第1课-算法的概念PPT课件
合集下载
人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)
趣味益智游戏
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
认识算法ppt课件
03
常见算法介绍
排序算法
冒泡排序
通过重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过 来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
选择排序
在未排序的序列中找到最小(或最大)的元素,存放到排序序列的起始位置,然后再从剩 余未排序的元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。以此类推 ,直到所有元素均排序完毕。
哈希搜索
通过哈希函数将关键字转换成数组下 标,然后直接访问该下标元素。如果 下标位置上的元素就是所查找的元素 ,则搜索成功;否则搜索失败。
图算法
Dijkstra算法
用于解决单源最短路径问题。它是一种贪心算法,按照路径长度从小到大的顺序生成最 短路径。
Floyd-Warshall算法
用于解决所有节点对之间的最短路径问题。它通过动态规划的思想,将问题分解为更小 的子问题并逐步求解。
算法表示
可以使用自然语言、伪代 码、流程图等多种方式表 示。
算法在计算机科学中的地位
算法是计算机科学的核心
01
计算机程序本质上是一组算法步骤,用于实现特定的功能或解
决特定的问题。
算法是计算机科学研究的重要领域
02
算法研究涉及理论计算机科学、数据结构、计算几何等多个领
域,是计算机科学领域的重要分支。
认识算法ppt课件
• 算法的定义与重要性 • 算法的分类与特点 • 常见算法介绍 • 算法设计与分析 • 算法在实际应用中的挑战与解决方
案
01
算法的定义与重要性
算法的基本概念
01
02
03
算法定义
算法是一组明确、有序的 步骤,用点
人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)
1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?
是
输出x
算法的概念课件PPT
动态规划
背包问题
给定一组物品和一个背包容量,如何选择物品放入背包以使得背 包内物品的总价值最大。
最长公共子序列(LCS)
给定两个序列,找出它们的最长公共子序列。
最优二叉搜索树
给定一组按概率排序的键和对应的搜索成本,构建一棵二叉搜索树 使得总的搜索成本最低。
04 算法性能分析
时间复杂度
时间复杂度的定义
空间复杂度
1 2
空间复杂度的定义
描述算法执行所需内存空间与问题规模之间的关 系,也用大O表示法表示。
常见空间复杂度类型
包括常数空间复杂度O(1)、线性空间复杂度O(n) 等。
3
空间复杂度的优化
通过减少不必要的内存占用、使用数据结构等方 式来降低空间复杂度。
稳定性与正确性评估
01
算法稳定性评估
稳定性指算法在输入数据发生微小变化时,输出结果不会发生较大变化
问题分类
根据问题的性质和求解方 法,将问题分为不同类型, 如排序问题、图论问题等。
问题建模方法
运用数学、逻辑等工具, 对问题进行形式化描述, 建立问题的数学模型。
数据结构选择
基本数据结构
掌握数组、链表、栈、队 列等基本数据结构的特点 和使用方法。
高级数据结构
了解并学会使用树、图、 堆等高级数据结构,以便 更有效地解决问题。
算法在各个领域的应用
随着算法技术的不断成熟和普及,其将在各个领域得到更广泛的应用,如医疗、金融、交 通等,为社会发展带来更多的便利和进步。
THANKS FOR WATCHING
感谢您的观看
描述算法执行时间与问题规模之间的关系,通常用大O表 示法表示。
常见时间复杂度类型
包括常数时间复杂度O(1)、线性时间复杂度O(n)、对数时 间复杂度O(logn)、线性对数时间复杂度O(nlogn)、平方 时间复杂度O(n^2)、立方时间复杂度O(n^3)等。
算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)
判断任意一个一元二次方程是否有实数根
输入a、b、c的值 if b**2-4*a*c>=0 :
(输出“该方程有实数根”) else:
(输出“该方程没有实数根”)
伪代码 接近 计算 机程序代码 的算法描述 方式,介于自 然语言和程 序设计语言 之间。
历年真题
7.关于算法流程图下面说法正确的是(D)
A、流程图必须包含一个判断框 B、流程图直观易懂,但是容易产生二义性 C、算法描述只能使用流程图 D、流程图中无须填写程序代码
的值为( C )
A.2 B.3 C.4 D.5
历年真题
6.某算法的流程图如图所示,依次输入x的值为3、2、1、-1后,该算法的输出结果
为( A )
A3 B4 C5 D6
伪代码描述算法
判断任意一个一元二次方程是否有实数根 1、输入a、b、c 2、如果b2-4ac>=0,输出“该方程有实数根”;否则,输出 “该方程没有实数根”
算法---程序的“灵魂”
广义上讲,算法是为了解决一类特定问题而采取的确定的、有限的步骤。 在计算机领域,算法作为一个精心设计的运算序列,描述了计算机如何将输入转换 为输出的过程。
算法的一般特征如下:
有输入:可以没有吗?
可以没有
有输出:算法必须要有吗? 必须要有
有穷性:写出所有的偶数 可行性:计算宇宙的面积
4.在《几何原本》一书中,“辗转相除法”可以求出任意两个正整数的最大公约 数,具体步骤如下: (1)输入两个正整数m和n (2)以m除以n,得到余数r (3)若r=0,则输出n的值,算法结束,否则执行步骤(4) (4)令m n,n r,并返回步骤(2)
√
历年真题
5.某算法的部分流程图如图2-1-6所示。执行这部分流程,若输入a的值为36,则输出c
输入a、b、c的值 if b**2-4*a*c>=0 :
(输出“该方程有实数根”) else:
(输出“该方程没有实数根”)
伪代码 接近 计算 机程序代码 的算法描述 方式,介于自 然语言和程 序设计语言 之间。
历年真题
7.关于算法流程图下面说法正确的是(D)
A、流程图必须包含一个判断框 B、流程图直观易懂,但是容易产生二义性 C、算法描述只能使用流程图 D、流程图中无须填写程序代码
的值为( C )
A.2 B.3 C.4 D.5
历年真题
6.某算法的流程图如图所示,依次输入x的值为3、2、1、-1后,该算法的输出结果
为( A )
A3 B4 C5 D6
伪代码描述算法
判断任意一个一元二次方程是否有实数根 1、输入a、b、c 2、如果b2-4ac>=0,输出“该方程有实数根”;否则,输出 “该方程没有实数根”
算法---程序的“灵魂”
广义上讲,算法是为了解决一类特定问题而采取的确定的、有限的步骤。 在计算机领域,算法作为一个精心设计的运算序列,描述了计算机如何将输入转换 为输出的过程。
算法的一般特征如下:
有输入:可以没有吗?
可以没有
有输出:算法必须要有吗? 必须要有
有穷性:写出所有的偶数 可行性:计算宇宙的面积
4.在《几何原本》一书中,“辗转相除法”可以求出任意两个正整数的最大公约 数,具体步骤如下: (1)输入两个正整数m和n (2)以m除以n,得到余数r (3)若r=0,则输出n的值,算法结束,否则执行步骤(4) (4)令m n,n r,并返回步骤(2)
√
历年真题
5.某算法的部分流程图如图2-1-6所示。执行这部分流程,若输入a的值为36,则输出c
算法的概念及描述课件学年浙教版(2019)高中信息技术必修1(22张PPT)
2.1 算法的概念及描述
农夫如何安全带这三样东西过河?
一个农夫带着一条狼、一头山羊 和一篮蔬菜要过河,但只有一条船。 乘船时,农夫在场的时候,这三样东 西相安无事。一旦农夫不在,狼会吃 羊,羊会吃菜。船很小,只够农夫带 一样东西过河。农夫该如何解此难题?
农夫如何安全带这三样东西过河?
方法一: 1、农夫带羊过河,农夫回来;
功能
开始/结束框 表示算法的开始或结束
输入/输出框 表示算法中数据的输入或输出
处理框
表示算法中数据的运算处理
判断框
表示算法中的条件判断
流程线
表示算法中的流向
连接框
表示算法中的转接
尝试画出求根公式的流程图
2. 流程图描述算法
开始
输入二项系数a, 一项系数b,常数c
计算判别式
b2 4ac
0?
x1=((-b)+math.sqrt(ref))/(2*a) x2=((-b)-math.sqrt(ref))/(2*a) printf(“方程有实数解”) printf(“x1=”,x1) printf(“x2=”,x2) else: printf(“方程无实数解”)
体验算法多样性
求两个正整数的最大公约数问题
2. 流程图描述算法
流程图用一些图形符号表示规定的操作,并用带箭头的流程线连接这些 图形符号,表示操作进行方向。
自然语言描述如下: (1)输入变量flag的值。 (2)若flag的值为1, 则设置指示灯为 绿色,输出“空车位”;否则,设置 指示灯为红色,输出“非空车位。
2. 流程图描述算法
图形
名称
过程方法具体描述: ax²+bx+c=0
(1)输入一般形式下的二次项系数a,一次项系数b,常数项c; (2)计算判别式 b2 4ac 的值;
农夫如何安全带这三样东西过河?
一个农夫带着一条狼、一头山羊 和一篮蔬菜要过河,但只有一条船。 乘船时,农夫在场的时候,这三样东 西相安无事。一旦农夫不在,狼会吃 羊,羊会吃菜。船很小,只够农夫带 一样东西过河。农夫该如何解此难题?
农夫如何安全带这三样东西过河?
方法一: 1、农夫带羊过河,农夫回来;
功能
开始/结束框 表示算法的开始或结束
输入/输出框 表示算法中数据的输入或输出
处理框
表示算法中数据的运算处理
判断框
表示算法中的条件判断
流程线
表示算法中的流向
连接框
表示算法中的转接
尝试画出求根公式的流程图
2. 流程图描述算法
开始
输入二项系数a, 一项系数b,常数c
计算判别式
b2 4ac
0?
x1=((-b)+math.sqrt(ref))/(2*a) x2=((-b)-math.sqrt(ref))/(2*a) printf(“方程有实数解”) printf(“x1=”,x1) printf(“x2=”,x2) else: printf(“方程无实数解”)
体验算法多样性
求两个正整数的最大公约数问题
2. 流程图描述算法
流程图用一些图形符号表示规定的操作,并用带箭头的流程线连接这些 图形符号,表示操作进行方向。
自然语言描述如下: (1)输入变量flag的值。 (2)若flag的值为1, 则设置指示灯为 绿色,输出“空车位”;否则,设置 指示灯为红色,输出“非空车位。
2. 流程图描述算法
图形
名称
过程方法具体描述: ax²+bx+c=0
(1)输入一般形式下的二次项系数a,一次项系数b,常数项c; (2)计算判别式 b2 4ac 的值;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课 算法的概念
1
.
曹冲称象:
2
.
3
.
学习目标:
1、掌握算法的概念和特征。 2、掌握计算机处理问题的基本原理,理解计
算机执行算法的过程。 3、理解算法在生活、学习中的重要意义;通
过对算法的学习感受问题分析的严谨性,养成 解决问题的良好习惯。
4
.
活动一:生活中的算法
算法的概念:我们把做某一件事或者某项工作 的方法、步骤或程序成为“算法”。
10
.
大家都很容易想到,让甲、乙搭配,丙、丁搭配应该 比较节省时间。而他们只有一个手电筒,每次又只能 过两个人,所以每次过桥后,还得有一个人返回送手 电筒。为了节省时间,肯定是尽可能让速度快的人承 担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟, 再由甲返回送手电筒,需要1分钟, 然后丙、丁搭配过桥,用时10分钟。 接下来乙返回,送手电筒,用时2分钟, 再和甲一起过桥,又用时2分钟。 所以花费的总时间为:2+1+10+2+2=17分钟。
8
.
我实践我创新
甲、乙、丙、丁4个人过桥,分别需要1分钟、 2分钟、5分钟、10分钟。因为天黑,他们必 须借助于手电筒过桥。可是,他们只有一个手 电筒,且桥的载重有限,每次最多过两人。4 个人怎样才能在最短的时间内过桥呢?
请分组写出每种过桥的算法,并比较每种算法 的效率。
9
.
用时最少的算法:
1、输入设备(类似人的感觉器官) 2、控制器(类似大脑控制中枢) 3、输出结果(类似人的执行结果)
6
.
计算机运算的工作原理如下图所示:
程序 数据
输入设备
输入设备
存储器
输出结果 输出设备
运算器
控制器
数据流 控制流
7
.
活动三:算法的特征
输入项 输出项 有穷性 确定性 可行性 同一问题可用不同算法解决
要确立算法,先明确问题需求,然后做需求分 析,在需要分析的基础上确定问题解决的方法, 最后列出解决问题的具体步骤。
5
.ቤተ መጻሕፍቲ ባይዱ
活动二 :计算机处理问题的原理
计算机具有运算速度快、计算精度高、存储容 量大、能自动运行等特点。
计算机怎样解决问题呢?
想一想:人是如何完成运算的?尝试写出计算 “123+321=?”的具体步骤
1
.
曹冲称象:
2
.
3
.
学习目标:
1、掌握算法的概念和特征。 2、掌握计算机处理问题的基本原理,理解计
算机执行算法的过程。 3、理解算法在生活、学习中的重要意义;通
过对算法的学习感受问题分析的严谨性,养成 解决问题的良好习惯。
4
.
活动一:生活中的算法
算法的概念:我们把做某一件事或者某项工作 的方法、步骤或程序成为“算法”。
10
.
大家都很容易想到,让甲、乙搭配,丙、丁搭配应该 比较节省时间。而他们只有一个手电筒,每次又只能 过两个人,所以每次过桥后,还得有一个人返回送手 电筒。为了节省时间,肯定是尽可能让速度快的人承 担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟, 再由甲返回送手电筒,需要1分钟, 然后丙、丁搭配过桥,用时10分钟。 接下来乙返回,送手电筒,用时2分钟, 再和甲一起过桥,又用时2分钟。 所以花费的总时间为:2+1+10+2+2=17分钟。
8
.
我实践我创新
甲、乙、丙、丁4个人过桥,分别需要1分钟、 2分钟、5分钟、10分钟。因为天黑,他们必 须借助于手电筒过桥。可是,他们只有一个手 电筒,且桥的载重有限,每次最多过两人。4 个人怎样才能在最短的时间内过桥呢?
请分组写出每种过桥的算法,并比较每种算法 的效率。
9
.
用时最少的算法:
1、输入设备(类似人的感觉器官) 2、控制器(类似大脑控制中枢) 3、输出结果(类似人的执行结果)
6
.
计算机运算的工作原理如下图所示:
程序 数据
输入设备
输入设备
存储器
输出结果 输出设备
运算器
控制器
数据流 控制流
7
.
活动三:算法的特征
输入项 输出项 有穷性 确定性 可行性 同一问题可用不同算法解决
要确立算法,先明确问题需求,然后做需求分 析,在需要分析的基础上确定问题解决的方法, 最后列出解决问题的具体步骤。
5
.ቤተ መጻሕፍቲ ባይዱ
活动二 :计算机处理问题的原理
计算机具有运算速度快、计算精度高、存储容 量大、能自动运行等特点。
计算机怎样解决问题呢?
想一想:人是如何完成运算的?尝试写出计算 “123+321=?”的具体步骤