二次函数周长最小问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周长最小问题

基本解题方法:

1.如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9).

(1)求抛物线的解析式;

(2)写出抛物线的对称轴方程及顶点坐标;

(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;

(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.

解:(1)依题意有⎩⎨⎧a ×0 2

-4×0+c =-6

a ×3

2-4×3+c =-9

即⎩⎪⎨⎪⎧c =-69a -12+c =-9 ····································································· 2分 ∴⎩

⎪⎨⎪⎧a =1c =-6 ················································································· 4分 ∴抛物线的解析式为:y =x

2-4x -6 ··············································· 5分

(2)把y =x

2-4x -6配方,得y =(x -2)2-10

∴对称轴方程为x =2 ·································································· 7分 顶点坐标(2,-10)·································································· 10分 (3)由点P (m ,m )在抛物线上

得m =m

2-4m -6 ······································································ 12分

即m

2-5m -6=0

∴m 1=6或m 2=-1(舍去) ························································ 13分 ∴P (6,6)

∵点P 、Q 均在抛物线上,且关于对称轴x =2对称

∴Q (-2,6) ··················································································· 15分 (4)连接AP 、AQ ,直线AP 与对称轴x =2相交于点M

由于P 、Q 两点关于对称轴对称,由轴对称性质可知,此时的交点M 能够使得△QMA 的周长最小 ············································································· 17分 设直线AP 的解析式为y =kx +b

则⎩⎪⎨⎪⎧b =-66k +b =6 ∴⎩

⎪⎨⎪⎧k =2b =-6 ∴直线AP 的解析式为:y =2x -6 18分 设点M (2,n )

则有n =2×2-6=-2 19分

此时点M (2,-2)能够使得△QMA 的周长最小 20分

2.如图,在平面直角坐标系中,直线y =-3x -3与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2-

3

3

2x +c (a ≠0)经过点A 、C ,与x 轴交于另一点B . (1)求抛物线的解析式及顶点D 的坐标;

(2)若P 是抛物线上一点,且△ABP 为直角三角形,求点P 的坐标;

(3)在直线AC 上是否存在点Q ,使得△QBD 的周长最小,若存在,求出Q 点的坐标;若不存在,请说明理由.

(1)∵直线y =-3x -3与x 轴交于点A ,与y 轴交于C ∴A (-1,0),C (0,-3) ∵点A ,C 都在抛物线上

∴⎩⎨⎧a +332+c =0c =-3 解得⎩⎨

⎧a =33

c =-3

∴抛物线的解析式为y =33x

2-332x -3=33( x -1)2-334∴顶点D 的坐标为(1,-3

3

4) (2)令

33x

2-3

3

2x -3=0,解得x 1=-1,x 2=3 ∴B (3,0) ∴AB 2=( 1+3)2=16,AC 2=1

2+( 3)2=4,BC 2=3

2+( 3)2=12 ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形∴P 1(0,-3)

由抛物线的对称性可知P 2的纵坐标为-3

(3)存在.延长BC 到点B ′,使B ′C =BC ,连接B ′D 交直线过点B ′ 作B ′H ⊥x 轴于H

在Rt △BOC 中,∵BC =12=32, ∴BC =2OC ∴∠OBC =30°

∴B ′H =21

BB ′=BC =32,BH =3B ′H =6,∴OH =3

∴B ′(-3,-32)设直线B ′D 的解析式为y =kx +b ,则:

⎩⎨⎧

-32=-3k +b

-3

34=k +b 解得⎩⎪⎨⎪⎧k =63b =-2

33联立⎩⎨⎧y =-3x -3y =63x -233 解得⎩⎪⎨⎪⎧x =73y =-7310∴Q (73

,-7310)故在直线AC 上存在点Q ,使得△QBD 的周长最小,Q 点的坐标为(7

3

,-7310)

3.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.

(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;

(Ⅱ)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.

解:(Ⅰ)如图1,作点D 关于x 轴的对称点D ′,连接CD ′

与x 轴交于点E ,连接DE

若在边OA 上任取点E ′(与点E 不重合),连接CE ′、DE ′、D ′E ′ 由DE ′+CE ′=D ′E ′+CE ′>CD ′=D ′E +CE =DE +CE 可知△CDE 的周长最小

∵在矩形OACB 中,OA =3,OB =4,D 为边OB 的中点 ∴BC =3,D ′O =DO =2,D ′B =6

∵OE ∥BC ,∴Rt △D ′OE ∽Rt △D ′BC ,∴BC OE =

B

D O

D '' ∴O

E =

B

D O D ''·BC =62

×3=1 ∴点E 的坐标为(1,0) ························································ 6分

(Ⅱ)如图2,作点D 关于x 轴的对称点D ′,在CB 边上截取CG =2,连接D ′G 与x 轴交于点E ,在EA 上截取EF =2,则四边形GEFC 为平行四边形,得GE =CF 又DC 、EF 的长为定值,∴此时得到的点E 、F 使四边形CDEF 的周长最小 ∵OE ∥BC ,∴Rt △D ′OE ∽Rt △D ′BG ,∴

BG OE =

B

D O

D '' ∴O

E =

B D O

D ''·BG =

B D O

D ''·(BC -CG )=62×1=3

1

∴OF =OE +EF =3

1+2=37

∴点E 的坐标为(31,0),点F 的坐标为(37

,0) ··················· 10分

相关文档
最新文档