地基承载力(轻、重型计算公式).doc

合集下载

地基承载力计算公式(附小桥涵地基承载力检测)

地基承载力计算公式(附小桥涵地基承载力检测)

地基承载力计算公式(附小桥涵地基承载力检测)【摘要】简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式。

下面用TXT文本简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式,供参考使用。

适于标准受压,只考虑基础宽度、超载影响,不考虑其他诸如倾斜等因素。

1、太沙基(Terzaghi)地基极限承载力qu公式qu=c*Nc+q*Nq+0.5*γ*B*Nγ其中Nc=(Nq-1)*cotφNq=exp(π*tanφ) * tan²(45+φ/2)Nγ= 6 * φ / (40 -φ)式中c、φ分别表示土的粘聚力、内摩擦角,B表示基础宽度。

以下同。

2、汉森(Hansen)地基极限承载力qu公式qu=c*Nc+q*Nq+0.5*γ*B*Nγ其中Nc=(Nq-1)*cotφNq=exp(π*tanφ) * tan²(π/4+φ/2)Nγ = 1.5 * Nc * tan²φ3、梅耶霍夫(Meyerhof)地基极限承载力qu公式qu=c*Nc+q*Nq+0.5*γ*B*Nγ其中Nc=(Nq-1) * cotφNq=exp(π*tanφ)*tan²(π/4+φ/2)Nγ = (Nq - 1) * tan(1.4 * φ)4、魏锡克(Vesic)地基极限承载力qu公式qu=c*Nc+q*Nq+0.5*γ*B*Nγ其中Nc=(Nq-1) * cotφNq=exp(π*tanφ) * tan²(π/4+φ/2)Nγ = 2 * (Nq + 1) * tanφ5、沈珠江地基极限承载力qu公式qu= (1 + d / B) ^ (1 / 3) * (c / tanφ * (Nq - 1) + 0.5 * γ * b * Nγ)其中Nq=exp(π*tanφ)*tan²(π/4+φ/2)Nγ = (Nq - 1) * sinφ6、普兹列夫斯基临塑荷载pcr和临界荷载p(1/4)pcr= Mc * c + Mq * qp(1/4)= Mc * c + Mq * q + (1 / 4) * Mγ* γ * B其中Mc = π/ tanφ / (1 / tanφ +φ- π/ 2)Mq = (1 / tanφ +φ+ π/ 2) / (1 / tanφ + φ- π/ 2)Mγ= π / (1 / tanφ +φ- π/ 2)经推导,广义临界荷载p(1/n)p(1/n)= Mc * c + Mq * q + (1 / n) * Mγ* γ * B7、王长科地基第一拐点承载力q1公式q1 = c * Nc + q * Nq + 0.5 * γ * B * Nγ其中Nc = 2 * tan³(45+φ/2)Nq = (tan(45+φ/2)) ^ 4Nγ = (Nq - 1) * tan(45+φ/2)小桥涵地基承载力检测《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。

承载力换算表11

承载力换算表11

承载力换算表轻型N10轻型N10重型N63.5建筑地基基础设计规范(GBJ7-87)N10黏性土铁道部动力触探击Y=8.4x+-21.5Y=8.4x+-21.5Y=26.0x+133.7锤击次数承载力锤击次数承载力锤击次数承载力1062.548381.72185.7 1279.350398.53211.7 1496.152415.34237.7 16112.954432.15263.7 18129.756448.96289.7 20146.558465.77315.7 22163.360482.58341.7 24180.162499.39367.7 26196.964516.110393.7 28213.766532.911419.7 30230.568549.712445.7 32247.370566.513471.7 34264.172583.314497.7 36280.974600.115523.7 38297.776616.916549.7 40314.578633.717575.7 42331.380650.518601.7 44348.182667.319627.7 46364.984684.120653.7承载力换算表轻型N10轻型N10重型N63.5建筑地基基础设计规范(GBJ7-87)N10黏性土铁道部动力触探击Y=8.4x+-21.5Y=8.4x+-21.5Y=26.0x+133.7锤击次数承载力锤击次数承载力锤击次数承载力1062.548381.72185.7 1279.350398.53211.7 1496.152415.34237.7 16112.954432.15263.7 18129.756448.96289.7 20146.558465.77315.7 22163.360482.58341.7 24180.162499.39367.7 26196.964516.110393.7 28213.766532.911419.7 30230.568549.712445.7 32247.370566.513471.7 34264.172583.314497.7 36280.974600.115523.7 38297.776616.916549.7 40314.578633.717575.7 42331.380650.518601.744348.182667.319627.746364.984684.120653.734567120150*********1401702002402801618202224600660720780830N10(击/30cm)15202530б0120150180220б0;基本承载力黏性土б0值 (kpa0)中砂-砾砂土-碎石类土б0值 (kpa0)N63.5(击/10cm)中砂-砾砂土碎石类土锤击次数碎石类土重型地基容许承载力89101214300340380。

地基承载力计算公式是什么

地基承载力计算公式是什么

地基承载力问答1、地基承载力计算公式是什么?怎样使用?答1、f=fk+ηbγ(b-3)+ηdγο(d-0.5)式中:fk——垫层底面处软弱土层的承载力标准值(kN/m2)ηb、ηd——分别为基础宽度和埋深的承载力修正系数b--基础宽度(m)d——基础埋置深度(m)γ--基底下底重度(kN/m3)γ0——基底上底平均重度(kN/m3)答2 、你想直接用标贯计算承载力,是可行的,承载力有很多很多的计算方法,标贯是其中的一种,但目前规范都逐渐取消了,老版本的工程地质手册记录了很多的世界各地(包括中国)的标贯锤击数N确定承载力的公式,你可以从中选择一个适合你所在地方条件的公式来计算。

答3、根据土的强度理论公式确定地基承载力特征值公式:fa=Mb*γ*b+Md*γm*d+Mc*Ck其中Ck为粘聚力标准值,由勘察单位实地勘察、实验确定,在勘察报告上按土层列表显示。

2、地基承载力计算公式中的d如何取值?d是地基的埋置深度还是基底到该层土层底的深度?答、d就是基础埋置深度(m),一般自室外地面标高算起。

在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起。

对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高算起。

3、地基承载力计算公式如何推导答、你可以到百度文库里面下载一个GB50007-2002《建筑地基基础设计规范》,里面有详细的给你介绍的!4、地基承载力计算公式是什么?具体符号代表什么?怎样计算?答、 1、地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等方法综合确定。

2、当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其它原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值;fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m),一般自室外地面标高算起。

地基承载力计算方案(脚手架)

地基承载力计算方案(脚手架)

脚手架稳定性计算方案一、对脚手架以上的模板、支架、钢筋及砼的重量进行计算砼自重:384.18×24=9220.32KN钢筋重:Ⅰ级+Ⅱ级=2.55+75.79=78.34t=78.34×9.8=767.732KN模板重:①. 一侧钢模长0.33+0.5+0.711+0.803+0.65+0.35=3.344m(可参见“角钢支撑图”)两侧钢模面积 3.344×75×2=501.6m2钢模重70.4×9.8×501.6=346KN (钢模重量取70.4㎏/m2)②. 竹胶板自重标准值取9.8KN/m3竹胶板长度:3.748+4.6+(0.21+0.47+0.8)×2=11.3米(木枋结构图)竹胶板厚度为0.015m,其自重为9.8×11.3×75×0.015=124.6KN③. 竹胶板芯模内为5×7木枋,其重量为木枋重力密度取为5KN/m3芯模木枋结构图如下:0.8)×2=10.44m五根纵向木枋长:5×1.05=5.25m两根斜向木枋长:2×1.4=2.8m芯模内木枋总长:10.44+5.25+2.8=18.49m一榀木架重量:5×18.49×0.05×0.07=0.32KN木架间距为0.4m,75m内共有木架75/0.4+1=188榀由此可知,芯模内木架总重为。

图中为2.1m模板的角钢支撑架。

由图中尺寸可得:角钢总长为:1.24+1.14+1.29+0.86+0.49+0.70+0.64+0.89+0.46=7 .71m角钢为7.5号等肢角钢,重量为7.976㎏/m。

槽钢为8#槽钢,长为1.95m,其单重为8.04kg/m。

一榀角钢支架重量:7.71×7.796+1.95×8.04=75.8kg75.8×9.8=742.8N=0.74KN由箱梁平面布置图可知,在75米长度内共有31道2.1m 模板,则角钢支架有31×4=124榀。

tb10018-2018地基承载力计算公式

tb10018-2018地基承载力计算公式

tb10018-2018地基承载力计算公式
地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2)ηb、ηd——分别为基础宽度和埋深的承载力修正系数b——基础宽度(m)d——基础埋置深度(m)γ——基底下底重度(kN/m3)γ0——基底上底平均重度(kN/m3)扩展资料:当按地基承载力计算以确定基础底面积和埋深或按单桩承载力确定桩的数量时,传至基础或承台底面上的荷载效应应按正常使用极限状态采用标准组合,相应的抗力限值采用修正后的地基承载力特征值或单桩承载力特征值。

即S≤C,C为抗力或变形的限值;pk≤fa(地基);Qk≤Ra(桩基)。

此时特征值fa、Ra即为正常使用极限状态下的抗力设计值。

当根据材料性质确定基础或桩台的高度、支挡结构截面、计算基础或支挡结构内力、确定配筋和验算材料强度时,上部结构传来的荷载效应和相应的基底板应按承载能力极限状态下荷载效应的基本组合,即γ0S≤R计算,此时地基反力p、桩顶下反力Ni和主动土压力Ea等相应为荷载设计值,要采用相应的分项系数。

重型动力触探试验方式

重型动力触探试验方式

3.2.6.4动力触探试验圆锥动力触探适用于强风化、全风化的硬质岩石,各种软质岩石及各类土。

根据锤击能量可按表3-33分为轻型、重型和超重型三种。

表3-33 圆锥动力触探类型类型轻型重型超重型锤的质量(kg) 10±0.2 63.5±0.5 120±1落距(cm) 50±2 76±2 100±2直径(mm) 40 74 74锥角(°) 60 60 60探杆直径(mm) 25 42 50~60深度(cm) 30 10 10锤数 N10 N63.5 N120(1)轻型动力触探(N10)试验:适用于深度小于4m的一般粘性土、粘性素填土和砂土层。

A.试验设备:轻型动力触探设备主要由圆锥探头、触探杆、穿心落锤三部分组成(图3-6 ),落锤升降由人工操纵。

图3-6 轻型动力触探试验设备示意图1.穿心杆2.穿心锤3.锤垫4.触探杆5.探头B.试验步骤:(a)探头贯入土层之前,先在触探杆上标出从锥尖起向上每30cm的位置。

(b)一人将触探杆垂直扶正,另一人将10Kg穿心锤从锤垫顶面以上50cm处自由落体放下, 锤击速度以每分钟15-30击为宜。

(c)记录每贯入土层30cm的锤击数N10′(击/30cm)。

(d)为避免因土对触探杆的侧壁摩檫而消耗部分锤击能量,应采用分段触探的办法,即贯入一段距离后,将锥尖向上拔,使探孔壁扩径,再将锥尖打入原位置,继续试验。

或每贯入10cm,转动探杆一圈。

(e)当N10′>100或贯入15cm锤击数超过50时,可停止试验。

C.资料整理:(a)轻型动力触探由于贯入深度浅,可不作杆长修正,即N10′= N10。

(b)绘制轻型动力触探击数N10与深度h的关系曲线(图3-7)。

图3-7 轻型动力触探击数N10与深度h的关系曲线D.试验成果的应用:确定地基承载力特征值fa, 见表3-34、3-35及3-36。

表3-34 一般粘性土承载力特征值fa与N10的关系N10(击/30cm) 15 20 25 30fa(Kpa) 105 145 190 230注:本表引自《建筑地基基础规范》(GBJ7-89)表3-35 素填土承载力特征值fa与N10的关系N10(击/30cm) 10 20 30 40fa(Kpa) 85 115 135 160注:本表引自《铁路动力触探技术规范》(TBJ18-87)表3-36 含少量杂质的素填土承载力特征值fa与N10的关系N10(击/30cm) 15~20 18~25 23~30 27~35 32~40 35~50fa(Kpa) 40~70 60~90 80~120 100~150 130~180 150~200空隙比 e 1.25~1.15 1.20~1.10 1.15~1.00 1.05~0.90 0.95~0.80 <0.80本表引自西安市资料.一、地基承载力1、挡墙基础:每侧每10延米至少检测2个点,必要时可根据需要增加检测点。

重型重力触探 63.5的计算基础承载力

重型重力触探 63.5的计算基础承载力

重型重力触探63.5的计算基础承载力全文共四篇示例,供读者参考第一篇示例:在基础承载力计算中,重型重力触探是一种常用的方法,其主要原理是通过对地面的重力触探测量,来确定地基的承载力。

在进行重型重力触探时,需要考虑多种因素,包括地基土壤的性质、地下水情况以及地面载荷等情况。

基础承载力是指地基土壤承受建筑结构载荷的能力,是衡量地基土壤承载能力的重要参数之一。

在进行基础承载力计算时,需要考虑地基土壤的类型、孔隙水压力以及工程结构本身的特点等因素。

这些因素都会影响地基土壤的承载力,因此在设计建筑物的基础时,需要对这些因素进行合理的分析和计算。

在进行重型重力触探时,需要考虑多种因素。

需要考虑地基土壤的类型,不同类型的土壤其承载力特点也会有所不同。

粘性土的承载力一般较低,而沙土和碎石土等非粘性土的承载力较高。

在进行重力触探时,需要根据地基土壤的类型来选择相应的触探方法和参数。

需要考虑地下水情况。

地下水会对地基土壤的承载力产生影响,特别是在含水层比较深的地区。

在进行重力触探时,需要对地下水位进行合理的控制和监测,以确保得出准确的承载力数据。

还需要考虑地面载荷等外部因素。

地面载荷是指建筑物本身施加在地面上的荷载,包括建筑物的重量、使用荷载以及外部环境荷载等。

在进行重力触探时,需要对这些地面载荷进行合理的估算和考虑,以准确反映地基土壤的承载力状况。

第二篇示例:重型重力触探是指利用钢筋混凝土的重量和地基承载力的抗力来稳定建筑物的方法。

63.5是指这种方法所使用的混凝土的密度,通常以千克/立方米表示。

在进行重型重力触探时,需要计算基础的承载力来确保建筑物的稳定性和安全性。

计算基础的承载力是重型重力触探设计中至关重要的一环。

基础的承载力是指地基土壤对建筑物施加的承载能力,它取决于土壤的性质、密度、含水量等因素。

在进行基础承载力的计算时,通常会考虑土壤的承载力和建筑物的荷载。

需要对地基土壤进行勘察和分析,确定土壤的类型和性质。

土力学讲课第六章地基土承载力

土力学讲课第六章地基土承载力

例题分析
有一条形基础,宽度 b = 3m ,埋深 h = 1m ,地基土内摩擦角 j =30 °,黏聚力 c =20kPa ,天然重度 =18kN/m 3 。试求:
( a )地基临塑荷载; ( b )当极限平衡区最大深度达到 0.3 b 时的均布荷载数值。 解

( a )计算公式:
(b)临界荷载:
(1)原位测试
(1) 静载荷试验
fa=fak+b(b-3)+dm(d-0.5)
fak :静载荷试验确定的承载力-特征值(标准值) fa :深宽修正后的承载力特征值(设计值)
(2)承载力公式法:
fa=Mbb+Md md+Mcck fa :承载力特征值(设计值)
——相当与
p1/4=NB /2+Nq d+Ncc
时,有:
化简后,得到:
p
0.3b
=333.8kPa
总结上节课的内容 极限承载力理论界和半理论解 1 Prantl解 假设和滑裂面形状 2 太沙基解,一般解形式 3 极限承载力的影响因素 , c, ,D, B,
pu
B
2
N cNc qNq
B
p 实际地面 D I 45o-/2 III II E F
• 合力= 1, 3 • 设k0 =1.0 • 弹性区的合力:
图6.5 条形均布荷载作用下地基主应力
p D (a)无埋置深度 (b)有埋置深度 1,3 ( 0 sin 0 ) ( D z ) ( 1)
允许地基中有一定的塑性区,作为设计承载力
--考察地基中塑性区的发展
D
D
I区:朗肯主动区
垂直应力pu为大主应力,

地基承载力

地基承载力

地基承载力
轻型建筑地基承载力计算公式:
1.线性传递公式:
P=A×q
其中,P为地基承载力,A为地基面积,q为土壤承载力。

土壤承载力的计算可以使用物理试验或经验公式。

2.承载力系数法:
P=A×q×Nq×Nγ×Nc×Nγs×Nd×Nc
其中,Nq为排土系数,Nγ为土壤指数,Nc为形状系数,Nγs为土壤相对密度系数,Nd为深度系数。

这些系数需要根据实际情况通过试验或经验得到。

重型建筑地基承载力计算公式:
1.线性传递公式:
P=A×q
其中,P为地基承载力,A为地基面积,q为土壤承载力。

土壤承载力的计算可以使用物理试验或经验公式。

2.承载力系数法:
P=A×q×Nq×Nγ×Nc×Nγs×Np×Nq
其中,Nq为排土系数,Nγ为土壤指数,Nc为形状系数,Nγs为土壤相对密度系数,Np为承载力调整系数。

这些系数需要根据实际情况通过试验或经验得到。

需要注意的是,地基承载力的计算公式只是理论推导的结果,在实际工程中,还需要结合实际情况进行修正和验证。

地基土的物理性质、水含量、荷载应力特征等因素对地基承载力也有影响,因此需要进行现场勘察和试验来获得更准确的承载力数值。

此外,地基承载力的计算还需要考虑抗倾覆和抗滑稳定性等方面的问题,需综合考虑承载力和稳定性两个因素。

对于复杂的土壤环境,需要采用专业的地基工程设计方法和软件进行分析和计算。

地基承载力计算方法

地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89)1.野外鉴别法岩石承载力标准值f k(kpa)注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定;2.对于强风化的岩石,当与残积土难于区分时按土考虑。

碎石承载力标准值f k(kpa)注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况;2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力;3.对于砾石、砾石土均按角砾查承载力。

2.物理力学指标法粉土承载力基本值f(kpa)注:1.有括号者仅供内插用;2.折算系数§=0。

粘性土承载力基本值f(kpa)注:1.有括号者仅供内插用;2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f注:对于内陆淤涨和淤泥质土,可参照使用。

红粘土承载力基本值f注:1.本表仅适用于定义范围内的红粘土;2.折算系数§=0.4。

素填土承载力基本值f(kpa)注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。

3.标准贯入试验法砂土承载力标准值f k(kpa)注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力;4.细中砂按细砂项给承载力;5.粗砾砂按粗砂项给承载力;6.N63.5需修正后查承载力.粘性土承载力标准值f k(kpa)注:N63.5需经修正后查承载力。

花岗岩风化残积土承载力基本值f(kpa)注:花岗岩风化残积土的定名:2mm含量≥20%为砾质粘性土;2mm含量<20%为砂质粘性;2mm含量=0为粘性土二.标准贯入击数修正方法1.国标方法N=aN′2.公路方法当触探杆长度≤21m时按国标;当触探杆长度≥21m时按下式计算:N L=(0.784-0.004L)Ns式中:N L表示校正后的击数Ns表示实际击数L表示触探杆长度三.土的部分特征参考值注:括号内为海南地区经验值粘性土的内摩擦角φ(度)和粘聚力c(kpa)参考值四.土的分类粉土密实度和湿度分类粘性土状态分类五.工程降水方法聚乙烯(PE)简介1.1聚乙烯化学名称:聚乙烯英文名称:polyethylene,简称PE结构式:聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。

动力触探经验公式汇总及地基承载力试验记录表

动力触探经验公式汇总及地基承载力试验记录表

动力触探经验公式汇总及地基承载力试验记录表动力触探,简称动探,也称为圆锥动力触探DPT,是利用一定质量的重锤,将与探杆相连接的标准规格的探头打入土中,根据探头贯入土中10cm时,所需要的捶击数,判断土的力学特性,具有勘察与测试的双重性能。

根据穿心锤质量和提升高度的不同,动力触探试验一般分为轻型、重型、超重型动力触探。

用途:一般用来衡量碎石土的密实度,平均粒径和最大粒径不同选用的型号也不同,以重型动力触探为例:N≤5 则为松散;5<N63.5≤10 则为稍密;10<N≤20 则为中密;N>20则为密实。

地基承载力实验工程名称:北京绕城公路城市化改造工程合同号: RC-A1 试验编号: /地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-002地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-003地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-004地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号: S246NJ-LJ1 试验编号: C-LJ1-HDCZL-005地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号: C-LJ1-HD-CZL-006地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号: S246NJ-LJ1 试验编号: J-LJ1-HD-CZL-007地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号: J-LJ1-HD-CZL-008。

重型触探仪检测桥涵地基承载力的计算公式

重型触探仪检测桥涵地基承载力的计算公式

2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。

动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。

目前承建单位一般选用轻型和重型。

①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm的锤击次数,代用公式为R=(×N-2)×(R-地基容许承载力Kpa ,N-轻型触探锤击数)。

②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=+(y-地基容许承载力Kpa , x-重型触探锤击数)。

3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5kg 的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。

锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。

(多为测试中心及设计单位采用)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小桥涵地基承载力检测
《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地
基检验可采用直观法或触探方法,必要时可进行土质试验”。

就我
国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出
了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250
kpa等等。

因此承建单位一般采用(动力)触探法对基底进行检验。

触探法可分为静力触探试验、动力触探试验及标准贯入试验,
那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测
人员是应该搞清楚的。

1、静力触探试验:指通过一定的机械装置,将某种规格的金属
触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层
对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。

静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩
承载力及判定砂土地基的液化等级等。

(多为设计单位采用)。

2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打
入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力
学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。

动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各
类土;动力触探分为轻型、重型及超重型三类。

目前承建单位一般
选用轻型和重型。

①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简
单,省人省力,记录每打入30cm的锤击次数,代用公式为R=
(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤
击数)。

②重型触探仪:适用于各类土,是目前承建单位应用最广泛
的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,
以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代
用公式为y=35.96x+23.8或者y=40.588x-5.1961( y-地基容许承载
力Kpa , x-重型触探锤击数)。

3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用
质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定
规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准
贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入
试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。

锤击数(N)的
结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许
承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的
一种重要方法。

(多为测试中心及设计单位采用)。

相关文档
最新文档