基于MATLAB_simulink的同步发电机短路的仿真

合集下载

基于MATLAB的电力系统短路故障的仿真报告

基于MATLAB的电力系统短路故障的仿真报告

《电力系统建模及仿真课程设计》总结报告课题名称基于MATLAB的电力系统短路故障的仿真与分析姓名学号院系班级指导教师摘要基于Matlab最重要的组件之一Simulink中的电力元件库(SimPowerSystems)构建电力系统仿真模型,在Matlab的平台下仿真电力系统为工程设计和维修提供依据重要的依据,同时也为电力研究带来大大的便利,利用Simulink中的画图工具搭建电力系统模型也是进行电力系统故障分析的常用方法,它让电力研究者从大量繁琐的理论分析及复杂的矩阵计算中解脱出来,让庞大的电力系统很直观的呈现在研究者的面前,从而将庞大的电力网搬进了办公室,为研究带来了巨大的便利。

简要介绍了电力系统模型和MATLAB/ SIMULINK中SimPowerSystems (电力系统元件库)的主要功能。

SimPowerSystems 是专门为电力系统设计的仿真分析软件,在对其基本元件进行介绍后,在仿真平台上,通过对一个简单的电力系统输电线路的短路故障进行设计、仿真、分析,得到了理想的仿真效果。

关键词: Matlab SimPowerSystems 短路电流计算仿真Simulation and Analysis of Power System Short Circuit FaultBased on MatlabZhang Jun—yueCollege of Physics and Electronic Information Electrical Engineering and Automation No:070544037Tutor: Wu YanAbstract: The article describes the basic characteristics of Matlab /Simulink and the basic method and process of applying Matlab in the simulation of power system。

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLAB/Simulink电力系统短路故障分析与仿真摘要:MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。

论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。

在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。

关键词:MATLAB、短路故障、仿真、电力系统Abstract:MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system.Keyword:MATLAB;Fault analysis;Simulation;Power System;引言 (3)第一章:课程设计任务书 (3)1.1设计目的: (3)1.2原始资料: (4)1.3设计内容及要求: (4)第二章:电力系统短路故障仿真分析 (5)2.1元件参数标幺值计算: (5)2.2等值电路: (10)第三章:电力系统仿真模型的构建 (10)3.1MATLAB简介: (11)3.2电力元件设计: (11)3.2.1 三相电源: (11)3.2.2 变压器元件: (13)3.2.3输电线路: (14)3.3电力系统模型的搭建: (15)第四章:模型仿真运行 (21)4.1建立仿真模型: (21)4.2仿真结果与分析: (22)第五章: 总结 (25)参考文献 (25)附录:Simulink仿真模型 (26)引言随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

基于MATLAB的同步发电机突然短路设计

基于MATLAB的同步发电机突然短路设计

第1章绪论电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。

随着电力工业的发展,电力系统的规模越来越大。

在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。

因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。

而在众多的仿真工具中,MATLAB以其优越的运算能力、方便和完善的绘图功能脱颖而出。

1.1设计目的让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。

1.2设计任务1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。

2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。

1.3设计要求1.要求每个学生独立完成设计任务。

2.针对每个仿真要给出详细的结果分析。

3.完成实训任务书。

4.要求提交成果:报告书一份。

第2章MATLAB语言的概述2.1 MATLAB简介MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。

MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。

它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。

Simulink的作用是在程序块间的互联基础上建立起一个系统。

每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。

在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。

基于MATLAB的同步发电机短路故障仿真研究

基于MATLAB的同步发电机短路故障仿真研究

毕业设计(论文)题目基于MATLAB的同步发电机短路故障仿真研究学院计算机与控制工程学院专业班级电气xxx学生姓名指导教师成绩2014 年6 月26 日摘要众所周知,同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。

为了更直观地了解同步发电机短路故障状态下的特性指标,尽量避免发生短路故障或及时对短路故障做出相应的正确措施,更合理选择保护装置,研究同步发电机的短路故障状态就成了当务之急的问题。

随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境、可操作性问题的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。

本论文通过MATLAB软件建立同步发电机的仿真模型,对常见的短路故障进行仿真研究,以便更好地掌握同步发电机短路故障状态下的各特性,并设计了GUI 用户界面,更好的实现了人机交互。

文中对各短路故障进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。

关键词:同步发电机;短路故障;MATLAB;GUIIAbstractAs is known to all, synchronous generator plays an important role in power system. Now the electric power used in our society almost produce by synchronous generators.Synchronous generator occupies a very important position in human society.In order to learning the characteristic parameters of synchronous generator more intuitive in fault condition, and trying to avoid short circuit fault or to make corresponding measures to correct vision in time or to protect device in the method of reasonable, studying the synchronous generator fault status has become an urgent problems. With the progress of science and technology and the improvement of automation level, people require to be able to quickly analyze fault and solve the problem in the electric power system. With the limitation of the environment in running a synchronous generator, doing a test of generators directly is unlikely.Therefore, with the aid of MATLAB software powerful computing and graphics processing simulation to study the synchronous generator is extremely important.In this paper, a simulation model of the synchronous generator is established by MATLAB software in order to better grasp the performance index of synchronous generator in fault condition.And we also design the Graphical User Interface(GUI) for better realizing the human-computer interaction. Each short circuit fault simulation experiments was carried out in this paper, as can be seen from the simulation results, the simulation system is designed to satisfy demands for synchronous generator short circuit fault research, realizing the target of this paper.Key words: Synchronous generator;Short circuit fault;MATLAB;GUIII目录摘要 (I)Abstract ···································································································I I第1章绪论 (1)1.1论文的背景和意义 (1)1.2仿真技术的发展概况和趋势 (1)1.3本论文研究的主要内容 (2)第2章同步发电机的理论分析 (3)2.1同步发电机的主要结构 (3)2.1.1定子 (3)2.1.2转子 (3)2.2同步发电机的基本理论 (4)2.2.1同步发电机的基本工作原理 (4)2.2.2正方向的规定 (5)2.2.3同步发电机的基本方程 (5)2.2.4派克变换和dq0坐标系统 (7)dq 坐标系统 (10)2.2.5第3章同步发电机短路故障仿真研究系统 (12)3.1同步发电机的数学模型 (12)3.2M文件的编写 (13)3.3仿真界面设计 (16)3.3.1界面组件的选择和布局 (16)3.3.2编写回调函数 (17)第4章实例仿真与分析 (20)4.1三相突然短路仿真与分析 (20)4.2负载两相短路仿真与分析 (22)4.3负载单相短路仿真与分析 (24)4.4转子绕组短路仿真与分析 (26)结论 (30)参考文献 (31)附录 1 (32)附录 2 (34)致谢 (42)第1章绪论1.1 论文的背景和意义电能得到广泛的应用得益于电力系统的出现,进而推动了各个领域的社会生产的变化。

MATLABsimulink同步发电机短路的分析-PPT课件

MATLABsimulink同步发电机短路的分析-PPT课件

Three -Phase Parallel RLC Load A B C
A Continuous powergui B C Three -Phase Fault
Mag abc Phase
三相序分量分析器参数设置
3-Phase Sequence Analyzer
三相序分量分析 器可以输出A相直 流、基频以及各 次谐波电流的正 序、负序或零序 分量的幅值和相 角。 本次仿真设置如 下: 输出基频分量, 选择将正序、负 序、零序同时输 出显示到示波器。
所需其他仿真元件,如放大器、示波器、各类积分微分元件可由 以下方式找到: 在指令窗口中输入simulink,回车,弹出仿真元件库对话框。从 中选择所需模块。
m Pm A
SSM
E
B C
从电机(machines)元件库中选择简 化的同步电机元件并在参数对话框中进行设 置。
sm
连接类型:Y
额定值: 额定功率、线电压、频 率
C
Three-Phase Fault
转换状态为[1 0]
转换时间为[0.05 0.4],即 0.05秒故障,0.4秒故障切 除
缓冲电阻和缓冲电容都取 无穷大
Three -Phase Parallel RLC Load A B C
从线路元件库中选择三相并联RLC负载元件 (3—Phase Parallel RLC Load) ,设置如下:
故障点A相基频电流各序分量幅值和 相角
将三相电路短路故障发生器中的 故障相选为B相和C相,进行相间 短路仿真,结果如下:
BC两相短路时A相电流波形
BC两相短路时B相电流波形
BC两相短路时C相电流波形
BC相短路时三相电压波形
BC短路时 A相电流基频序分量波形

基于Matlab的同步电机三相突然短路的仿真

基于Matlab的同步电机三相突然短路的仿真

可方便实现了计算结果的可视化。
2 同步电机的状态方程
为了方便计算,我们做如下假定:①短路后过程速度仍为同步
速度,即p0=∞=蜘;②不计磁路饱和③励磁电压为常数(不考虑调
压器的作用)。在这样的假设下.建立起来的方程是线性的。以dqo
坐标系统和x一基值系统表示的三相同步电机(有阻尼绕组)的状
态方程(用标幺值表示)为:
【摘要】 本文从dqO坐标系统表示的三相同步电机的状态方程出发,利用Matlab工具并以 一个具体实例详细说明了三相突然短路的仿真步骤并给出分析,而且利用Matlab的GU]编辑一个人 机界面,可方便仿真各种条件下的短路过程。
【关键词】 同步电机短路 Matlab 仿真
1、Sl盲
同步电机的突然短路,是电力系统的最严重的故障。虽然短路
引证文献(1条)
1.黎瑜新.刘明明.秦雅 基于LabVIEW软件平台的同步发电机短路电流分析与研究[期刊论文]-装备制造技术
2009(11)
本文链接:/Periodical_fjdn200307015.aspx




过程所经历的时间是极短的(通常约为0.1~O.3秒),但电抠短路 电流和转子电流的分析计算。却有着非常重要的意义。为了了保证 发电机、变压器、断路器、互感器等的可靠运行,必须计算短路电流 的最大瞬时值,为了决定继电保护装置的工作条件,需要知道短路
舢肌撕。。 々毫。
ok 吐
ok

¨mi 以“l ki~ o A‘ 虬 。‘。。‰ 以。蚱k。 o‰也。 o品 乩
万方数据
图2仿真界面 在励磁电压不变的前提下,以△U;(一岫 一岫0 0 0】7,以及短路后最初瞬间的电流增量Ale=【0 0 0 0 0】’ 代人,可解得各绕组电流增量:【△b △k △b △io △k】7

基于MATLABSimulink的电力系统仿真实验

基于MATLABSimulink的电力系统仿真实验

基于MATLAB/Simulink的电力系统故障分析10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、b、c三相短路电流仿真波形图分析:正常运行时,a、b、c三相大小相等,相位相差120度。

发生三相短路时,a、b、c三相电压全如图2——线路1的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I。

如图3——线路1的零序电压分析:在没有故障时,没有零序电压,突然出现故障时,零。

序电流为故障电压的3倍,为3U如图4——线路1的故障相电压如图5——线路3的零序电流如图6——线路3的短路电流如图7——三相对称电源电压如图8——线路2的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图9——三相对称电源电流如图10——三相对称电源零序电压如图11——一相短路电流10kv系统两相短路分析仿真模块搭建同三相短路,只有三相故障模块参数改变如下:注:a、b两相短路分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。

零点漂移轨迹的验证一理论分析对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:其中,分别表示A、B、C三相对O’点的导纳则用复数形式可表示为其相量关系如下图:则可得所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.二matalab仿真模型搭建类似单相短路电源参数设置消弧线圈参数设置其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:。

(完整word版)基于MATLABSimulink的电力系统仿真实验

(完整word版)基于MATLABSimulink的电力系统仿真实验

基于MATLAB/Simulink 的电力系统故障分析10kv 系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:g BlOCk Parameters: Th「ee・P hase SoUrCeThree-Phase SOllrCe (nask} ζlink;7hrGG-phas≡ VOItaZG SoUrCG in SGrieK With RL bxanch.Par>∑n ∙t ∙rsPhase—tO-PhaSG τ≡s volta≡G (V):110. 5e3Phase anrl⅛ Gf chase A (degreGs):lθFrtQutncy (HX):InternaI Conn.action: ∣ Y厂SPeCifr iaped&nce USXnS Sh^Xt V CirCUit IeVeISoUree resistance (Oh=Si:I O. 009SoUrCe inductance (H):116. 58e-5APPIr JOK Cancel Helpt∣∣ BlOCk Parameters; Linel-Three-Phase PZ SeCtion Lin已□a5⅛) (Iink)ThiB block inpleaents a thr«t-phi.i∙ PI section lin∙ to XePreS∙nt a thiGG-phasG transaision line. Thig block iGDresents OnIy OnG Pl section. TO Inplenenteyou si□Dlr need to CanneCt COPiea Qf this block in2>ore that One PI secti∙onjsexies・ParaaQtQTS ---------------------------------------------------------------------FreQUenCy Ueecl for RLC specification (Hz):F5PoIitiVe- Ind z⅜ro-seau⅜nce resiβtances (Ohas/ka) [ K: RO ]:I [ 0.01273 O. 3SG4:Positive* and Zero e SGauenc© inductances ⅛∙,lαι) [ LI LO ]:IT O. 9327e-3 4. 1264e-3]PCSitiV⅛- and ∑4ro∙-ssau4nee ca-pacitanees (FJka;IeICOI :I [12. 74e-9 7. 751e-9ΓLine SeetiOn IGnSth (ka√ :1130OK CanCeI KeIP Apply■OK CanCaI I EelD 厂 删 FUnCtiOn BIOCk Parameters; AddlCu s Acld c ∙r subtract XnPUtS- S^CIfT Cne Oi the fol.ovιng:a. string COntaining ∙ or - for each InPLt port, for SPaCer tetτem PortS (e. c.—・Db) SCaIar >≡ 】・ A value > 1 SUal all inputs: 1 SUnI ∙lts ⅜nts Of a tingle InPLt v ,∙ctorMain ∣ SifnftI data typaκICOn sha□e: ∣ re:t&ngulax▼]LISt Of KXeni:I 4**SaSDle t-n≡ βl for IEherXted):∣∙χ X I Cancel I HeID I Appl ∙BJ c5s3βN∕MUItimeterlHdPAaIbb Q ∖te ∂⅛ufementsU ∆Λ r βbr. LCAd3 LO a ∙133 Uan: TTbri VCΛ Lc&d3i U H : Ub Tht*∙Pb ⅛m F ⅛JlCl/fault. B» α>: IhrCQ-Pbazc fαulτl∕iαu^r C_l Cb- IHLeC ?hase Γa^lvl∕FAulV AI AT. Lo AdiIbU Lcαd3ICn GOad3lb: Ib"Q ∙7hα" I>αultl/fault Blb: Ih^ec _?hasc F aulVl∕Γau2V CUC lb: IhtraA ・7乃a=a FArJItI/FAult A—Σ-J Cown IR«rf)ve*f -IUPMe ⅝⅛∣ SOUrCe BIQCk Parameters; FromF∑o□Keceive SiEnaIC frσ≡ the GOtO block Irith the SDeClfiGd :as ・ If the tae is definedas r scoped , in the GOtO block, then a GOtO TaE ViSlbility bl ∙ock aust te used to definethe VieibiIity Of tht tac ・ After : UPdat ∙ DiaCraa I the block icon displays theSeleCted tag nase >Local taes are encIOSed in brackets. .], and SeODed tag na=es areSneIOSed in braees ; J).L ΦQ 43 Lθft<13 ≥p∣e 匚IEd MeaSU Ξ小 PIOt SdAe ⅛<igpαg Ie wI PiCX制SOUrCe BlOCk Parameters; FrOm4 「町〕一Fro□----------------------------R<c∙iv∙ SdKnalS froa the Goto bl>ck With the specified tar- If tht tae is d<ιfi∏4dseoped, in the Go∙tc Mcelt then a GOtO 7ar Vigibility blσek ≡ust be USGCl to definethe block icon displays the the Vigibility Of the tag. After , Update DiaeraID JISeIeCted tag nazιe (IOCaI tags are enclosed in brackets. and SCQPed tag nazes axeenclose! in braces::}〉・OK Cancel I Help FUnCtiOn BlOCk Parameters: DiSCrete 3・PhaSe SeqUeflCe AnalyZer三相短路仿真波形如下:如图1——a、b、c 三相短路电流仿真波形图分析:正常运行时,a、b、c 三相大小相等,相位相差120 度。

基于MATLA BSIMULINK短路故障仿真及分析

基于MATLA BSIMULINK短路故障仿真及分析

……………………. ………………. …………………山东农业大学 毕 业 论 文 基于MATLAB/SIMULINK 短路故障仿真及分析 院 部 机械与电子工程学院 专业班级 电气工程及其自动化3班 届 次 20**届 学生姓名 学 号 指导教师 二О**年六月六日装订线……………….……. …………. …………. ………摘要................................................................................................................................................. i i Abstract (II)1 引言 (1)1.1 MATLAB/Simulink概述 (1)1.1.1 MATLAB简介及特点 (1)1.1.2 SIMULINK简介及特点 (3)1.2 电力系统仿真概述 (4)1.3 基于MATLAB/Simulink电力系统仿真的发展趋势 (7)2 三相短路故障仿真分析 (9)2.1 电力系统故障简述 (9)2.2 仿真实例 (11)2.2.1 实例仿真摘要 (11)2.2.2 仿真模型建立 (12)2.2.3 三相短路故障仿真及结论分析 (20)3 同步发电机机端短路故障仿真分析 (26)3.1 暂态过程仿真及分析 (26)3.2 其它故障仿真分析 (28)4 结束语 (29)参考文献 (30)致谢 (31)Summary ......................................................................................................................................... i i Abstract (II)1 Introduction (1)1.1 MATLAB/ Simulink Outline (1)1.1.1 MATLAB Introduction and Features (1)1.1.2 Simulink Introduction and Features (3)1.2 Overview of Power System Simulation (4)1.3 Based on the development trend of MATLAB / Simulink Power System Simulation (7)2 Simulation and Analysis (9)2.1 Power System Fault Description (9)2.2 Simulation examples (11)2.2.1 The simulation summary (11)2.2.2 Simulation Model (12)2.2.3 Phase short circuit fault simulation analysis and conclusions (20)3 Synchronous Generator short-circuit fault simulation (26)3.1 Transient Simulation and Analysis (26)3.2 Other fault simulation analysis (28)4 Conclusion (29)References (30)Acknowledgements (31)基于MATLAB/SIMULINK短路故障仿真及分析(山东农业大学机械与电子工程学院山东泰安271018)摘要:随着电力系统的规模不断增大,很多大型电力科研试验很难以进行。

基于MATLABsimulink同步发电机突然三相短路仿真

基于MATLABsimulink同步发电机突然三相短路仿真

目录第一章绪论 (3)1.1超导体闭合回路磁链守恒原理以及同步电机电枢反应原理: 31.2等效阻尼绕组的电流 (4)1.3三相短路计算的简化假设 (5)1.4发生短路故障时可能产生以下后果: (5)第二章Matlab简介 (6)2.1 MATLAB (6)2.2SimPowerSystem介绍 (7)第三章同步发电机突然短路的暂态过程仿真 (7)3.1同步发电机突然三相短路暂态过程简介 (8)3.2同步发电机突然三相短路的暂态过程的数值计算与仿真方法10 第四章有关暂态仿真实验图示 (12)第一章绪论在电源电压的幅值和频率保持恒定的情况下,三相电路发生三项短路的情形。

实际上,发生短路时,作为电源的发电机的内部也发生暂态过程,并不能保持其端电压和频率不变,一般讲,由于发电机转子的惯性较大,在分析短路电流时可以近似地认为转子保持同步转速,即频率保持恒定,但通常应计及发电机的电磁暂态过程。

三项短路虽然很少发生,但情况比較严重,且三相短路时电力系统仍是对称的,称为对称故障,故本次分析三项短路故障。

1.1超导体闭合回路磁链守恒原理以及同步电机电枢反应原理:(1)电机转子在结构上对直轴和交轴完全对称,定子三相绕组完全对称,在空间互差120°电角度。

(2)定子电流在气隙中产生正弦分布的磁动势,转子绕组和定子绕组间的互感磁通也在气隙中按正弦规律分布。

(3)定子及转子的槽和通风沟不影响定子及转子绕组的电感,即认为电机的定子及转子具有光滑的表面。

此外,假设:(1)在暂态过程期间同步发电机转子保持同步转速,即只考虑电磁暂态过程,而不计机械暂态过程。

(2)电机铁芯部分的导磁系数为常数,忽略磁路饱和的影响,在分析中可以应用叠加原理。

(3)发生短路后励磁电压始终保持不变,不考虑短路后发电机端电压降低引起的强行励磁。

(4)短路发生在发电机定子出线端口。

如果短路发生在出线端外,可以把外电路的阻抗合并至定子绕组的电阻和漏抗上,只要定子总回路的电阻交电抗仍小得多,则短路后的物理过程和出线端口短路是一样的。

基于MATLAB_simulink的同步发电机短路的仿真共31页文档

基于MATLAB_simulink的同步发电机短路的仿真共31页文档


谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
基于MATLAB_simulink的同步发电机短路 的仿真
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

MATLAB-Simulink系统建模与仿真-实验报告要点

MATLAB-Simulink系统建模与仿真-实验报告要点

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three—phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three—Phase Series RLC Branch)(4)三相双绕组变压器模块(Three—Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three—Phase V-I Measurement)(6)三相故障设置模块(Three—Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2。

1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0。

000140H,参数设置如下图:1。

2。

2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0。

052,励磁电阻为909。

09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8。

5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)"以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1。

基于MATLAB-SIMULINK短路故障仿真及分析

基于MATLAB-SIMULINK短路故障仿真及分析

基于MATLAB/SIMULINK短路故障仿真及分析随着电力系统的规模不断增大,很多大型电力科研试验很难以进行。

采用传统的方法进行仿真计算工作量大也不直观。

MA TLAB具有强大的数值计算功能和开放灵活的可视化应用界面,在科学技术和工程的各个领域应用都非常的广泛。

因此MA TLAB的出现给电力系统仿真带来了新的方法和手段。

电力系统仿真是将电力系统中的各环节组成部分等进行数字化建模,以达到模拟实际电力系统运行状况的目的。

本文对实例进行仿真,对结果进行分析,以期能够说明MA TLAB在电力系统仿真中的应用。

目录1 引言 (1)1.1 MATLAB/Simulink概述 (1)1.1.1 MATLAB简介及特点 (1)1.1.2 SIMULINK简介及特点 (3)1.2 电力系统仿真概述 (4)1.3 基于MATLAB/Simulink电力系统仿真的发展趋势 (7)2 三相短路故障仿真分析 (9)2.1 电力系统故障简述 (9)2.2 仿真实例 (11)2.2.1 实例仿真摘要 (11)2.2.2 仿真模型建立 (12)2.2.3 三相短路故障仿真及结论分析 (20)3 同步发电机机端短路故障仿真分析 (26)3.1 暂态过程仿真及分析 (26)3.2 其它故障仿真分析 (28)4 结束语 (29)1 引言MATLAB是当前国际认可的优秀科技应用软件之一,它以矩阵运算为基础,把计算可视化程序设计融合到交互的工作环境中,可实现工程计算,算法研究,建模和仿真,数据分析及可视化,科学和工程绘图,应用程序开发等功能。

Simulink是MATLAB所提供的一个集成环境,它是用来对动态系统进行建模,仿真和分析的。

它是一种结合了框图界面和交互仿真功能的,具有非线性动态系统仿真功能的出色工具[1]。

为支撑社会经济的不断发展,电力工业的发展也非常迅速,重要表现之一就是电力系统的规模不断扩大,这就大大增加了许多大型电力科研试验的进行。

基于MATLAB的电力系统短路故障分析与仿真

基于MATLAB的电力系统短路故障分析与仿真

· ……………………。

………………. …………………毕 业 论 文 基于MATLAB 的电力系统短路故障分析与仿真 院 部 机械与电子工程学院 专业班级 电气工程及其自动化 届 次 2015届 学生姓名 学 号 指导教师装订线………………。

……. …………。

…………。

………摘要 (I)Abstract (II)1 引言 (1)1。

1 课题研究的背景 (1)1.2 课题研究的国内外现状 (1)2 短路故障分析 (1)2。

1 近年来短路故障 (1)2。

2 短路的定义及其分类 (2)2。

3 短路故障产生的原因及危害 (4)2。

4 预防措施 (4)2.5 短路故障的分析诊断方法 (5)3 仿真与建模 (6)3.1 仿真工具简介 (6)3。

1.1 MATLAB的特点 (6)3.1。

2 Simulink简介 (7)3.1。

3 SPS(SimPowerSystems) (8)3。

1.4 GUI(图形用户界面) (8)3。

2 模型的建立 (8)3.2。

1 无限大电源系统短路故障仿真模型 (8)3.2.2 仿真参数的设置 (9)4 仿真结果分析 (16)4.1 三相短路分析 (16)4.2 单相短路分析(以A相短路为例) (18)4。

3 两相短路(以A、B相短路为例) (22)4。

4 两相接地短路(以A、B相短路为例) (25)5 结论 (28)6 前景与展望 (28)参考文献 (29)致谢 (30)Abstract (II)1 Introduction (1)1。

1 Project background to the study (1)1.2 The research situation at home and abroad (1)2 Analysis of short-circuit fault (1)2。

1 Short-circuit fault in recent years (1)2.2 Definition and classification of short-circuit fault (2)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在指令窗口中输入simulink,回车,弹出仿真元件库对话框。从中 选择所需模块。
m
Pm A
SSM
B
E
C
sm
从电机(machines)元件库中选择简化 的同步电机元件并在参数对话框中进行设置。
连接类型:Y
额定值: 额定功率、线电压、频 率
机械特征: 惯性因数、阻尼系数和 极对数
内部电阻:每相的电阻 和电抗值
电路模型 模块介绍 仿真结果
700 e6 pm
156 e3 VLL rms
m Pm
A
SSM B E
C
sm
Continuous powergui
V
A Vabc Iabc
B
a
b
C
c
Three -Phase V-I Measurement
Selector
i
Three -Phase Parallel RLC Load
B
C
Continuous powergui
A B C Three -Phase Fault
Mag abc
Phas e
3-Phase Sequence Analyzer
三相序分量分析器参数设置
三相序分量分析 器可以输出A相直 流、基频以及各 次谐波电流的正 序、负序或零序 分量的幅值和相 角。
本次仿真设置如 下: 输出基频分量, 选择将正序、负 序、零序同时输 出显示到示波器。
A B C
A B C Three -Phase Fault
选择电机、电流、电压测量元件等模块需要启动电力系统元件库。
方法有两种:
1、在指令窗口中键入powerlib,回车; 2、单击开始按钮(start),依次选择simulink、SimPowerSystem。 弹出电力系统 元件库对话框如下:
所需其他仿真元件,如放大器、示波器、各类积分微分元件可由 以下方式找到:
700 e6 pm
156 e3 VLL rms
V
Mag
abc
Phase
i
m Pm
A SSM B E
C sm
A Vabc Iabc
Ba b
Cc
Three -Phase V-I Measurement
3-Phase
Sequence Analyzer Three -Phase Parallel RLC Load A
从测量库中选择三相电压-电流测量元件(Tree-phase V-I Measurement),进行如下设置:
本例中选择测量相电压,电流也要测量
A B C
Three-Phase Fault
从线路元件库中选择三相电路短路故障发生器( Three-Phase Fault ),参数设置如下:
转换状态为[1 0] 转换时间为[0.05 0.4],即 0.05秒故障,0.4秒故障切 除 缓冲电阻和缓冲电容都取 无穷大
初始状态:初始速率的 偏差、转角、线电流幅 值和相角
SM的机械功率使用一个常数发生器设置,这个常数发生器名称改 为Pm,数值设为700e6
SM的电压幅值也使用常数发生器设置,这个常数发生器名称改为 VLLrms,数值设为156e3
A
Vabc
Iabc
B
a
bCΒιβλιοθήκη cThree -Phase V-I Measurement
Three -Phase Parallel RLC Load A
B
C
从线路元件库中选择三相并联RLC负载元件 (3—Phase Parallel RLC Load) ,设置如下:
选择选择器元件(selector),选择A相电流进行观察,设置如下:
仿真参数设置:
故障元件中设置时间为0.05到0.4之间; 在电路图菜单中选择仿真菜单,弹出仿真参数对话框,设置如下:
相关文档
最新文档