一种新型纳米催化剂,具有广阔的应用前景。

它们可以在许多领域发挥重要作用,例如生物医学、能源转化、环境修复等。

与传统的天然酶相比,MOF纳米酶具有更高的稳定性和可控性,可以在较广的温度、pH和环境条件下工作。

因此,了解调制MOF纳米酶缺陷的方法对于研究和应用这种新型纳米催化剂具有重要意义。

本文将探讨调制MOF纳米酶缺陷的方法以及这些缺陷对MOF纳米酶催化活性的影响。

通过深入研究和了解这些调制方法和缺陷对性能的影响,可以为进一步优化和设计高效的MOF纳米酶催化剂提供理论指导和实验依据。

接下来的章节将详细介绍MOF纳米酶缺陷的意义和调制方法,并对调制缺陷后的MOF纳米酶在催化领域的应用前景进行总结和展望。

通过本文的阐述,将为读者提供一个全面了解调制MOF纳米酶缺陷方法及其应用前景的综合性指南。

1.2文章结构文章结构部分的内容可以这样编写:1.2 文章结构本文将按照以下结构进行描述和探讨调制MOF纳米酶缺陷的方法。

首先,引言部分将对整篇文章进行概述,包括介绍MOF纳米酶缺陷的意义和本文的目的。

接下来,正文分为两个主要部分,分别是MOF纳米酶缺陷的意义和调制MOF纳米酶缺陷的方法。

在第二部分中,将详细介绍目前已知的各种调制MOF纳米酶缺陷的方法,并对它们的优缺点进行分析和评价。

最后,在结论部分对MOF纳米酶缺陷调制的重要性进行总结,并提出未来的研究方向。

生物化学——名词解释题库

生物化学——名词解释题库

【生物化学——名词解说大全】第一章蛋白质1.两性离子(dipolarion )2.必要氨基酸(essential amino acid)3.等电点 (isoelectric point,pI)4.罕有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型 (configuration)7.蛋白质的一级构造(protein primary structure)8.构象 (conformation)9.蛋白质的二级构造(protein secondary structure)10.构造域 (domain)11.蛋白质的三级构造(protein tertiary structure)12.氢键 (hydrogen bond)13.蛋白质的四级构造(protein quaternary structure)14.离子键 (ionic bond)15.超二级构造(super-secondary structure) 16.疏水键 (hydrophobic bond)17.范德华力 ( van der Waals force) 18.盐析 (salting out)19.盐溶 (salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的积淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析( chromatography )第二章核酸1.单核苷酸 (mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio )4.碱基互补规律(complementary base pairing)5.反密码子(anticodon)6.顺反子( cistron )7.核酸的变性与复性( denaturation 、renaturation )8.退火( annealing)9.添色效应(hyper chromic effect )10.减色效应(hypo chromic effect )11.噬菌体( phage)12.发夹构造( hairpin structure )13. DNA 的溶化温度( melting temperature Tm)14.分子杂交(molecular hybridization )15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(K m值)2.底物专一性(substrate specificity )3.辅基( prosthetic group )4.单体酶( monomeric enzyme )5.寡聚酶( oligomeric enzyme )6.多酶系统(multienzyme system )7.激活剂( activator )8.克制剂( inhibitor inhibiton)9.变构酶( allosteric enzyme )10.同工酶( isozyme)11.引诱酶( induced enzyme)12.酶原( zymogen)13.酶的比活力( enzymatic compare energy )14.活性中心( active center)第四章生物氧化与氧化磷酸化1.生物氧化( biological oxidation )2.呼吸链( respiratory chain )3.氧化磷酸化( oxidative phosphorylation )4.磷氧比 P/O( P/O)5.底物水平磷酸化( substrate level phosphorylation )6.能荷( energy charg第五章糖代谢1.糖异生 (glycogenolysis)2. Q 酶 (Q-enzyme)3.乳酸循环 (lactate cycle)4.发酵 (fermentation)5.变构调理 (allosteric regulation)6.糖酵解门路(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分解(glycogenolysis)9.磷酸戊糖门路 (pentose phosphate pathway) 10. D- 酶( D-enzyme )11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必要脂肪酸(essential fatty acid )2.脂肪酸的α -氧化 (α - oxidation)3.脂肪酸的β -氧化 (β - oxidation)4.脂肪酸的ω -氧化 (ω - oxidation)5.乙醛酸循环(glyoxylate cycle )6.柠檬酸穿越 (citriate shuttle)7.乙酰 CoA 羧化酶系( acetyl-CoA carnoxylase)8.脂肪酸合成酶系统( fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶( Proteinase)2.肽酶( Peptidase)3.氮均衡( Nitrogen balance )4.生物固氮(Biological nitrogen fixation)5.硝酸复原作用(Nitrate reduction )6.氨的同化( Incorporation of ammonium ions into organic molecules )7.转氨作用(Transamination )8.尿素循环(Urea cycle )9.生糖氨基酸(Glucogenic amino acid )10.生酮氨基酸(Ketogenic amino acid )11.核酸酶( Nuclease)12.限制性核酸内切酶( Restriction endonuclease)13.氨基蝶呤(Aminopterin )14.一碳单位(One carbon unit )第九章核酸的生物合成1.半保存复制( semiconservative replication )2.不对称转录(asymmetric trancription )3.逆转录( reverse transcription )4.冈崎片段(Okazaki fragment )5.复制叉( replication fork )6.领头链( leading strand)7.随后链( lagging strand )8.存心义链(sense strand)9.收复生( photoreactivation )10.重组修复(recombination repair )11.内含子( intron )12.外显子( exon)13.基因载体(genonic vector )14.质粒( plasmid )第十一章代谢调理1.引诱酶( Inducible enzyme )2.标兵酶( Pacemaker enzyme)3.操控子( Operon)4.衰减子( Attenuator )5.隔绝物( Repressor)6.辅隔绝物( Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein )8.腺苷酸环化酶(Adenylate cyclase )9.共价修饰( Covalent modification )10.级联系统( Cascade system)11.反应克制(Feedback inhibition )12.交错调理( Cross regulation )13.前馈激活(Feedforward activation )14.钙调蛋白( Calmodulin )第十二章蛋白质的生物合成1.密码子 (codon)2.反义密码子(synonymous codon)3.反密码子 (anticodon)4.变偶假说 (wobble hypothesis)5.移码突变 (frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义 RNA(antisense RNA)8.信号肽 (signal peptide)9.简并密码 (degenerate code)10.核糖体 (ribosome)11.多核糖体 (poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰 - tRNA 合成酶 (amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体循环(polyribosome)18.锌指 (zine finger)19.亮氨酸拉链(leucine zipper)20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor) 22.螺旋 - 环 - 螺旋 (helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

mofs 纳米限域催化

mofs 纳米限域催化

mofs 纳米限域催化
MOFs(金属有机框架)是一类具有高度有序孔道结构的晶体材料,由金属离子和有机配体组成。

它们具有高度可调的孔径和表面积,因此被广泛用于催化领域。

纳米限域催化是指在纳米尺度下利用MOFs的孔道结构和表面活性位点来进行催化反应的过程。

从催化角度来看,MOFs的孔径大小和表面积可以提供理想的反应环境,有利于催化剂与反应物之间的相互作用。

此外,MOFs的结构可以被设计和调控,以实现特定催化反应的要求,例如选择性催化和催化剂稳定性等。

纳米尺度下的限域效应也可以提高催化活性和选择性,因为反应物分子在孔道内的扩散受到限制,从而促进了特定反应的进行。

此外,MOFs还可以通过调控孔道结构和表面功能基团来实现对反应物的吸附和分子识别,从而提高催化剂的选择性和特异性。

这种特性使得MOFs在催化领域中具有广泛的应用前景,例如在氧化、加氢、氢转移、氧还原等反应中发挥重要作用。

总的来说,MOFs纳米限域催化具有独特的优势,可以通过调控
孔道结构和表面性质来实现对催化反应的精准控制,因此在催化领域具有广阔的应用前景。

MOF材料综述之令狐采学创编

MOF材料综述之令狐采学创编

MOF纳米材料的合成路线欧阳家百(2021.03.07)我选取的是Erik A. Flugel等在Journal of Materials Chemistry上发表的的Synthetic routes toward MOF nanomorphologies这篇论文。

然后在学习的过程中,还参考了一些中文文献和老师给的chemical review的那篇文章中的第六部分(MOF Crystals,Films/Membranes, and Composites)。

虽然是化学系的学生并且也选修了现代无机进展这门课,但是该篇文章还是让在阅读的过程中感到十分吃力,主要原因还是金属无机材料这个领域了解不够。

我将试着谈谈这篇文章的内容并给出自己的一点浅薄的体会。

本篇文章是和其他的综述流程一样,先是在简介中介绍了MOF 的功能和最近的应用和本文的大致内容,然后进入正题,分为以下几部分:1.零维的MOF纳米晶体的制备;2.一维纳米结构晶体的制备;3.二维纳米结构晶体的制备;4.三位结构晶体的制备;5.杂合纳米结构晶体的制备;6.针对某一个晶体进行结构控制的机理的研究。

最后为文章的总述和致谢。

MOF是含氧或氮的有机配体与过渡金属通过自组装连接而形成的具有周期性网状结构的晶体材料。

其一般具有沸石和类沸石的结构。

在当今的社会中MOF因为其具有结构和孔道可以设计,可裁剪的特点并且表面积大而多孔而受到多个学科的重视。

MOF可以应用在吸收,气体贮存,传感器设计,集光,生物显影,药物传送和催化方面。

现在得到的纳米化的MOF材料,有着与普通固体材料截然不同的性质,比如因为其小尺寸而具有的干涉和散射的光学性质,比如在生物方面展现了更长时间的血浆循环时间,有些甚至可以在淋巴中进行传送。

MOF材料的形态也是至关重要的。

球形保证了一致的消融速度因而能够作为药物缓蚀剂。

而不是球形的或者各向异性的因为其边缘处和角落处的活性而具有催化功能,MOF的膜或者薄片对于气体的分离和探测是很重要的。

二维mofs材料层间限域催化

二维mofs材料层间限域催化

二维mofs材料层间限域催化Metal-organic frameworks (MOFs) have attracted significant attention due to their unique properties and potential applications in various fields. These materials are composed of metal ions or clusters connected by organic ligands to form extended porous networkswith large surface areas.金属有机框架(MOFs)因其独特的性能和在各个领域的潜在应用而受到了广泛的关注。

这些材料由金属离子或团簇连接有机配体形成扩展的多孔网络,具有大的表面积。

One of the key advantages of MOFs is their tunable properties, which allow for the design of materials with specific pore sizes, surface areas, and chemical functionalities. These characteristics make MOFs promising candidates for applications in gas storage, catalysis, sensing, and drug delivery.MOFs的一个关键优势是它们可调控的性能,这使得可以设计具有特定孔径、表面积和化学功能的材料。

这些特性使得MOFs成为气体储存、催化、传感和药物输送等应用领域的有前景的候选材料。

In recent years, researchers have been exploring the potential of MOFs for catalytic applications. The unique structure and tunable chemical functionalities of MOFs make them promising candidates for catalysis in various chemical reactions.近年来,研究人员一直在探索MOFs在催化应用方面的潜力。

MOFs-水凝胶复合材料的制备及其应用研究

MOFs-水凝胶复合材料的制备及其应用研究

MOFs-水凝胶复合材料的制备及其应用研究MOFs/水凝胶复合材料的制备及其应用研究摘要:金属有机骨架材料(Metal-Organic Frameworks,简称MOFs)以其高比表面积和可调控的孔径结构在能源、环境和催化等领域展示出巨大的应用潜力。

然而,MOFs的应用受到其在湿润环境中稳定性的限制。

为了克服这一问题,近年来研究人员开始利用水凝胶与MOFs进行复合,以提高MOFs在潮湿环境中的稳定性,并且探索了这种复合材料在气体吸附、分离和催化等方面的应用。

本文将从制备方法和表征手段、MOFs/水凝胶复合材料的性能及其应用的角度,对该领域的研究进展进行综述。

1. 导言金属有机骨架材料(Metal-Organic Frameworks,简称MOFs)是一类由金属离子与有机配体通过配位键连接形成的晶态材料,其具有的高比表面积、可调控的孔径结构和丰富的官能团赋予了其在气体吸附、分离和催化等领域的广泛应用。

然而,由于MOFs在湿润环境中的不稳定性,限制了其在许多领域的应用。

为了解决这一问题,研究人员开始将MOFs与水凝胶进行复合,以提高其稳定性并发掘其更广泛的应用。

2. MOFs/水凝胶复合材料的制备方法MOFs/水凝胶复合材料的制备方法主要包括溶剂热法、水热法、共沉淀法、原位合成法等。

溶剂热法是最常用的制备方法之一,通过在高温和高压条件下将MOFs与水凝胶混合溶解,并在适当的条件下晶化得到复合材料。

水热法是另一种常用的制备方法,通过水热合成MOFs,并将其与水凝胶混合得到复合材料。

共沉淀法和原位合成法也可以用于制备MOFs/水凝胶复合材料,具体方法根据不同的MOFs和水凝胶进行选择。

3. MOFs/水凝胶复合材料的表征手段MOFs/水凝胶复合材料的表征手段主要包括X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积测试(BET)等。

XRD可以用于确定复合材料的晶体结构和晶胞参数,从而评估复合材料的形貌和结晶性能。

MOF----咪唑类羧酸

MOF----咪唑类羧酸

DOI: 10.1126/science.1083440, 1127 (2003);300 Science , et al.Nathaniel L. Rosi Hydrogen Storage in Microporous Metal-Organic FrameworksThis copy is for your personal, non-commercial use only.clicking here.colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to othershere.following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles): May 18, 2011 (this infomation is current as of The following resources related to this article are available online at/content/300/5622/1127.full.html version of this article at:including high-resolution figures, can be found in the online Updated information and services, /content/suppl/2003/05/15/300.5622.1127.DC1.html can be found at:Supporting Online Material 1222 article(s) on the ISI Web of Science cited by This article has been /content/300/5622/1127.full.html#related-urls 11 articles hosted by HighWire Press; see:cited by This article has been/cgi/collection/chemistry Chemistrysubject collections:This article appears in the following registered trademark of AAAS.is a Science 2003 by the American Association for the Advancement of Science; all rights reserved. The title Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n M a y 18, 2011w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m4.J.D.Termine,E.D.Eanes,D.J.Greenfield,M.U.Nylen,R.A.Harper,Calcif.Tissue Res.12,73(1973).5.B.B.Tomazic,W.E.Brown,E.D.Eanes,J.Biomed.Mater.Res.27,217(1993).6.H.-M.Kim,C.Rey,M.J.Glimcher,J.Bone Miner.Res.10,1589(1995).7.C.Ramanathan,J.L.Ackerman,Magn.Reson.Med.41,1214(1999).8.Y.Wu et al .,J.Bone Miner.Res.17,472(2002).9.E.E.Berry,J.Inorg.Nucl.Chem.29,317(1967).10.R.M.Biltz,E.D.Pellegrino,Calcif.Tissue Res.7,259(1971).11.J.D.Termine,D.R.Lundy,Calcif.Tissue Res.13,73(1973).12.N.C.Blumenthal,A.S.Posner,Calcif.Tissue Res.13,235(1973).13.C.Rey,J.L.Miquel,L.Facchini,A.P.Legrand,M.J.Glimcher,Bone 16,583(1995).14.C.-K.Loong et al .,Bone 26,599(2000).15.W.P.Rothwell,J.S.Waugh,J.P.Yesinowski,J.Am.Chem.Soc.102,2637(1980).16.W.P.Aue,A.H.Roufosse,M.J.Glimcher,R.G.Griffin,Biochemistry 23,6110(1984).17.J.Arends et al .,J.Cryst.Growth 84,515(1987).18.K.Beshah,C.Rey,M.J.Glimcher,M.Shimizu,R.G.Griffin,J.Solid State Chem.84,71(1990).19.Y.Wu,M.J.Glimcher,C.Rey,J.L.Ackerman,J.Mol.Biol.244,423(1994).20.Y.Wu et al .,Calcif.Tissue Int.,in press.21.J.P.Yesinowski,H.Eckert,J.Am.Chem.Soc.109,6274(1987).22.R.A.Santos,R.A.Wind,C.E.Bronnimann,J.Magn.Reson.B 105,183(1994).23.See supporting data on Science Online.24.S.Schwarzinger,G.J.Kroon,T.R.Foss,P.E.Wright,H.J.Dyson,J.Biomol.NMR 18,43(2000).25.We thank J.P.Yesinowski,M.J.Glimcher,P.V.Hauschka,and C.E.Bronnimann for insightful discus-sions,and lea for assistance with procurement of the human bone specimens.A.Bielecki and D.Rice obtained preliminary demonstration spectra of test specimens.Supported by NIH grants AR42258(Na-tional Institute of Arthritis,Musculoskeletal,and Skin Disorders)and RR03264(Division of Research Re-sources).Supporting Online Material/cgi/content/full/300/5622/1123/DC1Materials and Methods Figs.S1and S216September 2002;accepted 11April 2003Hydrogen Storage in Microporous Metal-Organic FrameworksNathaniel L.Rosi,1Juergen Eckert,2,3Mohamed Eddaoudi,4David T.Vodak,1Jaheon Kim,1Michael O’Keeffe,5Omar M.Yaghi 1*Metal-organic framework-5(MOF-5)of composition Zn 4O(BDC)3(BDC ϭ1,4-benzenedicarboxylate)with a cubic three-dimensional extended porous struc-ture adsorbed hydrogen up to 4.5weight percent (17.2hydrogen molecules per formula unit)at 78kelvin and 1.0weight percent at room temperature and pressure of 20bar.Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II),which we associate with hydrogen binding to zinc and the BDC linker,respectively.Preliminary studies on topo-logically similar isoreticular metal-organic framework-6and -8(IRMOF-6and -8)having cyclobutylbenzene and naphthalene linkers,respectively,gave ap-proximately double and quadruple (2.0weight percent)the uptake found for MOF-5at room temperature and 10bar.The development of hydrogen-fueled vehi-cles and portable electronics will require new materials that can store large amounts of hydrogen at ambient temperature and rela-tively low pressures with small volume,low weight,and fast kinetics for recharging (1,2).A design target for automobile fueling has been set by the U.S.Department of Energy at 6.5%hydrogen by weight.Metal hydride systems have been intense-ly examined in this respect (3),but there are many problems associated with their use,in-cluding cost,low specific uptake by weight,unfavorable kinetics requiring heating cycles,and susceptibility to contamination by impu-rities.Various carbon-based adsorbents (e.g.,porous carbon,intercalated graphite,and nanotubes)have also been studied and,while promising,have been beset by mixed results (4,5).For these materials,it has been diffi-cult both to systematically engineer their mo-lecular structure and to identify specific hy-drogen binding sites.Here we report very favorable hydrogen sorption properties ob-tained at 78K or ambient temperature under safe pressures (up to 20bar)with crystalline metal-organic frameworks (MOFs)(6)hav-ing cubic cavities of uniform size and internal1Department of Chemistry,University of Michigan,Ann Arbor,MI 48109,USA.2Materials Research Lab-oratory,University of California,Santa Barbara,CA 93106,USA.3Los Alamos Neutron Science Center,Los Alamos National Laboratory,Los Alamos,NM 87545,USA.4Department of Chemistry,University of South Florida,4202East Fowler Avenue,SCA 400,Tampa,FL 33620–5250,USA.5Department of Chemistry,Arizo-na State University,Tempe,AZ 85287,USA.*To whom correspondence should be addressed.E-mail:oyaghi@Fig.1.Single-crystal x-ray structures of MOF-5(A ),IRMOF-6(B ),and IRMOF-8(C )illustrated for a single cube fragment of their respective cubic three-dimensional extended structure.On each of the corners is a cluster [OZn 4(CO 2)6]of an oxygen-centered Zn 4tetrahedron that isbridged by six carboxylates of an organic linker (Zn,blue polyhedron;O,red spheres;C,black spheres).The large yellow spheres represent the largest sphere that would fit in the cavities without touching the van der Waals atoms of the frameworks.Hydrogen atoms have been omitted.R E P O R T S SCIENCE VOL 30016MAY 20031127o n M a y 18, 2011w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mstructure.Inelastic neutron scattering (INS)spectroscopy has allowed us to identify the hydrogen binding sites.We focused on MOF-5(Fig.1A)(7),in which inorganic [OZn 4]6ϩgroups are joined to an octahedral array of [O 2C-C 6H 4-CO 2]2–(1,4-benzenedicarboxylate,BDC)groups to form a robust and highly porous cubic frame-work.The MOF-5structure motif and related compounds (8)provide ideal platforms on which to adsorb gases,because the linkers are isolated from each other and accessible from all sides to sorbate molecules.The scaffold-ing-like nature of MOF-5and its derivatives leads to extraordinarily high apparent surface areas (2500to 3000m 2g Ϫ1)for these struc-tures.On a practical level,the preparation of MOFs is simple,inexpensive,and of high yield.For example,the formation reaction for MOF-5is 4Zn 2ϩϩ3H 2BDC ϩ8OH –3Zn 4O(BDC)3ϩ7H 2O.The MOF family also has high thermal stability (300°to 400°C).We have recently shown that MOF-5and isoreticular metal-organic framework-6(IRMOF-6)(Fig.1B)outperform other ma-terials in methane adsorption at ambient tem-perature (8).Thus,we sought to determine their capacity for hydrogen storage,begin-ning with MOF-5as an important represen-tative of this set.We measured hydrogen gas uptake by MOF-5at 78K by introducing small amounts of H 2into a chamber containing the guest-free form of the material and monitoring the weight change as a function of increasing doses of H 2(9).The measured sorption iso-therm shows a type I behavior (10),in which the saturation is reached at low pressures followed by a pseudoplateau at higher pres-sure of H 2with a maximum uptake of 45mg of H 2per gram of MOF-5[4.5weight %ϭ17.2H 2per Zn 4O(BDC)3formula unit](Fig.2A).The observed sharp uptake of H 2at lower pressure indicates favorable sorption interactions between the MOF-5framework and H 2molecules.We note that,similar to the reversible sorption of gases and organic vapors (N 2,Ar,CO 2,CHCl 3,CCl 4,C 6H 6,and C 6H 12)in MOF-5(7,11),adsorbed H 2molecules can also be reversibly desorbed from the pores by reducing pressure.We next evaluated the H 2sorption in con-ditions that mimic a typical application environ-ment,namely,room temperature and pressures considered safe for mobile fueling.A different sorption apparatus was constructed,in which a 10-g sample of guest-free MOF-5was charged with H 2up to 20bar and the weight change monitored as a function of H 2uptake and re-lease (9).MOF-5showed substantial H 2uptake that increased linearly with pressure,giving 1.0weight %at 20bar (Fig.2B).These findings demonstrate the potential of MOFs for H 2stor-age applications.The isotherm at ambient tem-perature is expected to be approximately linear as observed because the material is noticeably undersaturated with H 2in the pressure range explored and,in principle,at higher pressures can take up more H 2,up to at least the amount observed at 78K (compare Fig.2,A and B)(10).To understand the H 2sorption properties of MOF-5and hence to potentially control the characteristics of H 2binding,we carried out INS spectroscopy of the rotational transi-tions of the adsorbed hydrogen molecules.Neutrons are scattered inelastically far more strongly by hydrogen than by any other ele-ment,which facilitates the observation of rotational tunnel splitting of the librational ground state of the H 2molecule (12).This splitting is akin to the ortho-para transition for free H 2,and this mode is forbidden in optical spectroscopy (13).This splitting is an extremely sensitive measure of the rotational potential-energy surface,a feature that has made it possible to determine fine details of hydrogen adsorption by INS in a wide variety of materials,including zeolites (14–18),nanoporous nickel phosphate VSB-5(19),and carbon nanotubes (20,21).The INS spectra for MOF-5are shown in Fig.3for three levels of H 2loadings corre-sponding to 4,8,and 24H 2per formula unit (9).First,the observed peaks are much sharp-er than those found for H 2in zeolites,VSB-5,and carbon materials.Thus,the adsorption sites for H 2in MOF-5are well defined com-pared with those in zeolites (3,4),in which the molecule has a variety of binding sites available that are close in energy.Second,the richness of the spectrum immediately leads us to conclude that more than one type of binding site is present in MOF-5even though rotational transitions other than 0-1can be observed (22).Some progress in assigning peaks can be made with the use of a model for the rotational potential.For reasons of simplicity,we use the energy eigenvalues for the rotations of H 2with two angular degrees of freedom in a double-minimum potential.Thus,we can assign the peaks at 10.3and 12.1meV to the 0-1transitions for the two sites,which we subsequently refer to as I and II,and we assign the remaining peaks to the 0-2and 1-2transitions (22).These assign-ments are verified by comparison with the INS spectrum of 4D 2molecules per formula unit and scaling the rotational energy level diagram by the respective rotational constants of H 2and D 2.The rotational barriers associ-ated with sites I and II are found to be 0.40and 0.24kcal mol Ϫ1,respectively.We can make some inferences about the nature of the binding sites from our study of the dependence of the INS spectra on H 2loading.As the average loading is increased from 4to 8H 2per formula unit,the intensity of the 12.1-meV band (site II)roughly dou-bles,whereas that of the 10.3-meV band (siteI)remains constant.We associate site I with Zn and site II with the BDC linkers.Further increases in loading (24H 2per formula unit)(Fig.3,bottom panel)show that the line at 12.1meV splits into four lines,and therefore we associate four slightly different sites with the BDC linker.This result suggests that further increases in the sorption capacity for these types of materials could be achieved by the use of larger linkers.Indeed,we observed a small peak near 14.5meV at this high loading corresponding to a small amount of solid H 2(for which the 0-1transition occurs essentially at the free rotor value of 14.7meV),indicative of saturation coverage in MOF-5.As noted above,our 78K sorption data suggest that 17.2H 2per formula unit is close to saturation.The barrier to rotation for the binding site near Zn is somewhat greater than those on the BDC,as one might expect,but also slightly lower than that for the extra-framework Zn 2ϩcation in ZnNaA zeolite,for which the rota-tional transition was observed at ϳ8meV (23).Various factors could contribute to this difference,including different degrees of ac-cessibility of the Zn and the strong electro-static field in the zeolite supercage.The bar-riers found for MOF-5are noticeably higher (0.40and 0.24kcal mol Ϫ1)than those found in carbons,including single-walled nano-tubes (20),in which it is ϳ0.025kcal mol Ϫ1.Moreover,the rotational band in that case has a width of nearly 2.5meV compared with 0.5meV in our case.This value corroborates the much lower mobility (and hence strongerin-Fig.2.Hydrogen gas sorption isotherm for MOF-5at (A )78K and (B )298K.R E P O R T S16MAY 2003VOL 300SCIENCE 1128 o n M a y 18, 2011w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mteraction)for H 2in MOF-5than in carbons.Our INS results for hydrogen in MOF-5point to the importance of the organic linkers in determining H 2uptake levels.Accordingly,us-ing the same experimental setup and details outlined above for the room-temperature mea-surements on MOF-5(9),we examined H 2sorption in IRMOF-6and IRMOF-8(Fig.1,B and C).Here we found that the specific H 2uptake is approximately doubled and quadru-pled,respectively,for IRMOF-6and -8relative to that found for MOF-5at the same (room)temperature and pressure (10bar).Specifically,for IRMOF-8,the H 2uptake under those con-ditions is 20mg of H 2per gram (2.0weight %)—a capacity well above those found for “active ”carbon (0.1weight %)(CECA,France)and “graphitic ”carbon (0.3weight %)(BASF,Germany,proprietary).The percent uptake found for MOF-5,IRMOF-6,and IRMOF-8at room tempera-ture and 10bar is equivalent to ϳ1.9,4.2,and9.1H 2per formula unit,respectively.These capacities are well below the saturation level as determined at 78K for MOF-5(17.2H 2per formula unit),which points to the poten-tial for higher uptake at ambient temperature and higher pressures.The capacity of these structures for hydrogen at room temperature is comparable to the highest capacity achieved for carbon nanotubes at cryogenic temperatures,although the capacity of those materials is very sensitive to preparation conditions and appears to saturate at lower pressures (24).We antici-pate that further increases in performance can be expected,with new IRMOFs having similar but larger organic linkers.References and Notes1.G.D.Berry,S.M.Aceves,Energy &Fuels 12,49(1998).2.Alliance of Automobile Manufacturers,/fuel_cells.htm.3.L.Schlapbach,A.Zu ¨ttel,Nature 414,353(2001).4.R.Dagani,Chem.Eng.News 80,25(14January 2002).5.G.E.Froudakis,J.Phys.Condens.Matter 14,R453(2002).6.M.Eddaoudi et al.,Acc.Chem.Res.34,319(2001).7.H.Li,M.Eddaoudi,M.O’Keeffe,O.M.Yaghi,Nature 402,276(1999).8.M.Eddaoudi et al.,Science 295,469(2002).9.Details of the H 2uptake and INS experiments are available as supporting material on Science Online.10.S.J.Gregg,K.S.W.Sing,Adsorption,Surface Area,Porosity (Academic Press,London,ed.2,1982).11.M.Eddaoudi,H.Li,O.M.Yaghi,J.Am.Chem.Soc.122,1391(2000).12.J.Eckert,G.J.Kubas,J.Phys.Chem.97,2378(1993).13.I.F.Silvera,Rev.Mod.Phys .52,393(1980).14.J.Eckert,J.M.Nicol,J.Howard,F.R.Trouw,J.Phys.Chem.100,10646(1996).15.J.M.Nicol,J.Eckert,J.Howard,J.Phys.Chem .92,7117(1988).16.C.-R.Anderson,D.F.Coker,J.Eckert,A.L.R.Bug,J.Chem.Phys .111,7599(1999).17.J.A.MacKinnon,J.Eckert,D.A.Coker,A.L.R.Bug,J.Chem.Phys.114,10137(2001).18.B.L.Mojet,J.Eckert,R.A.van Santen,A.Albinati,R.E.Lechner,J.Am.Chem.Soc.123,8147(2001).19.P.M.Forster et al.,J.Am.Chem.Soc.125,1309(2003).20.C.M.Brown et al.,Chem.Phys.Lett .329,311(2000).21.Y.Ren,D.L.Price,Appl.Phys.Lett .79,3684(2001).22.Transitions for the hindered H 2rotor are labeled (e.g.,0-1)as being between energy levels that are num-bered 0,1,and 2,with increasing energy.These numbers are not to be taken as the rotational quan-tum number J,which is only appropriate for the free rotor.23.I.J.Braid,J.Howard,J.M.Nicol,J.Tomkinson,Zeolites7,214(1987).24.B.K.Pradhan et al.,J.Mater.Res.17,2209(2002).25.Supported in part by NSF (M.O’K.and O.M.Y.),U.S.Department of Energy (DOE)(O.M.Y.),and BASF (O.M.Y.).We thank U.Mueller,W.Harder,and O.Metelkina (BASF Aktiengesellschaft,Germany)for performing the ambient temperature measurements under conditions mimicking the application environ-ment and R.Connatser for experimental assistance on the quasielastic neutron spectroscopy (QENS).This work has benefited from the use of facilities at the Intense Pulsed Neutron Source (IPNS),a national user facility funded by the Office of Science,U.S.DOE.Supporting Online Material/cgi/content/full/300/5622/1127/DC1Materials and Methods13February 2003;accepted 1April2003Fig.3.INS spectra (T ϭ10K)for hydrogen adsorbed in MOF-5with loadings of 4H 2(top ,8H 2(middle ),and 24H 2(bottom )per formula unit [Zn 4O(BDC)3]obtained on the QENS spectrometer at IPNS,Argonne National L aboratory.The spectrum of the guest-free (blank)MOF-5sample was subtracted in each case.The very slight oversubtraction near 4meV arises from a peak in that region of the blank sample,which cannot be removed by heating under vacuum.Assignments are based on the use of a model potential and observed isotope shifts from a spectrum of D 2in MOF-5.Peaks at 10.3and 12.1meV are assigned to the 0-1transitions for the two principal binding sites (I and II,labeled on the spectra).Other tentative assignments are 4.4meV (1-2,site II),15.5meV (0-2,site II),7.5meV (1-2,site I),17.5meV (0-2,site I),and 14.5meV (solid H 2).The regions of MOF-5corresponding to sites I and II are shown schematically in the top right corner.R E P O R T S SCIENCE VOL 30016MAY 20031129o n M a y 18, 2011w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m。

MOFs简介解析

MOFs简介解析
,这些骨架的孔隙率到达91.1%,孔是均匀的、周期性排列的,其 中IRMOF—6在36atm、室温下,甲烷的吸附量可以到达 24mm3(STP)·g-1,是迄今为止对甲烷吸附量最高的材料。Yaghi等 也对MOF—5、IRMOF—6、IRMOF—8进展了氢气吸附量的争论, 这三种骨架具有相像性,但对氢气的吸附量存在很大的差异。
MOF—5对氢气的吸附量为4.5mg·g-1,IR—MOF—6 和IRMOF—8对氢气的吸附量为前者的2倍和4倍,说明白MOFs对 于氢气的存储有较大的潜力。所以,MOFs在自然气和氢气储存, 提高气体能源汽车储气安全性方面很有应用前景。
催化剂
MOFs作为催化剂,可以用于多类反响,如氧化、开环、环氧化、 碳碳键的形成(如氧基化、酰化)、加成(如羰基化、水合、酯化、 烷氧基化)、消去(如去羰基化、脱水)脱氢、加氢、异构化、碳碳 键的断裂、重整、低聚和光催化等方面。 MOFs在催化 剂方面的应用争论已有报道,如,Snejko等综合了磺酸的强酸性 和稀土元素的催化活性这两个因素,利用1,5—二磺酸萘的钠盐 (NDS)与Ln(N03)3·6H2O(Ln=La、Pr和Nd)通过水热合成得到3种 配位化合物。利用这3种配位化合物来催化氧化里哪醇,能得到 具有重要应用价值的里哪醇氧化物,且反响步骤简洁,产率分别
气体储存
构造稳定的MOFs可保持永久的孔度,晶体中自由体积百分率 远远超过任何沸石,去掉模板试剂后的晶体密度小到可突破报道过
的晶体材料的底限。对于MOFs特殊的吸附性能,目前主要集中在 甲烷和氢等燃料气的存储方面。Yaghi等对12种MOFs进展了甲烷吸 附性能的争论,这12种骨架都具有MOF—5的拓扑构造,羧酸配体 的功能基团和长度不同,形成的骨架的孔隙和功能不同。结果说明

mof材料 纳米纤维素 油水分离

mof材料 纳米纤维素 油水分离

mof材料纳米纤维素油水分离下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。

并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!纳米纤维素在油水分离中的应用。

《镧系MOFs荧光探针的功能化构筑及其无机离子和生物分子传感性能》范文

《镧系MOFs荧光探针的功能化构筑及其无机离子和生物分子传感性能》范文

《镧系MOFs荧光探针的功能化构筑及其无机离子和生物分子传感性能》篇一一、引言近年来,金属有机框架(MOFs)由于其丰富的拓扑结构、高度的孔隙率和优异的化学稳定性,已被广泛应用于荧光探针的设计与制造。

特别是在镧系元素MOFs的研究中,由于其独特的光学性质,如长寿命的荧光发射、高的量子产率等,为开发高性能的荧光探针提供了巨大的潜力。

本论文将着重讨论镧系MOFs 荧光探针的功能化构筑及其在无机离子和生物分子传感领域的应用。

二、镧系MOFs荧光探针的功能化构筑(一)材料选择与合成在镧系MOFs荧光探针的构筑中,选择合适的镧系金属离子和有机配体是关键。

镧系金属离子因其特殊的电子结构,具有独特的光学性质。

而有机配体则决定MOFs的拓扑结构和孔隙率。

我们采用常用的配位方式,将镧系金属离子与多功能化的有机配体结合,合成出具有优异荧光性能的MOFs。

(二)功能化修饰为了进一步提高MOFs荧光探针的性能,我们对其进行了功能化修饰。

通过引入特定的官能团,增强了MOFs与目标物质的相互作用,提高了其检测灵敏度和选择性。

此外,功能化修饰还使MOFs具有了更好的生物相容性和稳定性。

三、无机离子的传感性能(一)检测原理镧系MOFs荧光探针对无机离子的检测主要基于离子与MOFs之间的相互作用。

当目标离子与MOFs发生配位或络合作用时,会改变MOFs的荧光性质,从而实现检测。

我们通过优化MOFs的结构和功能化修饰,提高了其对无机离子的检测灵敏度和选择性。

(二)实验结果与讨论我们针对多种无机离子进行了实验,发现镧系MOFs荧光探针对某些离子具有较高的检测灵敏度和选择性。

例如,对于某些重金属离子,MOFs能够通过配位作用将其捕获并产生明显的荧光变化,从而实现快速、准确的检测。

此外,我们还发现MOFs 对某些阴离子的检测也具有较好的性能。

四、生物分子的传感性能(一)检测原理镧系MOFs荧光探针对生物分子的检测主要基于生物分子与MOFs之间的相互作用。

MOF膜用来分离不同尺寸的纳米粒子acsami.7b10228

MOF膜用来分离不同尺寸的纳米粒子acsami.7b10228
† ‡
Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea § School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea ∥ School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
© XXXX American Chemical Society

many organic 2D materials start to decompose in such, typically, high-temperature procedures. Conventional liquidphase synthesis combined with the Langmuir−Blodgett (L−B) technique can serve as an alternative and mild bottom-up approach to synthesize 2D materials.20−22 The films formed at the water/air interface can have a large area and be easily transferred onto other substrates. To date, preparations of 2D polymer materials using the L−B technique have been reported, but these are limited to photoinduced cycloadditions of anthracene-based monomers,23,24 Schiff-base condensations,25,26 an alkyne−alkyne homocoupling reaction,27 and complexations between nickel(II) ions and bis(thiolene)s,28,29 metal ions and terpyridine ligands,20,30 or zinc(II) ions and dipyrrin ligands.31 Exploring new reactions for the synthesis of

mof衍生硫化物的硫源

mof衍生硫化物的硫源

mof衍生硫化物的硫源摘要:一、前言二、mof衍生硫化物的硫源1.硫粉2.二硫化碳3.硫醇4.其他硫源三、硫源的选择与影响1.硫化反应的活性和选择性2.产物的结构和性能四、硫源对mof衍生硫化物的影响1.反应过程中的作用机制2.硫源对mof结构的影响3.硫源对产物性能的影响1.物理性能2.化学性质3.应用领域五、结论六、展望正文:一、前言金属有机框架(Metal-Organic Frameworks, MOFs)是一种具有高度多孔性和可调控性的晶体材料,因其高比表面积、可设计性和可扩展性等特点,在催化、吸附、分离等领域具有广泛的应用前景。

mof衍生硫化物作为一类重要的功能材料,其硫源的选择对其性能具有重要影响。

本文将探讨不同硫源的特点、选择及其对mof衍生硫化物性能的影响。

二、mof衍生硫化物的硫源1.硫粉:硫粉作为硫源具有来源广泛、价格低廉的优点,但在反应过程中易产生副反应,影响产物的纯度和性能。

2.二硫化碳:二硫化碳具有较高的反应活性和选择性,但其在自然界中含量较低,且易燃,使用过程中需注意安全。

3.硫醇:硫醇作为一种有机硫源,具有反应活性较高、副反应较少的特点,但价格相对较高,对mof结构的影响也较大。

4.其他硫源:除了上述常见的硫源外,还有一些其他的硫源,如硫醚、硫酮等,它们在特定条件下也可作为硫源参与反应。

三、硫源的选择与影响1.硫化反应的活性和选择性:不同的硫源在反应过程中的活性和选择性不同,影响mof衍生硫化物的生成速率和纯度。

2.产物的结构和性能:硫源的选择对mof衍生硫化物的结构和性能具有重要影响。

例如,硫醇作为硫源,容易与金属离子形成配位键,从而影响mof的结构和性能。

四、硫源对mof衍生硫化物的影响1.反应过程中的作用机制:硫源在反应过程中通过与金属离子配位、形成中间体等过程影响反应的进行。

2.硫源对mof结构的影响:硫源的选择对mof的孔径、孔容、晶格稳定性等结构特性产生影响。

胺基功能化MOF材料固定化纤维素酶在稀酸预处理液中的稳定性研究

胺基功能化MOF材料固定化纤维素酶在稀酸预处理液中的稳定性研究

胺基功能化MOF材料固定化纤维素酶在稀酸预处理液中的稳
定性研究
沈欣;严立石
【期刊名称】《苏州科技大学学报(自然科学版)》
【年(卷),期】2024(41)1
【摘要】合成一种金属有机骨架材料(Metal-organic frameworks,MOF)ZIF-8,对其进行胺基功能化获得ZIF-8-NH2,并通过戊二醛将纤维素酶交联在ZIF-8-NH2上制备固定化纤维素酶ZIF-8-NH2@Cellulase。

研究表明,ZIF-8-NH2的最大酶负载量(245.8 mg·g^(-1))大于ZIF-8(198.3 mg·g^(-1))。

与游离纤维素酶相比,ZIF-8-NH2@Cellulase的pH稳定性、温度稳定性、发酵抑制物耐受性和酶促反应效率等方面均表现出更好的性能。

当香草醛和糠醛的用量都为5 g·L^(-1)时,ZIF-8-NH2@Cellulase的相对酶活分别比游离酶高17.6%和6.3%。

此外,ZIF-8-NH2@Cellulase连续循环使用5次仍能保持70%以上的相对酶活。

这意味着ZIF-8-NH2@Cellulase有应用于稀酸预处理后酶解的潜力。

【总页数】7页(P54-60)
【作者】沈欣;严立石
【作者单位】苏州科技大学化学与生命科学学院
【正文语种】中文
【中图分类】Q815
【相关文献】
1.混合菌种发酵秸秆稀酸预处理液中木糖的研究
2.海藻酸钠与MOFs复合材料固定化果胶酶的研究
3.稀酸预处理对木质素吸附纤维素酶影响的研究
4.固定化细胞木质纤维素稀酸水解液乙醇发酵研究
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013./10.1351/PAC-REC-12-11-20© 2013 IUPAC, Publication date (Web): 29 July 2013Terminology of metal–organic frameworks andcoordination polymers(IUPAC Recommendations 2013)*Stuart R. Batten1, Neil R. Champness2, Xiao-Ming Chen3,Javier Garcia-Martinez4, Susumu Kitagawa5, Lars Öhrström6,‡,Michael O’Keeffe7, Myunghyun Paik Suh8, and Jan Reedijk91School of Chemistry, Monash University, Victoria 3800, Australia; 2School ofChemistry, University of Nottingham, Nottingham NG7 2RD, UK; 3School ofChemistry and Chemical Engineering, Sun Y at-Sen University, Guangzhou,PR China, 510275; 4Universidad de Alicante, Departamento de QuímicaInorgánica, Carretera San Vicente del Raspeig s/n, E-03690 Alicante, Spain;5Department of Synthetic Chemistry and Biological Chemistry, Kyoto University,Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; 6Department of Chemical andBiological Engineering, Physical Chemistry, Chalmers University of Technology,SE-412 96 Göteborg, Sweden; 7Department of Chemistry and Biochemistry,Arizona State University, Tempe, AZ 85287, USA; 8Department of Chemistry,Seoul National University, Seoul 151-747, South Korea; 9Leiden Institute ofChemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The NetherlandsAbstract: A set of terms, definitions, and recommendations is provided for use in the classi-fication of coordination polymers, networks, and metal–organic frameworks (MOFs). A hier-archical terminology is recommended in which the most general term is coordination poly-mer. Coordination networks are a subset of coordination polymers and MOFs a further subsetof coordination networks. One of the criteria an MOF needs to fulfill is that it contains poten-tial voids, but no physical measurements of porosity or other properties are demanded per se.The use of topology and topology descriptors to enhance the description of crystal structuresof MOFs and 3D-coordination polymers is furthermore strongly recommended.Keywords: coordination chemistry; coordination networks; coordination polymers; inorganicchemistry; IUPAC Inorganic Chemistry Division; materials chemistry; metal complexes;metal–organic frameworks (MOFs); nanostructured materials; polymers. INTRODUCTIONCoordination polymers [1] and metal–organic frameworks [2,3], colloquially known as MOFs, consti-tute an interdisciplinary field with its origins in inorganic and coordination chemistry that has expanded rapidly the last two decades, and is now also attracting the interest of the chemical industry [4,5].The diversity in both the focus and the scientific base of those involved has led to a variety of ter-minological usages for this class of compounds, and of several subgroups within; a disquieting number1715S. R. BATTEN et al.1716of abbreviations are also in use. Moreover, the nomenclature used to name networks is not consistent among research groups, causing additional confusion and unnecessary misunderstandings.The IUPAC task group Coordination Polymers and Metal Organic Frameworks: Terminology and Nomenclature Guidelines has since 2009 documented, analyzed, and evaluated existing practices in a continuous dialogue with researchers in the field. This is the final report of this group.In passing we note, as we perceive it, a slight problem with paragraph IR-9.1.2.2 of the “Red Book”, the 2005IUPAC Recommendations for the Nomenclature of Inorganic Chemistry. This para-graph states that for nomenclature purposes:“A coordination compound is any compound that contains a coordination entity. A coordi-nation entity is an ion or neutral molecule that is composed of a central atom, usually thatof a metal, to which is attached a surrounding array of atoms or groups of atoms, each ofwhich is called ligands.” [6]As it is also useful to consider some boron compounds, as well as some main group compounds as coordination compounds, the wording “usually that of a metal” appears in this paragraph. However, it may be interpreted in a more all-encompassing way than was originally intended, for example, methane is not a coordination compound, but could nevertheless be considered to fit this definition. It is not immediately clear that a better definition can be formulated, however, and the question lies out-side the task group’s jurisdiction.A note on the figures illustrating various examples: If possible, a line drawing depicting the small-est repeating unit (the “monomer”) has been included with the lines drawn through the parentheses indi-cating the propagation of the polymer. The X-ray structure drawings depict various truncated parts of the compounds, usually containing several monomers.RECOMMENDATIONSCoordination polymerDefinitionA coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions. CommentCoordination polymers do not need to be crystalline; therefore, the more appropriate terms (for crys-talline states) 1-periodic, 2-periodic, and 3-periodic cannot be used throughout. These compounds may in some cases, such as those being composed of mainly carboxylates, even be regarded as salts. The prefix 1D-, 2D-, or 3D- is acceptable for the indicating the degree of extension of the coordination poly-mer.Furthermore, when using this term it should be kept in mind that the IUPAC definition of “poly-mer” is more inclusive than the colloquial use it has among chemists and engineers. The current rec-ommendations are as follows [7]:Polymer: A substance composed of macromoleculesPolymer molecule (macromolecule): A molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from mol-ecules of low relative molecular mass.For an extensive discussion of definitions the reader is referred to a more detailed argument in the task group’s CrystEngComm article [8]. Briefly, the general idea is that a single chain of polyethylene is a “polymer molecule”, and that many individual polyethylene chains make up a polymer. When a compound is cross-linked in 3D the distinction disappears. For coordination polymers it is reasonable to assume, and sometimes proven, that in solution, or indeed in a precrystalline state, if we do solid-state synthesis, there are polynuclear entities that without doubt can be called (polymer) macromole-cules. These then crystalize or polymerize into the coordination polymer.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013ExampleA classical type of single-chain coordination polymer is the (4,4'-bipyridine-N ,N )-bridged cobalt(II)compound depicted in Fig. 1 [9]. Names of this and other example compounds are left out of the main text, as new IUPAC recommendations are being prepared for these materials.Coordination networkDefinitionA coordination compound extending, through repeating coordination entities, in 1 dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in 2 or 3 dimensions.CommentThe preferred and most widely understood term will likely be: “coordination polymer”. However,IUPAC endorses also the use of the term “coordination network”, even though it should be clear that these two terms are not synonymous and that coordination network is in fact a subset of coordination polymer.ExamplesAs nets can also be formed by cross-links between single chains as shown in Fig. 2, loops as shown in Fig. 3, or spiro-links, an example of which is displayed in Fig. 4, these type of compounds also belong to the coordination networks, while still extending only in 1 dimension and therefore also being 1D-coordination polymers. In Fig. 5 we show a classical 3D-coordination polymer.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013Metal–organic frameworks and coordination polymers 1717Fig. 1An example of a 1D-coordination polymer [9]. Hydrogen atoms on carbon have been left out for s of this and other example compounds are left out of the text, as new IUPAC recommendations are being prepared for such compounds. Mauve: Co; blue: N; red: O; grey: C; white: H.S. R. BATTEN et al.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 20131718Fig. 2Example of cross-links forming a coordination network, the weakly coordinating trifluoromethane-sulfonate anions are not shown [10]. Light grey: Ag; blue: N; grey: C; green: H.Fig. 3Example of loops forming a coordination network, the ammonium cations and the aniline lattice molecules are not shown [11]. Mauve: Mo; brown: Cu; blue: N, grey: C; red: O; green: H.Metal–organic framework (MOF)DefinitionA metal–organic framework, abbreviated to MOF, is a coordination network with organic ligands con-taining potential voids.CommentThis wording accounts for the fact that many systems are dynamic, and changes in structure and thus corresponding changes in potential porosity or solvent and/or guest filled voids may occur depending on temperature, pressure, or other external stimuli. For these reasons it is also not required that an MOF be crystalline. Arguments based on both theory and experiment can be used, suggesting that some of © 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013Metal–organic frameworks and coordination polymers 1719Fig. 4Example of spiro connections forming a coordination network, the lattice water molecules are not shown[12]. Light grey: Cr; yellow: Ba; blue: N; grey: C; red: O; green: H.Fig. 5Example of a coordination network that is also a 3D-coordination polymer from the group of Robson [13].Hydrogen atoms have been omitted for clarity. Mauve: Cd; blue: N; grey: C.these coordination polymers (i.e., those that can be described as salts) with direct anion-cation binding are more prone to form structures with open frameworks exhibiting permanent porosity than those forming positively charged networks. However, the grey zone between these extremes is large and increasing so that a definition based on such a charge distinction would be too restrictive.Moreover, the present definition of MOFs comes very close to a self-definition as the words “metal”, “organic”, and “framework” can be understood and more or less correctly interpreted by a more general scientific audience. This is important as this term is gaining prominence also outside the inorganic chemistry community.We are aware that a small minority of researchers subscribes to one of two mutually excluding views: either that the term MOF should be exclusively applied to carboxylates or that the term MOF is superfluous and should not be used at all. While these points could have been credibly argued some 10years ago common practice in the thousands of scientific articles published since has clearly superseded such hard-line distinctions [8].ExamplesAn early example of a compound not initially considered as being an MOF is shown in Fig. 6 presented without acetonitrile, acetone solvent, and anions [14].In Fig. 7 we show two archetypal MOFs: MOF-5 (from the Yaghi group) [15] and HKUST-1 [16].S. R. BATTEN et al.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 20131720Fig. 6Example of a coordination network from the group of Kitagawa that can be seen both as a 2D-coordination polymer and as an MOF [14]. Coordinated acetonitrile, acetone solvent, anions (PF 6–), and hydrogen atoms are not shown. Mauve: Cu; blue: N; grey: C.Fig. 7Archetypical MOFs: Left: The zinc and carboxylate-based MOF-5 from the group of Yaghi where each[Zn 4O] unit is bridged by six benzene-1,4-dicarboxylates [15]. Right: HKUST-1 with copper(II) paddlewheel dimers bridged by benzene-1,3,5-tricarboxylates [16]. Hydrogen atoms are not shown. A line drawing is not included for these compounds as the parenthesis and “n ” convention, as used in previous cases, showing the propagation of the polymer is not workable for these compounds. Light grey: Zn; turquoise: Cu; grey: C; red: O.Metal–organic frameworks and coordination polymers1721RECOMMENDATIONS ON NET AND NETWORK TOPOLOGYRecommendationThe use of topology and topology descriptors to enhance the description of crystal structures of MOFs and 3D-coordination polymers is strongly recommended. As there are yet no set rules or recommenda-tions available, neither from IUPAC nor from any other relevant international body such as the International Union of Crystallography (IUCr), it is important therefore that the utmost clarity, u nambiguity, and transparency are used when presenting these topologies in a scientific article. CommentThe basis for this recommendation is that the use of topology is an efficient tool for the understanding of the often 3D extended structures of coordination polymers and MOFs. Once such network analysis has been performed it is also easier to compare materials from different publications as, for example, two MOFs having the same net topology does not imply that they are isomorphous or isostructural. Accurate and careful use of network topologies will make scientific communication more efficient. RECOMMENDATIONS ON TOPOLOGY DESCRIPTORSRecommendationDetailed recommendations on the use of topology descriptors cannot be made at the present time, but adherence to the advice in the comment below is recommended at present.CommentThe use of the symbols or codes in the Reticular Chemistry Structural Resource (RCSR) database is encouraged [17]. As this database does not yet have a permanent hosting with an international body committed to its long-term upkeep, it is not possible at the present time to give this as a firm IUPAC recommendation. For the more general topology terms such as point symbols it is recommended that the advice outlined by an ad hoc assembled group of scientist from the USA, Russia, and Italy [18] is followed.ExamplesThe topology descriptors in the RCSR are composed of three letters, occasionally with a fourth letter after a hyphen. The topology of the structure in Fig. 5 is within this system called rob, and MOF-5 in Fig. 7 has the pcu topology, and HKUST-1 forms a tbo net. The 2D topology of Fig. 6 is named hcb. RECOMMENDATIONS ON THE USE OF OTHER TERMSRecommendationIUPAC should not at the present time endorse any other terms in the area. The only term that is explic-itly discouraged is “hybrid organic–inorganic materials”.CommentThe task group is aware of and has extensively investigated and probed the scientific community on the appropriate use and utility of the many other terms currently found in the scientific literature. The view of the group is that a simple prefix to the endorsed terms “coordination polymer” and “metal–organic framework” can easily and more efficiently communicate any further specification needed. Such spec-ification typically would indicate properties, such as in porous coordination polymers, constituents such as carboxylate-MOF, or network topology, such as dia-MOF, such terms not being mutually excluding, but rather used as the authors see fit to emphasize different aspects of their materials.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013S. R. BATTEN et al.1722The term “hybrid inorganic–organic material” is sometimes used for MOFs but the task group finds this description imprecise. The term “hybrid material” is mainly used in sol-gel processing and ceramization and clearly is meant to describe materials with distinct components, the definition being “material composed of an intimate mixture of inorganic components, organic components, or both types of component.” In the IUPAC recommendations it is noted that “The components usually interpenetrate on scales of less than 1 μm” [19]. The appropriate use of the term in the context of MOFs needs to have the complete wording: “chemically bonded hybrid inorganic–organic coordination polymer”. However, one should then be aware that most coordination compounds made over the last 50 years could in a sim-ilar way be termed as “hybrid inorganic–organic”, a classification that does not seem to add any value.RECOMMENDATIONS ON NOMENCLATURERecommendationA task group is currently revising the IUPAC 1984 recommendations [20] for the nomenclature of c oordination and inorganic polymers. We note that for the compounds in this article proper IUPAC-endorsed names cannot be given.CommentIt is clear that whatever the outcome of these coming new recommendations, the use of an IUPAC-endorsed name in a flowing text will be cumbersome (although essential to include). The present task group can agree with the common practice of giving important new compounds trivial names or nick-names based on their place of origin followed by a number such as HKUST-1, MIL-101, and NOTT-112.MEMBERSHIP OF SPONSORING BODIESMembership of the IUPAC Inorganic Chemistry Division Committee for the period 2009–2011 was as follows:2008–2009: President:K. Tatsumi (Japan); Vice President:R. D. Loss (Australia); Secretary: L.V. Interrante (USA); Past President:A. R. West (UK); Titular Members:T. Ding (China); T. B. Coplen (USA); M. Leskelä (Finland); J. García-Martínez (Spain); L. A. Oro (Spain); J. Reedijk (Netherlands); M. Paik Suh (Korea); Associate Members: A. Chadwick (UK); M. Drábik (Slovakia); N. E. Holden (USA); S. Mathur (Germany); K. Sakai (Japan); J. Takats (Canada); National Representatives:T. V. Basova (Russia); A. Bologna Alles (Uruguay); R. Gonfiantini (Italy); P. Karen (Norway); L.-K. Liu (Taiwan); L. Öhrström (Sweden).2010–2011: President: R. D. Loss (Australia); Vice President:J. Reedijk (Netherlands); Secretary:L. V. Interrante (USA); Past President: K. Tatsumi (Japan); Titular Members:T. Ding (China); J. García-Martínez (Spain); N. E. Holden (USA); P. Karen (Norway); S. Mathur (Germany); K. Sakai (Japan); Associate Members:T. V. Basova (Russia); T. B. Coplen (USA); M. Drábik (Slovakia); M. Leskelä (Finland); L.-K. Liu (Taiwan); L. Öhrström (Sweden); National Representatives:A. Bologna Alles (Uruguay); A. V. Chadwick (UK); V. Chandrasekhar (India); T.Dasgupta (Jamaica); L. Y. Goh (Malaysia); R. Gonfiantini (Italy); A. Kiliç (Turkey); Md. T. H. Tarafder (Bangladesh); N. Trendafilova (Bulgaria); K. B. Yoon (Korea).Membership of the task group Coordination Polymers and Metal–Organic Frameworks: Terminology and Nomenclature Guidelines was as follows: Chair:L. Öhrström (Sweden); Members: S. R. Batten (Australia); N. R. Champness (UK); X.-M. Chen (China); J. García-Martínez (Spain); S.Kitagawa (Kyoto, Japan); M. O’Keeffe (USA); M. P. Suh (Korea); J. Reedijk (Netherlands).© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013Metal–organic frameworks and coordination polymers1723 The task group held an initial meeting in Glasgow (UK) 2009, an additional smaller meeting in San Juan (Puerto Rico, USA) 2011, and had a final meeting in Stockholm (Sweden) 2012. During the duration of the project the group engaged in intensive E-mail discussions and active interactions with the scientific community. The latter exemplified, but was not restricted to, such activities as:1. Publishing a discussion paper in the RSC (UK) journal CrystEngComm[8], selected as a “hot”paper by the editors and being of the most accessed articles during 2012.2. Public and by invitation only surveys (announced on the project IUPAC page, the Dalton andCrystEngComm blogs, the ACS Crystal Growth & Design network and the LinkedIn Metal-Organic Framework group) receiving almost 100 answers, the essentials of which were reported in the aforementioned CrystEngComm article [8].3. Shorter promotional and informative text presenting the work was published by IUPAC’s newsjournal Chemistry International[21] and in Wiley-VCH’s online magazine ChemViews, the latter yielding more than 1400 views.4. The outcome of the project, essentially this document, was presented as a poster during theInternational Conference on Coordination Chemistry, ICCC 40 in Valencia, Spain, 2012, and as an oral presentation during the 3rd International Conference on Metal-Organic Frameworks and Open Framework Compounds in Edinburgh, UK, 2012.REFERENCES1.S. R. Batten, S. M. Neville, D. R. Turner. Coordination Polymers: Design, Analysis andApplication, RSC, Cambridge (2009).2.J. L. C. Rowsell, O. M. Yaghi. Microporous Mesoporous Mater.73, 3 (2004).3.J. R. Long, O. M. Yaghi. Chem. Soc. Rev.38, 1213 (2009).4.M. Jacoby. In Chem. Eng. News86, 13 (2008).5. A. U. Czaja, N. Trukhan, U. Muller. Chem. Soc. Rev.38, 1284 (2009).6.IUPAC. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005(the “RedBook”). Prepared for publication by N. Connelly, T. Damhus, R. M. Harshorn, RSC Publishing, Cambridge, UK (2005).7. A. D. Jenkins, P. Kratochvil, R. F. T. Stepto, U. W. Suter. Pure Appl. Chem.68, 2287 (1996).8.S. R. Batten, N. R. Champness, X. M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström,M.O’Keeffe, M. P. Suh, J. Reedijk. CrystEngComm14, 3001 (2012).9. F. Kubel, J. Strahle. Z. Naturforsch., B: Chem. Sci.37, 272 (1982).10. D. Venkataraman, S. Lee, J. S. Moore, P. Zhang, K. A. Hirsch, G. B. Gardner, A. C. Covey, C. L.Prentice. Chem. Mater.8, 2030 (1996).11.J.-X. Chen, X.-Y. Tang, Y. Chen, W.-H. Zhang, L.-L. Li, R.-X. Yuan, Y. Zhang, J.-P. Lang. Cryst.Growth Des.9, 1461 (2009).12.K. Larsson. Acta Crystallogr., Sect. E: Struct. Rep. Online57, m195 (2001).13. B. F. Abrahams, M. J. Hardie, B. F. Hoskins, R. Robson, E. E. Sutherland. Chem. Commun.1049(1994).14.S. Kitagawa, M. Munakata, T. Tanimura. Inorg. Chem.31, 1714 (1992).15.H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi. Nature402, 276 (1999).16.S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams. Science283, 1148(1999).17.M. O’Keeffe, M. A. Peskov, S. Ramsden, O. M. Yaghi. Acc. Chem. Res.41, 1782 (2008).18.V. A. Blatov, M. O’Keeffe, D. M. Proserpio. CrystEngComm12, 44 (2010).19.J. Aleman, A. V. Chadwick, J. He, M. Hess, K. Horie, R. G. Jones, P. Kratochvil, I. Meisel,I.Mita, G. Moad, S. Penczek, R. F. T. Stepto. Pure Appl. Chem.79, 1801 (2007).© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 2013S. R. BATTEN et al.© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 8, pp. 1715–1724, 20131724。

相关文档
最新文档