第二章力系的简化
理论力学 第2章力系的简化习题解答
第二章 力系的简化 习题解答2-1在立方体的顶点A 、H 、B 、D 上分别作用四个力,大小均为F ,其中1F 沿AC ,2F 沿IG ,3F 沿BE ,4F 沿DH 。
试将此力系简化成最简形式。
解:各力均在与坐标平面平行的面内,且与所在平面的棱边成45°角。
将力系向A 点简化,主矢'R F 在坐标轴上的投影为045cos 45cos '21=-=F F F Rx ,FF F F F F Ry 245cos 45cos 45cos 45cos '4321=+-+=,F F F F Rz 245cos 45cos '43=+= 。
用解析式表示为: ()k j F +=F R 2'设立方体的边长为a ,主矩A M 在坐标轴上的投影为 045cos 45cos 32=⋅+⋅-=a F a F M Ax , Fa a F a F M Ay 245cos 45cos 42-=⋅-⋅-= ,Fa a F a F M Az 245cos 45cos 42=⋅+⋅= 。
用解析式表示为:()k j M +-=Fa A 2。
因为,0'=⋅A R M F ,所以,主矢和主矩可以进一步简化为一个力,即力系的合力。
合力的大小和方向与主矢相同,'R R F F =;合力作用点的矢径为()i MF r a F R R =⨯=2'',所以,合力大小为2F ,方向沿对角线DH 。
2-2三力321,F F ,F 分别在三个坐标平面内,并分别与三坐标轴平行,但指向可正可负。
距离c b a ,,为已知。
问:这三个力的大小满足什么关系时力系能简化为合力?又满足什么关系时能简化为力螺旋?解:这力系的主矢为k j i 321'F F F F R ++=; 对O 点的主矩为k j i a F c F b F M O 213++=。
当主矢与主矩垂直时,力系能简化为合力。
工程力学:第2章 力系的简化
F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr
•
E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C
第二章力系的简化
A
x
i j k
y
F
MA r F l 2l 0 对点A的力矩: F sin 0 F cos 2Fl cosi Fl cosj 2Fl sin k
15
三.力偶 1.力偶定义 两个等值、反向、不共线的平行力。记为 ( F , F ) 力偶不能合成为一个力,故也不能与 一个力平衡,因此力和力偶都是基本力学 F 量。 F M 静止时力偶 M 与F 平衡吗? 力偶只能使物体转动,用力偶矩衡量
22
2.主矢与主矩——原力系的特征量 1)定义
' 主矢:(各力的矢量和)FR Fi Fi' ,与简化中心无关
主矩: (各力对O点取矩的矢量和)
MO MO (Fi ) ,与简化中心有关
2)简化结果 一般力系向某一点简化,可以得到一个力和一 个力偶,该力作用在简化中心,其大小,方向与原 力系主矢相同;该力偶矩等于原力系对简化中心的 主矩。
F
三要素:
大小、力偶作用面方位、转向.
16
F
2.力偶矩矢
A
rB A
F
F
B
h
rA
M
M
rB
O
定 义: 而
MO F ,F rA F rB F
F ' F
rA rB rB A
M0 F , F (rA rB ) F rBA F rAB F M
5
力矩的解析表达式:
由于F Fx i Fy j Fz k
M O (F ) r F x Fx i
r xi y j zk
第二章 力系的简化
第二章 力系的简化将复杂力系等效地化为最简力系在理论分析和工程中都具有重要意义。
前一章将汇交力系和力偶系分别合成为一个力和一个力偶,是力系简化的例子。
力系简化的前提是等效。
等效力系是指不同力系对同一物体所产生的运动效应相同。
力系的简化是指用简单的力系等效地替换一个复杂力系。
力系简化而得到的最简单力系称为力系简化的结果,可以是平衡、一个力、一个力偶,或者一个力和一个力偶。
力系的简化结果可以导出力系平衡条件,将在下章中详细讨论。
力系简化并不局限于静力学。
例如,飞行中的飞机受到升力、牵引力、重力、空气阻力等分布在飞机不同部位力作用,为确定飞机运动规律可以先进行力系的简化。
因此,力系简化也是动力学分析的基础本章首先引入主矢和主矩两个力系的基本特征量,作为力系等效简化的依据。
然后讨论力系简化,力系简化的基础是力线平移,由此力系可向任意一点简化,并进而分析力系的几种最简形式。
最后,考虑平行力系的简化,并叙述重心、质心和形心的概念与计算公式。
§2.1 力系的基本特征量:主矢与主矩为讨论力系的等效和简化问题,引入力系的两个基本特征量:主矢和主矩。
设刚体受到力系F i (i=1, 2,…,n )作用,诸作用点相对固定点O 的矢径依次为r i (i=1, 2,…,n )。
力系F i 的矢量和,称为力系的主矢。
记为F R ,即∑==ni i 1R F F (2.1.1)主矢仅取决于力系中各力的大小和方向,而不涉及作用点,是一个自由矢量。
主矢通常不是力。
计算力系F i 对固定点O 的力矩的矢量和,称为力系对点O 的主矩。
记为M O ,即 ∑=⨯=ni iiO 1F r M (2.1.2)它不仅取决于力系中各力的大小、方向和作用点,还取决于矩心O 的选择。
因此,主矩是定位矢量。
利用动力学理论,可以证明,不同力系对刚体运动效应相同的条件是不同力系的主矢以及对相同点的主矩对应相等。
因此,主矢和主矩的引入为判断力系的等效提供了依据。
第二章 力系的简化
大小: 大小 R' = R'x + R' y = (∑ X ) + (∑ Y )
2 2 2 2
主矢 R ′ (移动效应)方向 移动效应 方向:
α =tg−1
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
④ R ′ ≠0,MO ≠0,为最一般的情况。此种情况还可以继续 可以继续 简化为一个合力 R 。
合力 R 的大小等于原力系的主矢 合力 R 的作用线位置
MO d= R
综合上述, 综合上述,有:
合力偶M 平面任意力系的简化结果 :①合力偶 O ; ②合力 注意: (1)由于力系向任一点简化其主失都等于诸力的矢量和, )由于力系向任一点简化其主失都等于诸力的矢量和, 故主失与简化中心的选择无关。 故主失与简化中心的选择无关。 (2)主矩一般与简化中心有关,故提到主矩,应说明是 )主矩一般与简化中心有关,故提到主矩, 对哪一点的主矩。 对哪一点的主矩。 (3)主失(大小、方向)与合力(三要素)是两个不同 )主失(大小、方向)与合力(三要素) 的概念。 的概念。
二、平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 (未知力系) (已知力系) 汇交力系 力偶系 力 , R'(主矢 , (作用在简化中心) 主矢) 主矢 力偶 ,MO (主矩 , (作用在该平面上) 主矩) 主矩
主 R' = F + F + F +…= ∑F 矢 1 2 3 i
材料力学 第2章 力系简化
而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点
理论力学平面力系的简化和平衡
原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束
由
mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0
工程力学(1)-第2章
力的平移定理:可以把作用在刚体上点 的力 平行移到任一 力的平移定理 可以把作用在刚体上点A的力 F 可以把作用在刚体上点 点B,但必须同时附加一个力偶。这个力偶 ,但必须同时附加一个力偶。 对新作用点B的矩 的矩。 的矩等于原来的力 F对新作用点 的矩。 [证] 力F 证 力系 F,F′, F′ ′
• 简化的含义
力系的简化
力系简化的基础是力向一点平移定理 力系简化的基础是力向一点平移定理。 力向一点平移定理。
力系的简化
♣ 力向一点平移定理
力系的简化
♣ 力向一点平移定理
力向一点平移
F :力; O :简化中心; α :F与O所在平面;
r
n :α 平面的法线; en :n 方向的单位矢。
F
力系的简化ห้องสมุดไป่ตู้
平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 未知力系) 已知力系) (未知力系) (已知力系) 主矢) 作用在简化中心) 汇交力系 力 , R'(主矢 , (作用在简化中心 主矢 作用在简化中心 主矩) 作用在该平面上) 力偶系 力偶 ,MO (主矩 , (作用在该平面上 主矩 作用在该平面上
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
大小: 大小 主矩M 主矩 O 方向: 方向
MO =∑mO (Fi )
方向规定 + —
(转动效应 转动效应) 简化中心: (与简化中心有关 转动效应 简化中心: 与简化中心有关 与简化中心有关) (因主矩等于各力对简化中心取矩的代数和) 因主矩等于各力对简化中心取矩的代数和)
力系的简化
R'
·M O
0
──右力螺旋,
R' ·M O 0 ──左力螺旋,
R '的作用线——力螺旋的中心轴
右力螺旋
左力螺旋
10
第一篇 静力学 第2章 力系的简化
② R' 与 MO 成任意角度,此为最一般情况。
分解:
MO
M
∥ O
M
O
其中
M
O∥=(R'
·M O)R' R'2
力系二不变量之积 第一不变量模之平方
主矢与主矩为:
n
R' Fi i 1
n
M O mO (Fi ) (代数量)
i 1
合力作用线方程:M O xRy yRx
14
第一篇 静力学 第2章 力系的简化
例2-3 已知b=18m,H=36m,α=70,W=9.0×103kN,P=4.5×103kN, Q=180kN,a=6.4m,h=10m,c=12m,求合力并校核重力坝稳定性(OE≤2/3 b)。(坝体取单位长)
②写出各力矢量及作用点矢径:
F1
F1
2
Fi
2
2
Fk
2
F2
2
Fj
2
2
Fk
2
A
rA
O
x
rA ai , rB 2aj
③求主矢与主矩:
2
R' Fi
i 1
2
F
(i
j
2k )
2
2 2
2
M O mO (Fi ) ri Fi
i 1
i 1
Fa(2i j ) 2
解:建立坐标系如图。选O为简化中心。主矢 和主矩为:
第2章 力系的简化
16 第2章 力系的简化 2.1 主要内容2.1.1 汇交力系汇交力系合成为通过汇交点的合力,合力的大小、方向等于各分力的矢量和F F R ∑=或 汇交力系的合力在轴上的投影等于各分力在同一轴上的投影的代数和,称之为合力投影定理,即R R R 111,,nnnx xi y yi z zi i i i F F F F F F ======∑∑∑2.1.2 力偶系力偶系合成结果为一合力偶,其力偶矩M 等于各力偶矩的矢量和:∑==ni i1MM合力偶矩矢在各直角坐标轴上的投影:∑∑∑======ni ziz ni yi y ni xi x MM MM MM 111,,或 k j i M iz iy ix M M M ∑+∑+∑=平面力偶系可合成为一合力偶,合力偶矩等于各分力偶矩的代数和:i M M ∑=2.1.3 任意力系力的平移定理作用在刚体上的力,可平行移动到刚体上任一点,平移时需附加一力偶,附加力偶的矩等于原作用力对平移点之矩,称为力的平移定理。
该定理表明,一个力可以等效于一个力和一个力偶。
其逆定理表明,可将平面内的一个力和一个力偶等效于一个力。
用一简单力系等效地替代一复杂力系称为力系的简化或合成,应用力的平移定理,将力系向一点简化的方法是力系简化的普遍方法。
kj i F z y x F F F ∑+∑+∑=R17力系向一点简化·主矢和主矩力系向任一点O (称简化中心)简化,得到通过简化中心的一个力及一个力偶。
力系中各力的矢量和称为力系的主矢量。
即F F ∑='R主矢与简化中心位置无关力系中各力对简化中心之矩的代数和称为力系对简化中心的主矩。
即)(F O O M M ∑=主矩与简化中心位置有关。
力系的简化结果归结为计算两个基本物理量——主矢和主矩。
它们的解析表达式分别为R1111()nni i i i n nO i O i i i ====⎫''==⎪⎪⎬⎪==⎪⎭∑∑∑∑F F F M M M F 力的大小、方向等于力系的主矢量,力偶矩矢等于力系对O 点的主矩。
第二章 力系的简化
【例3-2】 如图3-8(a)所示,在柱子的A点受有吊车梁传来的集中 】 力 F = 100kN。求将这力 F 平移到柱轴上O点时所应附加的力偶矩
M ,其中e=0.4m。
【解】 根据力的平移定理,力 F 由A点平移到O点,必须附加一力偶,
M = M B ( F ) = − F × e = −100kN × 0.4m = −40kN ⋅ m
又B处的支座反力垂直于支持面,要形成与已知力偶M反向的 力偶,B处的支座反力 FB 方向只能斜向上,A处的支座反力 FA 的方向斜向下,作用线与 FB 平行,且有 F = F A B 由平衡条件 ∑ M i = 0 ,得: i =1
n
FB × d − M = 0
FB × (4m × sin 30o ) − 20kN ⋅ m = 0
平面任意力系的平衡方程,除了这种基本形式以外,还有如 平面任意力系的平衡方程,除了这种基本形式以外, 下两种形式 。 二力矩式: 二力矩式:∑FX=0 ∑MA=0 条件: 连线不能垂直于X 条件:A、B连线不能垂直于X轴 ∑MB=0 三力矩式: 三力矩式: ∑MA=0 ∑MB=0 条件:A、B、C不能在一条直线上 条件: ∑MC=0 无论哪种形式的平衡方程,都只有三个独立的方程,所以,平 无论哪种形式的平衡方程,都只有三个独立的方程,所以, 面任意力系的平衡方程只能求解三未知量。 面任意力系的平衡方程只能求解三未知量。
)、平面任意力系平衡的情形 (3)、平面任意力系平衡的情形 )、 R′=0 ,M0′=0 则原力系是平衡力系, 则原力系是平衡力系,这种情形将在下一节中讨论
情况 向O点简化的结果 主矢R 主矩M 分类 主矢R′ 主矩MO 1 2 3 4 R′=0 R'=0 R′≠0 ′ R′≠0 ≠ MO=0 MO≠0 MO=0 MO≠0
第2章空间力系的简化与物体的受力分析
设滑轮的中心B与支架ABC相连接,AB为直杆,BC为曲杆,B为销
钉。若不计滑轮与支架的自重,画出各构件的受力图。
FCB 0.6 m C
解:
FAB A
B FBA
FBy
FCB
H
45
B F FBx C
[ AB] [ BC ]
0.8 m
FT1
[轮B]
FAB A
H BF
45
I
FDxE
D FBC
D
G FBA
FFDy
FR
FR
F1
sin 60
F2
cos 30
F3
F
FR FRy j Fj
MA
主矩: M A M A F F3a M F2h 1.133Fa
合力大小和方向: FR FR Fj
合力作用点D至A点距离:d M A / FR 1.133 F a / F 1.133a
y
3m
C
例3 重力坝受力情况如图所示。设
在径向轴承的受力基础上,再加上一个指向轴的压力。
FAz
FAy
A
FAx
未知量:3 个
四、辊轴支座
在铰链支座的下 部,安装若干刚性滚 子,构成辊轴支座, 也可称为可动铰支座
A`
A
A
FA
由于辊轴支座沿滚动方向无约束功能, 约束力只能沿支承平面的法线方向,形成平 面平行力系,可简化为一个通过铰链中心的 合力
670.1x 232.9 y 2 355 0
第二节 约束与约束力
自由体与非自由体
P
自由体
非自由体
约束:阻碍物体运动的限制物体,是通过力来实现的
约束力:约束施加于被约束物体的力。约束力是被动力
第二章力系的简化理论
z
F1
x
O
F3
a
C
b
y
0
A
B
M O ( Fa Fc)i Fbj
15
2-3 力偶
16
1. 力在轴上投影是代数量,力对轴之矩是代数量。 2. 刚体上的力是滑移矢量;
力对点之矩是定位矢量;
力偶矩矢是自由矢量。
16
2-3 力偶
17
作业:P7 2;P8 5
17
18
2-4 力系的简化理论
(2)对轴
M x (FR ) M x (Fi )
合力对任一点(轴)之矩等于各分力对 同一点(轴)之矩的矢量(代数)和。
8
2-3 力偶
1.力偶的概念 1)定义: 两个等值、反向、不共线平行力,记为 (F , F ) 2)实例:
9
F
F
力偶不能合成为一个力,也不能与一个力平 衡,是产生转动效果的度量,是一个基本力学量。
23
1.空间一般力系向任一点简化 (1)过程: 选O点为简化中心
z
z
Fn
rn r2 O r1
F2
MOn
y
Fn
x
O
F1
MO2 F2 F1 M O1
y
x
z
空间汇交力系:
FR
O
Fi Fi
空间力偶系: M Oi M O ( Fi )
y
MO
合力 力偶
Fi Fi FR
M O M Oi M O ( Fi )
y
500 N
0.8 m 80 N m
100 N 0.6 m
O
1m 200 N
1m
理论力学:第2章 力系的简化
2-3 沿着直棱边作用五个力,如题 2-3 图所示。已知 F1=F3=F4=F5=F,F2= 2 F,
OA=OC=a,OB=2a。试将此力系简化。
解:将所有力向 O 点简化
Fy=0 Fz=F2sin45F4=0
Fx=F1F2cos45=0
M ox | OC | F | OB | F 3aF
Si xi Si
4
2
2.5
0.75
6.25
11 6
4 2.5 6.25
1.67(m)
yc
Si yi Si
4
0.5
2.5
3.5
6.25
8 3
4 2.5 6.25
2.15(m)
所以有 xC 1.67 m, yC 2.15 m 。
2-12 题 2-12 图所示由正圆柱和半球所组成的物体内挖去一正圆锥,求剩余部分物体 的重心。
6)
圆锥: V3
1 3
π
5 2
2
4
题 2-12 图
zc
Vi zi Vi
2 3
5 2
3 10.9375源自 5 2
2
(4
6)
5
5 2
2
4 3
2 3
5 2
3
5 2
2
(4
此力系简化结果。
工程力学
力系简化的基础是力向一点平移定理。
工程力学
第2章 力系的简化
§2–2 力向一点平移定理
力向一点平移定理 作用于刚体上的力可从原来的作用点 平行移动任一点而不改变对刚体的作用效应,但须附加一 个力偶,附加力偶的矩等于原力对新作用点的矩。
F B h
F
F = B h
F
F
A
A
=
M=Fh B A
第2章 力系的简化
求如图所示平面共点力系的合力。其中:F1 = 200 N, y F2 = 300 N,F3 = 100 N,F4 = 250 N。 F2
解: 根据合力投影定理,得合力在轴
x,y上的投影分别为:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 129 .3 N
FR=FR,但其作用线不过简化中心O。
FR
MO O
FR
= O
d
FR
FR
A
= O
d
FR
A
M 0 m0 ( FR ) d FR ' FR '
把各力矢首尾相接,连接第一个力的始端与最后一个力的终 端的矢量就是合力FR,力系中各力称为合力FR的分力。 F2 F1 F3 F2 F3 F
O
4
F1
FR
F4 • 得到的多边形,称为力多边形,合力就是力多边形的封闭边。
• 用力多边形求解合力的方法称为力的多边形法则。
工程力学 c F3 d F4 c F1 a
加减平衡力系原理
力偶
[证明]
力F
M o M o ( F ) Fh
力系F,F',F''
力系的简化
j
k
MC(F) a·Sinθ a·CosθCosα a·Sinα =- a·CosθCosαi+FaSin θj
=
0
0
0
令CB=b 则CB =bSinαj + bSinαk
e CB CB
b sin j
sin j cos k
b2 sin 2 b2 cos2
故MC(F)在AB轴上得投影
MAB(F)=MC(F )eCB=FaSinαSinθ
三. 力系向一点的简化
(一). 空间汇交力系的简化(将其简化为一合力)
力的作用线在空间任意分布的力系成为空间任 意力系。各力作用线汇于一点的空间力系,成为空 间汇交力系。
空间汇交力系的合理等于各分力的矢量和(满足 平行四边形法则),合力作用线通过汇交点,即
FR=F1+F2+…… 又由于+FFni=xii+yij+zik
合力偶对各坐标轴得方向余弦:
cos(M,i)= Mx 0.6786 M cos(M,i)= M z 0.2811 M cos(M,i)= M z 0.6786 M
(三). 空间任意力系得简化
FacSinSin
a2 b2
例2.2 作用于手柄上的力F=100N,求①力F 对x轴的
矩 ②力F 对原点o的矩.
解:画出r , r =0.1i+0.4k
又有
z y
o
F = 100(Sin60°cos45°i+Sin60°sin45°j
-cos60°k)
x
100
2i 4
2 4
j
3k 4
0.4m
第二章 力系的简化
右手定则:
第二章力系简化
例 在图示长方体的顶点B处作 用一力F,F=700N。分别求力F 对各坐标轴之矩,并写出力F对 点O之矩矢量Mo(F)。 解1:力F矢量作用点坐标为: B( x, y, z ) B(2,3,0) 力F矢量在三个坐标轴的投影为:
( Fx , Fy , Fz ) ( 100 14,150 14,50 14)
F2
z
M1 M3
45°
F2 F3 O F1
y
M2
F3 F1
O
45°
y
x
x
M x M 1x M 2 x M 3 x 0
M y M 1 y M 2 y M 3 y 11.2 N m
M z M 1z M 2 z M 3 z 41.2 N m
3. 平面力偶系的合成与平衡
作为空间力偶系的特例,平面力偶系合成的结果 是位于各分力偶作用平面内的一个合力偶, 该合力偶矩等于各分力偶矩的代数和。即
M M1 M 2 M n M i
代数和
平面力偶系平衡的必要和充分条件是:各分力偶 的代数和等于零。即
M Mi 0
[ M O ( F )]x M x ( F ) [ M O ( F )] y M y ( F ) [ M O ( F )]z M z ( F )
力矩关系定理: 力对点之矩矢量 在过该点之轴上 的投影等于该力 对该轴之矩.
M O ( F ) M x ( F )i M y ( F ) j M z ( F )k
M D
30 30
B R C
A
E
解: 1.研究AB杆
M i 0
M FD AD 3R FD
M D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、力的平移定理
M= MB(FA)=FA·a
FA
A B
FA
A
FB
a
B
FB´
M
A
FB
B
作用在刚体上的力,可以等效平移到刚体上任一指 定点,但必须在该力和指定点所确定的平面内附加一 力偶,附加力偶的力偶矩等于原力对指定点的矩。
注意:只有在研究力的运动效应时,力才能平行移动。
研究变形效应时一般是不能移动的。
FR MO O
FR FR
d
O
A
FR
d
O
A
主矢与主矩垂直,FR
FR M
可简化为一个合力
HOHAI UNIVERSITY ENGINEERING MECHANICS
(a) FR ⊥MO
表明FR与MO在同一平面,即共面
共面的力与力偶合成一个力。 FR
合力为F‘R,等于原力的合力FR
O
MO
作用线过新的简化中心
练习1:确定图示力系的合力大小及作用线位置。
z
4kN
6kN
2m
12kN 3m
y
Ox
x y FR Fy 0
Miy 0
Mix 0
解:
该力系为空间平行力 系,各力指向一致,可知 该力系简化为一个铅垂向 下的力。
FR 22kN
x 12 3 1.636m 22
y 6 2 0.545m 22
空间汇交力系
平面汇交力系
二、力偶系
平面力系
空间力系
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
三、任意力系 若力系中各力作用线既不汇交于一点,也不全
部互相平行,则该力系称为任意力系
空间任意力系
解:FRx =Fix =-333kN
F1 1m F2 F3
FRy =Fiy=-8020kN
FR FR2x FR2y 8027kN
yF
= 87.62º
W
MO = MiO= 6121kNm
x=0.763m (x轴的负方向)
F´R
O
MO x
FR
HOHAI UNIVERSITY ENGINEERING MECHANICS
F CF
M
CF
2F
F
HOHAI UNIVERSITY ENGINEERING MECHANICS
二、空间任意力系向一点的简化
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR =FRx i+ FRy j+ FRz k
F2 M1
F´2
O
F1
F´1 MO
Mn
FR z
FRx =Fix FRy =Fiy FRz =Fiz MO = Mx i+ My j+ Mz k
三、平面任意力系向一点的简化
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR =FRx i+ FRy j
z
FRx =Fix
FR MO
O
FRy =Fiy
y F1
MO = Mz = Miz = MiO
x F2
FR
Fn
F´R
相距的距离:d M F
共面的力与力偶的合成(合成为一个力)
45° 60° x
F3
O3
4
F4
FR FR2x FR2y 105.5N
§2-2 力偶系的简化(合力偶)
HOHAI UNIVERSITY ENGINEERING MECHANICS
M M1 M2 Mn
Mi = Mix i+ Miy j+ Miz k M =Mix i+ Miy j+ Miz k
HOHAI UNIVERSITY ENGINEERING MECENGINEERING MECHANICS
几何法
§2-1 汇交力系的简化(合力)
解析法
O
F1
F4
F2
F3
FR
FR F1 F2 Fn
几何法
HOHAI UNIVERSITY ENGINEERING MECHANICS
r是O2引向O1的矢径,而MO2(FR)是作用于O1的力FR对 于O2的矩。
力系对于第二简化中心的主矩,等于力系对 于第一简化中心的主矩与作用于第一简化中 心的力FR(等于力系的主矢量),对第二简 化中心的矩之矢量和
当简化中心沿FR的作用线移动,主矩不变
HOHAI UNIVERSITY ENGINEERING MECHANICS
平面任意力系所有力系的作用线位于同一 平面内
(平面力系)
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
平面平行力系 空间平行力系
一定的空间力系,若简化结果为力螺旋,则组成力 螺旋的力和力偶是一定的,力螺旋的中心轴的位置 也是一定的,且力螺旋的力偶矩是力系的最小主矩
力螺旋
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
例 将图示力系向A点简化;并进一步将其简化为最 简单形式。已知F1=15N,F2=6N,F3=8N。
HOHAI UNIVERSITY ENGINEERING MECHANICS
2、若FR与M0既不平行
也不垂直而成角度α,这是 最一般情况。
MO
MO∥ FR
FR′
α MO∥
O O′
MO⊥
原力系向简化中心O简化后得到FR和MO。将MO沿
与FR平行和垂直两个方向分解,得到MO⊥ 和MO∥,
MO⊥ 与FR可合成一个力F‘R,而力偶矩矢量MO∥ 与FR’平行,构成了力螺旋
HOHAI UNIVERSITY ENGINEERING MECHANICS
空间任意力系向简化中心简化的结果,一般是一个 力和一个力偶,这个力作用在简化中心,等于原力 系中所有各力的矢量和,即等于原力系的主矢;这 个力偶的矩等于原力系中所有各力对简化中心矩的 矢量和,即等于原力系的主矩。
力系的主矢是常量,与简化中心无关。(称力系的 第一不变量)。主矩一般随简化中心的位置改变
10.7m 21m
HOHAI UNIVERSITY ENGINEERING MECHANICS
例4:某桥墩顶部受到两边桥梁传来的铅直力F1=1940kN、
F2=800kN,水平力F3=193kN,桥墩重量W=5280kN,风 力的合力F=140kN。求将该力系向基底中心O简化的结果;
若能简化为一合力,试确定合力作用线位置。
HOHAI UNIVERSITY ENGINEERING MECHANICS
§2-4 任意力系简化结果讨论
主矢 FR Fi
主矩 MO MOFi
可作进一步的简化,讨论如下: 合力矩定理只适用于力
系合成为一个力的情况
1. 简化为一个力偶:当 FR 0,MO 0 时
2. 简化为一个合力:
当 FR 0,MO 0 时, 合力 FR 经过O点
当 FR 0,MO 0 , FR MO 0 时, 可进一步简化:
上投影的代数和
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1:已知F1= F2 = F3= F4=100N,试求该力系的合力。
解:
FRx
F1
cos
60
F2
cos
45
F3
4 5
F4
F2
FR
y
F1
40.71N
FRy
F1
sin
60
F2
sin
45
3 5
F4
97.31N
共面的一个力和一个力偶可合成一个力,其大
小和方向与原力相同F,但它们的作用线要相
距一定的距离d
➢ 空间平行力系的简化
HOHAI UNIVERSITY ENGINEERING MECHANICS
z
FR F2 O
F1 y
x
MO
Fn
FR =FRz k
FRz =Fiz MO =Mx i+ My j
Mx = Mix My = Miy
F´n
M2 Fn
O
x
y
Mx =Mix My =Miy
Mz =Miz
HOHAI UNIVERSITY ENGINEERING MECHANICS
三、任意力系的简化
1.简化方法
利用力的平移定理,将各力平行移到简化中心O, 并各加一个附加力偶,从而得到一个作用在O点的 空间汇交力系和一个空间力偶系。
2.简化的一般结果
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR=F1'+F2 ' +… Fi ' +… + Fn '
=F1+F2+… Fi +… + Fn
= ∑ Fi
主矢量
MO=M1+M2+ … +Mi+ … +Mn
= ∑Mi
主矩
MO y
z FR x
HOHAI UNIVERSITY ENGINEERING MECHANICS
§2-1 汇交力系的简化 解析法: