高考物理经典大题练习及答案

合集下载

历年物理高考试题及答案

历年物理高考试题及答案

历年物理高考试题及答案一、选择题1. 下列关于牛顿第二定律的描述,正确的是:A. 力是物体运动的原因B. 力是改变物体运动状态的原因C. 力是维持物体运动的原因D. 力的大小与物体的速度成正比答案:B2. 根据能量守恒定律,下列说法不正确的是:A. 能量既不会凭空产生,也不会凭空消失B. 能量可以从一种形式转化为另一种形式C. 能量的总量在转化和转移过程中保持不变D. 能量的转化和转移具有方向性答案:D二、填空题1. 根据欧姆定律,电阻R、电压U和电流I之间的关系是:\[ R = \frac{U}{I} \]。

2. 光的三原色是________、________、________。

答案:红、绿、蓝三、计算题1. 一个质量为2kg的物体,受到一个水平方向上的力F=10N,求物体的加速度。

解:根据牛顿第二定律,\[ F = ma \],所以\[ a = \frac{F}{m} = \frac{10}{2} = 5 \text{ m/s}^2 \]。

2. 一个电子在电场中受到的电场力是3×10^-14 N,求电子的电荷量。

解:根据库仑定律,\[ F = k \frac{qQ}{r^2} \],由于是单个电子,Q=q,且已知F,可以求出q。

假设电场强度为E,则\[ F = qE \],所以\[ q = \frac{F}{E} = \frac{3 \times 10^{-14}}{E} \]。

由于题目中没有给出电场强度E,无法直接计算电荷量q。

四、实验题1. 请描述如何使用弹簧秤测量物体的重力。

答案:将弹簧秤的挂钩挂在待测物体上,确保弹簧秤垂直于地面,待弹簧秤稳定后,读取指针所指的数值即为物体的重力。

2. 根据题目所给的实验数据,绘制小车在不同拉力下的加速度与拉力的关系图。

答案:根据实验数据,将每组数据的拉力F作为横坐标,对应的加速度a作为纵坐标,用点标记出每组数据,然后用平滑曲线连接这些点,即可得到加速度与拉力的关系图。

2024新高考I卷全国统一考试高考物理试题(真题+答案)

2024新高考I卷全国统一考试高考物理试题(真题+答案)

2024新高考I卷高考真题物理二、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.一质点做直线运动,下列描述其位移x或速度v随时间t变化的图像中,可能正确的是()A. B. C. D.2.福建舰是我国自主设计建造的首艘弹射型航空母舰。

借助配重小车可以进行弹射测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。

调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。

忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的()A.0.25倍B.0.5倍C.2倍D.4倍3.天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的()A.0.001倍B.0.1倍C.10倍D.1000倍4.三位科学家由于在发现和合成量子点方面的突出贡献,荣获了2023年诺贝尔化学奖。

不同尺寸的量子点会发出不同颜色的光。

现有两种量子点分别发出蓝光和红光,下列说法正确的是()A.蓝光光子的能量大于红光光子的能量B.蓝光光子的动量小于红光光子的动量C.在玻璃中传播时,蓝光的速度大于红光的速度D.蓝光在玻璃中传播时的频率小于它在空气中传播时的频率5.如图,两根不可伸长的等长绝缘细绳的上端均系在天花板的O点上,下端分别系有均带正电荷的小球P、Q;小球处在某一方向水平向右的匀强电场中,平衡时两细绳与竖直方向的夹角大小相等。

则()A.两绳中的张力大小一定相等B.P的质量一定大于Q的质量C.P的电荷量一定小于Q的电荷量D.P的电荷量一定大于Q的电荷量6.位于坐标原点O的波源在0=t时开始振动,振动图像如图所示,所形成的简谐横波沿x轴正方向传播。

平衡位置在 3.5mx=处的质点P开始振动时,波源恰好第2次处于波谷位置,则()A.波的周期是0.1sB.波的振幅是0.2mC.波的传播速度是10m/sx=处的质点Q开始振动时,质点P处于波峰位置D.平衡位置在 4.5m7.电动汽车制动时可利用车轮转动将其动能转换成电能储存起来。

优秀高考物理试题及答案

优秀高考物理试题及答案

优秀高考物理试题及答案一、选择题(每题3分,共30分)1. 下列关于光的描述中,正确的是:A. 光在真空中传播速度最快B. 光在所有介质中传播速度相同C. 光在所有介质中传播速度都比真空中慢D. 光在真空中传播速度最慢答案:A2. 一个物体从静止开始做匀加速直线运动,第1秒内通过的位移是x 米,那么第2秒内通过的位移是:A. 2x米B. 3x米C. 4x米D. 5x米答案:B3. 根据牛顿第二定律,下列说法正确的是:A. 物体的质量越大,加速度越大B. 物体的质量越大,加速度越小C. 物体的加速度与作用力成正比,与质量成反比D. 物体的加速度与作用力成反比,与质量成正比答案:C4. 一个物体在水平面上受到一个恒定的力F,物体与水平面的摩擦系数为μ,下列说法正确的是:A. 物体将一直加速运动B. 物体将做匀速运动C. 物体将做减速运动D. 物体的运动状态取决于F和μ的大小关系答案:D5. 根据能量守恒定律,下列说法正确的是:A. 能量可以被创造或消灭B. 能量可以在不同形式间相互转换C. 能量的总量是不变的D. 能量的总量会随着时间减少答案:B6. 一个物体从高度h自由落下,忽略空气阻力,下列说法正确的是:A. 物体下落过程中速度不断减小B. 物体下落过程中速度不断增大C. 物体下落过程中速度保持不变D. 物体下落过程中速度先增大后减小答案:B7. 根据电磁感应定律,下列说法正确的是:A. 磁场的变化可以产生电流B. 电流的变化可以产生磁场C. 磁场的变化和电流的变化都可以产生电流D. 磁场的变化和电流的变化都不会产生电流答案:C8. 一个点电荷在电场中受到的电场力F与电荷量q和电场强度E之间的关系是:A. F = qEB. F = qE^2C. F = E^2/qD. F = q^2/E答案:A9. 根据热力学第一定律,下列说法正确的是:A. 能量守恒定律B. 热力学第二定律C. 热力学第三定律D. 热力学第四定律答案:A10. 一个物体在水平面上做匀速圆周运动,下列说法正确的是:A. 物体的线速度大小不变B. 物体的角速度大小不变C. 物体的向心加速度大小不变D. 物体的向心力大小不变答案:D二、填空题(每题3分,共15分)1. 根据牛顿第三定律,作用力和反作用力的大小______,方向______。

高考物理试题大题及答案

高考物理试题大题及答案

高考物理试题大题及答案一、选择题(每题4分,共40分)1. 下列关于光的折射现象描述正确的是:A. 光从空气斜射入水中时,折射角大于入射角B. 光从水中斜射入空气中时,折射角小于入射角C. 光从空气垂直射入水中时,折射角等于入射角D. 光从水中垂直射入空气中时,折射角等于入射角答案:C2. 根据牛顿第二定律,下列说法正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 物体的质量越大,加速度越小D. 物体的质量越大,加速度越大答案:A3. 在电磁感应现象中,下列说法错误的是:A. 闭合电路的一部分导体切割磁感线会产生感应电流B. 磁场的变化可以产生感应电流C. 感应电流的方向与磁场方向有关D. 感应电流的方向与导体运动方向无关答案:D4. 根据热力学第一定律,下列说法正确的是:A. 能量守恒定律B. 能量可以创造C. 能量可以消失D. 能量可以从低温物体自发地传递到高温物体答案:A5. 根据相对论,下列说法错误的是:A. 光速在任何惯性参考系中都是相同的B. 质量可以转化为能量C. 物体的质量随速度的增加而增加D. 物体的长度随速度的增加而增加答案:D6. 根据原子核物理,下列说法正确的是:A. 原子核由质子和中子组成B. 原子核由电子和质子组成C. 原子核由电子和中子组成D. 原子核由质子和电子组成答案:A7. 根据量子力学,下列说法错误的是:A. 电子在原子中以概率云的形式存在B. 电子在原子中以确定的轨道存在C. 量子力学是描述微观粒子行为的理论D. 量子力学中,粒子的位置和动量不能同时精确测量答案:B8. 在电场中,下列说法正确的是:A. 电场强度的方向与正电荷所受电场力的方向相同B. 电场强度的方向与负电荷所受电场力的方向相同C. 电场强度的方向与负电荷所受电场力的方向相反D. 电场强度的方向与正电荷所受电场力的方向相反答案:A9. 根据电磁波理论,下列说法错误的是:A. 电磁波可以在真空中传播B. 电磁波的传播速度等于光速C. 电磁波的传播需要介质D. 电磁波是由变化的电场和磁场相互作用产生的答案:C10. 在力学中,下列说法正确的是:A. 物体的惯性只与物体的质量有关B. 物体的惯性与物体的形状有关C. 物体的惯性与物体的运动状态有关D. 物体的惯性与物体所受的力有关答案:A二、填空题(每题4分,共20分)1. 根据欧姆定律,电阻R等于电压U与电流I的比值,即R =_______。

2025届高考物理复习:经典好题专项(卫星的变轨和对接问题)练习(附答案)

2025届高考物理复习:经典好题专项(卫星的变轨和对接问题)练习(附答案)

2025届高考物理复习:经典好题专项(卫星的变轨和对接问题)练习1.我国2021年4月29日在海南文昌航天发射场用长征五号B遥二运载火箭成功将空间站“天和”核心舱送入预定圆轨道,中国空间站在轨组装建造全面展开。

关于火箭发射以及空间站的组合、对接,下列说法正确的是()A.火箭发射升空过程中,发动机喷出的燃气推动空气,空气推动火箭上升B.空间站在轨运行的速率可能大于7.9 km/sC.飞船要和在轨的核心舱对接,通常是将飞船发射到较低的轨道上,然后使飞船加速实现对接D.在空间站中工作的航天员因为不受地球引力作用,所以处于完全失重状态2. 如图所示,虚线Ⅰ、Ⅱ、Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度7.9 km/s对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度11.2 km/s对应的脱离轨道,a、b、c三点分别位于三条轨道上,b点为轨道Ⅱ的远地点,b、c点与地心的距离均为轨道Ⅰ半径的2倍,则()A.卫星在轨道Ⅱ的运行周期为轨道Ⅰ周期的2倍B.卫星经过a点的速率为经过b点速率的2倍C.卫星在a点的加速度大小为在c点加速度大小的2倍D.质量相同的卫星在b点的机械能小于在c点的机械能3. (2023ꞏ广东省模拟)如图所示,我国“天问一号”火星探测器先由地火转移轨道1进入火星停泊轨道2,进行相关探测后进入较低的轨道3开展科学探测,则探测器()A.在轨道2上近火点加速可进入轨道3B.在轨道2上近火点的机械能比远火点小C.在轨道1上的运行速度不超过第二宇宙速度D.在轨道2与轨道3同一近火点的加速度相等4. (多选)(2023ꞏ江西省第一次联考)我国的“天问一号”火星探测器被火星捕获后,经过多次调整,进入预设的环火圆轨道Ⅰ做匀速圆周运动,如图所示,椭圆轨道Ⅱ、Ⅲ为两次调整轨道,点A是两椭圆轨道的近火点,点B、C分别是椭圆轨道Ⅱ、Ⅲ的远火点,下列说法正确的是()A.“天问一号”在轨道Ⅱ上A点的速率大于在轨道Ⅰ上A点的速率B.“天问一号”在轨道Ⅱ上运行的周期小于在轨道Ⅲ上运行的周期C.“天问一号”在轨道Ⅰ上经过A点时的加速度大于在轨道Ⅱ上经过A点时的加速度D.“天问一号”在轨道Ⅱ上由A点运行到B点的过程中,万有引力对其做正功5.(多选)长征五号遥四运载火箭直接将我国首次执行火星探测任务的“天问一号”探测器送入地火转移轨道,自此“天问一号”开启了奔向火星的旅程。

高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案1.[2024·湖南省衡阳市月考](多选)如图,一颗松子沿倾斜冰面AB 从顶端A 由静止匀加速滑下,1 s 后,松鼠从倾斜冰面的顶端A 以1.5 m/s 的初速度、3 m/s 2的加速度匀加速追赶松子.追赶过程中,松鼠与松子相隔的最远距离为98 m ,且松鼠恰好在底端B 处追上松子,则( )A .松子沿冰面下滑的加速度大小为2 m/s 2B .冰面AB 的长度为8 mC .松鼠从顶端A 出发后,经过2 s 就追上了松子D .在松鼠与松子相隔最远时,松鼠的速度大小为2 m/s 答案:AC解析:设松子运动的加速度为a ,经过时间t ,松鼠与松子相隔最远,此时松鼠与松子的速度均为v .根据位移—时间公式有v 2 t -v +1.52 (t -1)=98m ,根据匀变速直线运动公式有v =32 +3(t -1),解得t =1.5 s ,v =3 m/s ,故a =v t =2 m/s 2,A 正确,D 错误;设松子运动的时间为t ′时,松鼠追上松子,根据12 ×2t ′2=32 (t ′-1)+12 ×3(t ′-1)2,解得t ′=3 s ,松鼠经过2 s 追上松子,C 正确;倾斜冰面AB 的长度L =12×2t ′2=9 m ,B 错误.2.如图所示,一辆轿车和一辆卡车在同一公路上均由静止开始同时相向做匀加速直线运动,加速度大小分别为7 m/s 2和3 m/s 2,刚开始运动时两车车头相距20 m ,轿车车身全长为5 m ,卡车车身全长为20 m ,则从开始运动到两车分离的时间为( )A .1.0 sB .2.0 sC .3.0 sD .3.5 s 答案:C解析:设经过时间t 后,轿车和卡车车尾分离,轿车的位移x 1=12 a 1t 2,卡车的位移x 2=12a 2t 2,x 1+x 2=45 m. 联立解得t =3.0 s . 3.[2024·广东省广州市月考](多选)某公司为了测试摩托车的性能,让两驾驶员分别驾驶摩托车在一平直路面上行驶,利用速度传感器测出摩托车A 、B 的速度随时间变化的规律并描绘在计算机中,如图所示,发现两摩托车在t =25 s 时同时到达目的地.则下列叙述正确的是( )A .摩托车B 的加速度为摩托车A 的5倍B .两辆摩托车从同一地点出发,且摩托车B 晚出发10 sC .在0~25 s 时间内,两辆摩托车间的最远距离为400 mD .在0~25 s 时间内,两辆摩托车间的最远距离为180 m 答案:AC解析:v ­t 图像的斜率表示加速度,则A 、B 两车的加速度分别为a A =ΔvΔt =0.4 m/s 2,a B =Δv ′Δt ′ =2 m/s 2,因为a B a A =20.4 =51 ,所以摩托车B 的加速度为摩托车A 的5倍,A 正确;由题图可知,在t =25 s 时两车达到相同的速度,在此之前摩托车A 速度一直大于摩托车B 速度,两辆摩托车距离一直在缩小,所以在t =0时刻,两辆摩托车距离最远,不是从同一地点出发的,B 错误;速度图像和坐标轴围成的面积代表摩托车行驶的位移,因此两辆摩托车间的最远距离Δx =x A -x B =12 ×(20+30)×25 m -12 ×30×(25-10) m =400 m ,C 正确,D 错误.4.[2024·辽宁省朝阳市建平实验中学期中考试]在某次遥控车挑战赛中,若a 、b 两个遥控车从同一地点向同一方向做直线运动,它们的v ­t 图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2 m 处B .运动过程中,b 车落后a 车的最大距离为1.5 mC .b 车启动3 s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇答案:A解析:b 车启动时,a 车在其前方距离Δx =12 ×2×1 m =1 m ,A 错误;运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为Δx m =1+32 ×1 m -12×1×1 m=1.5 m ,B 正确;b 车启动3 s 后,a 车的位移x a =12 ×2×1 m +3×1 m =4 m ,b 车的位移x b =1+32 ×2 m =4 m ,即b 车恰好追上a 车,C 正确;b 车超过a 车后,因b 车速度大于a车,则两车不会再相遇,D 正确.5.[2024·湖南省衡阳市月考](多选)如图,小球a 自地面高h 处做自由落体运动,同时位于小球a 正下方的小球b 自地面以初速度v 0竖直上抛,b 球上升到最高点时恰与a 球相遇,a 、b 均可视为质点,则( )A .a 、b 两球经过时间hv 0 相遇B .a 、b 两球相遇点距地面高度为h2C .a 、b 两球在相遇过程中速度变化量的大小不相等D .a 、b 两球在相遇过程中速度变化量的方向不相同 答案:AB解析:设两者经过时间t 相遇,对小球a ,有h 1=12 gt 2;对小球b ,有h 2=v 0t -12 gt 2,t =v 0g ,且h 1+h 2=h ,联立解得t =h v 0 ,h 1=h 2=h2 ,A 、B 正确;两球在相遇过程中,均做加速度为g 的匀变速运动,速度变化量的大小和方向均相同,C 、D 错误.6.[2024·福建省龙岩市一级校联盟联考]电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通信.如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5 m以内时能够实现通信.t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为5 m/s,乙车的速度为2 m/s,O1、O2的距离为3 m.从该时刻起甲车以1 m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动.(忽略信号传递及重新连接所需的时间)求:(1)从t=0时刻起,甲车的运动时间;(2)在甲车停下来之前,两车在前进方向上的最大距离;(3)从t=0时刻起两车能够进行蓝牙通信的总时间.答案:(1)5 s(2)4.5 m(3)6.25 s解析:(1)甲车运动到停止0=v甲+a甲t其中a甲=-1 m/s2,代入数据得t=5 s(2)两车共速时,沿前进方向的距离最大:即v乙=v甲+a甲t′t′=3 s根据位移—时间公式有x甲=v甲t′+12a甲t′2,x乙=v乙t′Δx=x甲-x乙解得Δx=4.5 m(3)根据几何知识可知,当甲车在乙车前方且O1O2=5 m时,有x甲-x乙=4 m根据运动学公式有x甲=v甲t-12at2,x乙=v乙t解得t1=2 s,t2=4 s当0<t<2 s时,有O1O2<5 m,当2 s<t<4 s时,有O1O2>5 mt=t2=4 s时,甲车的速度为v甲1=v甲-at2=1 m/s<v乙t=4 s之后,甲、乙两车的距离不断减小,且甲车能够继续行驶的距离为x甲1=v2甲12a=0.5 m根据几何关系可知,从t=4 s开始到乙车行驶至甲车前方4 m的过程中,O1O2<5 m,这段过程经历的时间为t′=2×4 m+0.5 mv乙=4.25 s所以甲、乙两车能利用蓝牙通信的时间为t总=2 s+4.25 s=6.25 s。

高考必考50道经典物理题(含答案)

高考必考50道经典物理题(含答案)

高考必考50道经典物理题(含答案)1. 题目:一个物体从2m/s加速度减小为1m/s,时间为3秒。

求这段时间内物体的位移。

答案:根据物体加速度的定义,加速度等于位移差除以时间差。

所以,位移差等于加速度乘以时间差。

因此,位移差为(2m/s - 1m/s) * 3s = 3m。

2. 题目:一个小车以10m/s的速度匀速行驶了5秒,求小车的位移。

答案:位移等于速度乘以时间。

所以,位移为10m/s * 5s =50m。

3. 题目:一个物体以5m/s的速度自由落体,落地时速度为15m/s。

求物体在空中的时间。

答案:根据自由落体运动的公式,下落的时间只与加速度有关,与初始速度无关。

加速度为重力加速度,约等于9.8m/s^2。

所以,物体在空中的时间可以通过速度变化来计算,即(15m/s - 5m/s) /9.8m/s^2 = 1.02s。

4. 题目:一个物体以10m/s的速度竖直上抛,经过2秒达到最高点。

求物体的加速度。

答案:由于在最高点的速度为0,根据竖直上抛运动的公式,可以求得加速度。

根据公式 v = u - gt,其中v为最终速度,u为初始速度,g为加速度,t为时间,可以得到0 = 10m/s - 2s * g。

解这个方程,可以得到加速度g = 5m/s^2。

5. 题目:一个物体以10m/s的速度投出,经过3秒落地。

求物体的最大高度。

答案:根据竖直上抛运动的公式 h = u * t - 0.5 * g * t^2,其中h 为最大高度,u为初始速度,t为时间,g为加速度。

代入已知条件,可以得到最大高度 h = 10m/s * 3s - 0.5 * 9.8m/s^2 * (3s)^2 = 45.1m。

6. 题目:一个物体水平抛出,初速度为10m/s,以30°角度抛出。

求物体的落点距离起点的水平距离。

答案:将初始速度分解为水平方向和竖直方向的分速度。

水平方向的速度为u_cosθ,竖直方向的速度为u_sinθ,其中u为初始速度,θ为抛出角度。

高考物理试题及答案解析

高考物理试题及答案解析

高考物理试题及答案解析一、选择题(每题3分,共30分)1. 以下关于牛顿第二定律的表述中,正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 力是物体运动状态变化的原因D. 力是物体运动状态不变的结果答案:A解析:牛顿第二定律表明,力是改变物体运动状态的原因,即物体的加速度与作用在其上的合力成正比,与物体的质量成反比。

因此,选项A是正确的。

2. 两个物体A和B,质量分别为m和M,它们之间的万有引力为F,如果将它们的质量都增加到原来的两倍,则它们之间的万有引力变为:A. 2FB. 4FC. 8FD. 16F答案:C解析:根据万有引力定律,F = G * (m * M) / r^2,其中G是万有引力常数,r是两物体之间的距离。

当质量都增加到原来的两倍时,新的万有引力F' = G * (2m * 2M) / r^2 = 4 * G * (m * M) / r^2 = 4F。

因此,选项C是正确的。

3. 一个物体从静止开始沿直线运动,前2秒内的平均速度为3m/s,那么在这2秒内物体的位移为:A. 3mB. 6mC. 9mD. 12m答案:B解析:平均速度的定义是位移除以时间,即v = x / t。

已知平均速度v为3m/s,时间t为2秒,所以位移x = v * t = 3m/s * 2s = 6m。

因此,选项B是正确的。

4. 以下关于电场的表述中,正确的是:A. 电场线是真实存在的B. 电场线越密的地方电场强度越大C. 电场线是闭合的D. 电场线的方向是正电荷的受力方向答案:B解析:电场线是人为引入的概念,用来形象地表示电场的分布和方向,因此选项A是错误的。

电场线的密度表示电场强度的大小,因此选项B是正确的。

电场线从正电荷出发,终止于负电荷,不是闭合的,所以选项C是错误的。

电场线的方向是正电荷所受电场力的方向,因此选项D是正确的。

5. 一个电路中,电阻R1和R2并联,总电阻R等于:A. R1 + R2B. R1 * R2 / (R1 + R2)C. 1 / (1/R1 + 1/R2)D. R1 * R2 / (R1 - R2)答案:C解析:并联电路的总电阻R可以通过公式1/R = 1/R1 + 1/R2计算得出,因此选项C是正确的。

高考物理力学大题习题20题Word版含答案及解析

高考物理力学大题习题20题Word版含答案及解析

高考物理力学大题习题20题1.一长木板在光滑水平地面上匀速运动,在t=0时刻将一物块无初速轻放到木板上,此后长木板运动的速度﹣时间图象如图所示.已知长木板的质量M=2kg ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取g=10m/s 2,求:(1)物块的质量m ;(2)这一过程中长木板和物块的内能增加了多少? 【答案】(1)4kg (2)2211()24J 22Q Mv M m v =-+=共 【解析】(1)长木板和物块组成的系统动量守恒:)Mv M m v 共(=+ 将2M kg =, 6.0/v m s =, 2.0?/v m s =共,代入解得:4m kg = 。

(2)设这一过程中长木板和物块的内能增加量为Q ,根据能量守恒定律:2211()24J 22Q Mv M m v =-+=共 点睛:解决本题的关键理清物块和木板的运动规律,结合牛顿第二定律和运动学公式进行求解,知道图线的斜率表示加速度,图线与时间轴围成的面积表示位移。

2.如图所示的水平地面。

可视为质点的物体A 和B 紧靠在一起,静止于b 处,已知A 的质量为3m ,B 的质量为m 。

两物体在足够大的内力作用下突然沿水平方向左右分离。

B 碰到c 处的墙壁后等速率反弹,并追上已停在ab 段的A ,追上时B 的速率等于两物体刚分离时B 的速率的一半。

A 、B 与地面的动摩擦因数均为μ,b 与c 间的距离为d ,重力加速度为g 。

求:(1)分离瞬间A 、B 的速率之比; (2)分离瞬间A 获得的动能。

【答案】(1) (2)【解析】【详解】(1)分离瞬间对A 、B 系统应用动量守恒定律有:解得:;(2) A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:对B 从两物体分离后到追上A 的过程应用动能定理:两物体的路程关系是分离瞬间A 获得的动能联立解得:。

3.甲、乙两车同时同向从同一地点出发,甲车以v1=16 m/s 的初速度,a1=-2 m/s 2的加速度做匀减速直线运动,乙车以v2=4 m/s 的初速度,a2=1 m/s 2的加速度做匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。

物理高考试题卷子及答案

物理高考试题卷子及答案

物理高考试题卷子及答案一、选择题(每题3分,共30分)1. 下列关于光速的说法正确的是:A. 光在真空中的速度是3×10^8 m/sB. 光在空气中的速度大于在真空中的速度C. 光在所有介质中的速度都小于在真空中的速度D. 光速是恒定不变的答案:A2. 一个物体在水平面上以恒定加速度运动,下列说法正确的是:A. 物体的速度随时间线性增加B. 物体的加速度随时间线性增加C. 物体的位移随时间的平方线性增加D. 物体的位移与时间的关系是二次函数答案:D3. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力作用在同一个物体上C. 作用力和反作用力可以同时产生和消失D. 作用力和反作用力总是同时存在答案:A4. 一个物体从静止开始自由下落,不计空气阻力,下列说法正确的是:A. 物体下落的加速度是9.8 m/s^2B. 物体下落的速度与时间成正比C. 物体下落的位移与时间的平方成正比D. 物体下落的位移与时间成正比答案:C5. 根据能量守恒定律,下列说法正确的是:A. 能量可以在不同形式之间转换B. 能量可以在不同物体之间转移C. 能量的总量在封闭系统中是恒定的D. 所有以上说法答案:D6. 一个弹簧振子的周期与下列哪个因素无关:A. 弹簧的劲度系数B. 振子的质量C. 振子的初始位置D. 振子的初始速度答案:C7. 根据热力学第一定律,下列说法正确的是:A. 热量只能从高温物体传向低温物体B. 热量不能自发地从低温物体传向高温物体C. 热量的传递总是伴随着其他形式能量的变化D. 所有以上说法答案:C8. 根据电磁感应定律,下列说法正确的是:A. 感应电动势与磁通量的变化率成正比B. 感应电动势与磁通量成正比C. 感应电动势与导体的运动速度成正比D. 感应电动势与导体的长度成正比答案:A9. 在理想气体状态方程中,下列说法正确的是:A. 气体的压强与体积成正比B. 气体的压强与温度成反比C. 气体的压强与体积成反比,与温度成正比D. 气体的压强与体积成正比,与温度成反比答案:C10. 根据光电效应现象,下列说法正确的是:A. 光电子的最大初动能与入射光的频率成正比B. 光电子的最大初动能与入射光的强度成正比C. 光电子的最大初动能与入射光的波长成反比D. 光电子的最大初动能与入射光的频率无关答案:C二、填空题(每题4分,共20分)1. 一个物体的质量为2kg,受到的重力大小为______N。

高考物理《碰撞问题》真题练习含答案

高考物理《碰撞问题》真题练习含答案

高考物理《碰撞问题》真题练习含答案1.如图,在光滑水平面上,一质量为100 g 的A 球,以2 m/s 的速度向右运动,与质量为200 g 大小相同的静止B 球发生对心碰撞,撞后B 球的速度大小为1.2 m/s ,取A 球初速度方向为正方向,下列说法正确的是( )A .该碰撞为弹性碰撞B .该碰撞为完全非弹性碰撞C .碰撞前后A 球的动量变化为-1.6 kg·m/sD .碰撞前后A 球的动量变化为-0.24 kg·m/s答案:D解析:以A 球初速度方向为正方向,碰撞过程根据动量守恒得m A v 0=m A v A +m B v B ,解得A 球碰后的速度为v A =-0.4 m/s ,碰撞前后A 球的动量变化为Δp =m A v A -m A v 0=0.1×(-0.4) kg·m/s -0.1×2 kg·m/s =-0.24 kg·m/s ,C 错误,D 正确;碰撞前系统的机械能为E 1=12m A v 20 =12 ×0.1×22 J =0.2 J ,碰撞后系统的机械能为E 2=12 m A v 2A +12 m B v 2B =12×0.1×0.42 J +12×0.2×1.22 J =0.152 J ,由于E 2<E 1,且碰后A 、B 速度并不相同,则该碰撞不是弹性碰撞,也不是完全非弹性碰撞,A 、B 错误.2.[2024·辽宁省沈阳市期中考试]在某次台球比赛中,质量均为m 、材料相同的白球和黑球静止在水平台球桌面上,某时刻一青少年瞬击白球后,白球与一静止的黑球发生了对心碰撞,碰撞前后两球的位置标记如图所示,A 、B 分别为碰前瞬间白球、黑球所在位置,C 、D 分别为碰撞后白球、黑球停止的位置.则由图可知白、黑两球碰撞过程中损失的动能与碰前时刻白球动能的比值为( )A .12B .23C .49D .59答案:C解析:令碰后白球的位移为3x 0,则黑球碰后位移为12x 0,碰撞过程,根据动量守恒定律有m v 0=m v 1+m v 2,碰撞后两球做匀减速直线运动,利用逆向思维,根据速度与位移关系有v 21 =2μg ·3x 0,v 22 =2μg ·12x 0,白、黑两球碰撞过程中损失的动能ΔE k =12 m v 20 -12m v 21 -12 m v 22 ,碰前时刻白球动能E k0=12 m v 20 ,解得ΔE k ΔE k0 =49,C 正确. 3.[2024·北京市顺义区期中考试]如图所示,两物块A 、B 质量分别为m 、2m ,与水平地面的动摩擦因数分别为2μ、μ,其间用一轻弹簧连接.初始时弹簧处于原长状态,使A 、B 两物块同时获得一个方向相反,大小分别为v 1、v 2的水平速度,弹簧再次恢复原长时两物块的速度恰好同时为零.关于这一运动过程,下列说法正确的是( )A .两物块A 、B 及弹簧组成的系统动量不守恒B .两物块A 、B 及弹簧组成的系统机械能守恒C .两物块A 、B 初速度的大小关系为v 1=v 2D .两物块A 、B 运动的路程之比为2∶1答案:D解析:分析可知,物块A 、B 的质量分别为m 、2m ,与地面间的动摩擦因数分别为2μ、μ,因此在滑动过程中,两物块所受的摩擦力大小都等于2μmg ,且方向相反,由此可知系统所受合外力为零,系统动量守恒,A 错误;在系统运动过程中要克服摩擦力做功,系统的机械能转化为内能,系统机械能不守恒,B 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,解得v 1=2v 2,C 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,设A 、B 的路程分别为s 1、s 2,则有m s 1t -2m s 2t=0,解得s 1∶s 2=2∶1,D 正确.4.随着科幻电影《流浪地球》的热映,“引力弹弓效应”进入了公众的视野.“引力弹弓效应”是指在太空运动的探测器,借助行星的引力来改变自己的速度.为了分析这个过程,可以提出以下两种模式:探测器分别从行星运动的反方向或同方向接近行星,分别因相互作用改变了速度.如图所示,以太阳为参考系,设行星运动的速度为u ,探测器的初速度大小为v 0,在图示的两种情况下,探测器在远离行星后速度大小分别为v 1和v 2.探测器和行星虽然没有发生直接的碰撞,但是在行星的运动方向上,其运动规律可以与两个质量不同的钢球在同一条直线上发生的弹性碰撞规律作类比.那么下列判断中正确的是( )A .v 1>v 0B .v 1=v 0C .v 2>v 0D .v 2=v 0答案:A解析:根据题意,设行星的质量为M ,探测器的质量为m ,当探测器从行星的反方向接近行星时(题中左图),再设向左为正方向,根据动量守恒和能量守恒得-m v 0+Mu =Mu ′+m v 1.12 m v 20 +12 Mu 2=12 Mu ′2+12m v 21 ,整理得v 1-v 0=u +u ′,所以v 1>v 0,A 正确,B 错误;同理,当探测器从行星的同方向接近行星时(题中右图),再设向左为正方向,根据动量守恒和能量守恒得m v 0+Mu =Mu ″-m v 2,12 m v 20 +12 Mu 2=12 Mu ″2+12m v 22 ,整理得v 0-v 2=u +u ″,所以v 2<v 0,C 、D 错误.5.如图所示,质量为M 的滑块静止在光滑水平地面上,其左侧是四分之一光滑圆弧,左端底部恰好与地面相切.两小球的质量分别为m 1=2 kg 、m 2=3 kg ,m 1的初速度为v 0,m 2保持静止.已知m 1与m 2发生弹性正碰,要使m 1与m 2发生两次碰撞,则M 可能为( )A .2 kgB .3 kgC .5 kgD .6 kg答案:D解析:m 1与m 2发生第一次弹性碰撞后,设小球m 1与m 2的速度分别为v 1、v 2,则由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,系统机械能守恒,有12 m 1v 20 =12 m 1v 21 +12m 2v 22 ,解得v 1=m 1-m 2m 1+m 2 v 0,v 2=2m 1m 1+m 2v 0;进入四分之一圆弧轨道M ,当m 2离开圆弧轨道时,设m 2的速度为v ′2,根据动量守恒和机械能守恒得v ′2=m 2-M m 2+Mv 2,要使m 1与m 2发生两次碰撞,则v ′2<0,即m >m 2,且|v ′2|>|v 1|,联立解得M >5 kg ,D 正确.6.[2024·浙江省宁波金兰教有合作组织联考]有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L ,已知他自身的质量为m ,忽略船运动过程中水对它的阻力,则可测得船的质量为( )A .m (L -d )dB .m (L +d )dC .m (L +d )LD .mL d答案:A解析:设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人和船的相对位移为L ,人从船尾走到船头所用时间为t ,则v =d t ,v ′=L -d t,人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,A 正确. 7.如图所示,平板小车A 放在光滑水平面上,长度L =1 m ,质量m A =1.99 kg ,其上表面距地面的高度h =0.8 m .滑块B (可视为质点)质量m B =1 kg ,静置在平板小车的右端,A 、B 间的动摩擦因数μ=0.1.现有mC =0.01 kg 的子弹以v 0=400 m/s 速度向右击中小车A 并留在其中,且击中时间极短,g 取10 m/s 2.求:(1)子弹C 击中平板小车A 后的瞬间,A 速度多大?(2)B 落地瞬间,平板小车左端与滑块B 的水平距离x 多大?答案:(1)2 m/s (2)0.4 m解析:(1)子弹C 击中小车A 后并留在其中,则A 与C 共速,速度为v 1,以v 0为正方向,根据动量守恒有m C v 0=(m C +m A )v 1,得v 1=2 m/s(2)设A 与B 分离时的速度分别是v 2、v 3,对A 、B 、C 组成的系统分析,由动量守恒和动能定理得(m A +m C )v 1=(m A +m C )v 2+m B v 3-μm B gL =12 (m A +m C )v 22 +12 m B v 23 -12(m A +m C )v 21 解得v 2=53 m/s ,v 3=23m/s 或v 2=1 m/s ,v 3=2 m/s(舍去,因为A 的速度不能小于B 的速度)B 从A 飞出以v 3做平抛运动,则h =12gt 2 得t =0.4 sA 以v 2向右做匀速直线运动,则当B 落地时,它们的相对位移x =(v 2-v 3)t =0.4 m8.[2024·河北省唐山市一中联盟联考]如图所示,光滑水平面上有一质量M =1.98 kg 的小车,小车上表面有一半径为R =1 m 的14光滑圆弧轨道,与水平轨道在B 点相切,B 点右侧粗糙,小车的最右端D 点竖直固定轻质弹簧片CD .一个质量m =2 kg 的小球置于车的B 点,车与小球均处于静止状态,有一质量m 0=20 g 的子弹,以速度v 0=800 m/s 击中小车并停留在车中,设子弹击中小车的过程时间极短,已知小球与弹簧片碰撞时无机械能损失,BD 之间距离为0.3 m ,小球与水平轨道间的动摩擦因数μ=0.5,g 取10 m/s 2.求:(1)子弹击中小车后的瞬间,小车的速度;(2)小球再次返回圆弧轨道最低点时,小球的速度大小;(3)小球最终相对于B 点的距离.答案:(1)8 m/s (2)8 m/s (3)0.2 m解析:(1)取向右为正方向,子弹打小车过程,子弹和小车系统动量守恒m 0v 0=(m 0+M )v解得v =8 m/s(2)子弹、小车和小球构成的系统动量守恒(m 0+M )v =(m 0+M )v 1+m v 2子弹、小车和小球构成的系统机械能守恒12 (m 0+M )v 2=12 (m 0+M )v 21 +12m v 22 联立可得v 1=0 v 2=8 m/s(3)小球最终状态是三者共速时(m 0+M )v =(m 0+m +M )v 3损失的机械能12 (m 0+M )v 2-12(m 0+m +M )v 23 =μmgs 联立可得s =3.2 m所以相对于B 点的距离是x =s -0.3×10 m =0.2 m9.[2024·江苏省宿迁市月考]如图所示,滑块A 、B 、C 位于光滑水平面上,已知A 的质量m A =1 kg ,B 的质量m B =m C =2 kg.滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v 0=3 m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用,直至分开未与C 相撞.整个过程弹簧没有超过弹性限度,求:(1)弹簧被压缩到最短时,B 物体的速度大小;(2)弹簧给滑块B 的冲量;(3)滑块A 的动能最小时,弹簧的弹性势能.答案:(1)1 m/s (2)4 N·s ,方向向右(3)2.25 J解析:(1)对AB 系统,AB 速度相等时,弹簧被压缩到最短.取向右为正方向,根据动量守恒定律可得m A v 0=(m A +m B )v 1代入数据解得v 1=1 m/s(2)在弹簧作用的过程中,B 一直加速,B 与弹簧分开后,B 的速度最大,取向右为正方向,根据动量守恒定律可得m A v 0=m A v A +m B v B根据机械能守恒定律可得12 m A v 20 =12 m A v 2A +12m B v 2B 联立解得v B =2 m/s对B 根据动量定理可得I =m B v B -0=2×2 N·s -0=4 N·s方向向右;(3)滑块A 的动能最小时速度为零,取向右为正方向,根据动量守恒定律可得m A v 0=m B v ′B 代入数据解得v ′B =1.5 m/s根据功能关系可得E p =12 m A v 20 -12m B v ′2B 代入数据解得E p =2.25 J .。

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习1. (2023ꞏ广东省深圳中学阶段测试)如图所示,一水平的浅色长传送带上放置一质量为m 的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

初始时,传送带与煤块都是静止的。

现让传送带以恒定的加速度a 开始运行,当其速度达到v 后,便以此速度做匀速运行。

传送带速度达到v 时,煤块未与其共速,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )( )A .μ与a 之间一定满足关系μ>a gB .煤块从开始运动到相对于传送带静止经历的位移为v 2μgC .煤块从开始运动到相对于传送带静止经历的时间为v μgD .黑色痕迹的长度为v 22μg2. 如图所示,一绷紧的水平传送带以恒定的速率v =10 m/s 运行,某时刻将一滑块轻轻地放在传送带的左端,已知传送带与滑块间的动摩擦因数为0.2,传送带的水平部分A 、B 间的距离足够长,将滑块刚放上去2 s 时突然停电,传送带立即做加速度大小a =4 m/s 2的匀减速运动至停止(重力加速度取g =10 m/s 2)。

则滑块运动的位移为( )A .8 mB .13.5 mC .18 mD .23 m3. 如图所示,物块放在一与水平面夹角为θ的传送带上,且始终与传送带相对静止。

关于物块受到的静摩擦力F f ,下列说法正确的是( )A .当传送带加速向上运动时,F f 的方向一定沿传送带向上B .当传送带加速向上运动时,F f 的方向一定沿传送带向下C .当传送带加速向下运动时,F f 的方向一定沿传送带向下D .当传送带加速向下运动时,F f 的方向一定沿传送带向上4.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。

如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。

全国卷物理高考试题汇总(带解析)

全国卷物理高考试题汇总(带解析)

(全国卷1)25.(18分)如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速周运动,星球A 和B 两者中心之间距离为L 。

已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。

引力常数为G 。

⑴ 求两星球做圆周运动的周期。

⑵ 在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行为的周期记为T 1。

但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T 2。

已知地球和月球的质量分别为5.98×1024kg 和 7.35 ×1022kg 。

求T 2与T 1两者平方之比。

(结果保留3位小数)【答案】⑴)(23m M G LT +=π⑵1.01【解析】 ⑴A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等。

且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期。

因此有R M r m 22ωω=,L R r =+,连立解得LMm m R +=,LM m M r +=对A 根据牛顿第二定律和万有引力定律得LmM M Tm LGMm+=22)2(π化简得)(23m M G LT +=π⑵将地月看成双星,由⑴得)(231m M G LT +=π将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得LTm LGMm 22)2(π=化简得GM LT 322π=所以两种周期的平方比值为01.11098.51035.71098.5)(242224212=⨯⨯+⨯=+=MM m T T(新课标卷)20.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图像.图中坐标系的横轴是lg(/)O T T ,纵轴是lg (/)O R R ;这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径,O T 和0R 分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是答案:B解析:根据开普勒周期定律:周期平方与轨道半径三次方正比可知23T kR =,320kR T =两式相除后取对数,得:30322lglgR RT T=,整理得:00lg3lg2R RT T =,选项B正确。

历年物理高考试题及答案

历年物理高考试题及答案

历年物理高考试题及答案一、单项选择题(每题3分,共30分)1. 光在真空中的传播速度是()。

A. 3×10^8 m/sB. 2×10^8 m/sC. 3×10^5 km/hD. 2×10^5 km/h答案:A2. 一个物体从静止开始做匀加速直线运动,经过4秒后速度达到16m/s,那么加速度是()。

A. 4m/s^2B. 2m/s^2C. 8m/s^2D. 16m/s^2答案:B3. 两个点电荷之间的库仑力的大小与它们之间的距离平方成反比,当距离增加一倍时,库仑力的大小变为原来的()。

A. 1/2B. 1/4C. 2D. 4答案:B4. 一个物体在水平面上受到一个恒定的拉力作用,如果拉力的方向与物体运动方向一致,则物体的加速度()。

A. 增加B. 减少C. 不变D. 无法确定答案:A5. 根据热力学第二定律,下列说法正确的是()。

A. 不可能从单一热源吸热使之全部转化为功而不产生其他效果B. 热量可以自发地从低温物体传到高温物体C. 一切自然过程总是沿着分子热运动的无序性增大的方向进行D. 以上说法都不正确答案:A6. 一个质量为m的物体从高处自由落下,忽略空气阻力,其下落过程中重力势能转化为()。

A. 动能B. 内能C. 弹性势能D. 机械能答案:A7. 一个弹簧振子做简谐运动,其振幅为A,周期为T,那么振子的角频率ω为()。

A. 2π/TB. 2A/TC. A/TD. T/(2π)答案:A8. 根据牛顿第三定律,作用力和反作用力的大小关系是()。

A. 相等B. 不相等C. 可以相等也可以不相等D. 无法确定答案:A9. 一个物体在水平面上做匀速圆周运动,其向心力的方向()。

A. 始终指向圆心B. 始终与速度方向相反C. 始终与速度方向相同D. 始终与速度方向垂直答案:A10. 根据麦克斯韦方程组,下列说法正确的是()。

A. 电场是由电荷产生的B. 磁场是由电流产生的C. 变化的磁场会产生电场D. 以上说法都正确答案:D二、多项选择题(每题4分,共20分)1. 以下哪些现象是光的干涉现象()。

高中物理高考经典名题专项练习(共20题,附参考答案和解析)

高中物理高考经典名题专项练习(共20题,附参考答案和解析)

高考物理经典名题练习班级考号姓名总分1、甲、乙两个储气罐储存有同种气体(可视为理想气体).甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等.求调配后(i)两罐中气体的压强;(ii)甲罐中气体的质量与甲罐中原有气体的质量之比.2、在磁感应强度为 B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变,放射出的α粒子在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q 分别表示α粒子的质量和电荷量,M 表示新核的质量,放射性原子核用表示,新核的元素符号用Y表示,该衰变过程释放的核能都转化为α粒子和新核Y 的动能,则()A.新核Y 和α粒子的半径之比B.α粒子的圆周运动可以等效成一个环形电流,环形电流大小(Wewuli)C.新核的运动周期D.衰变过程的质量亏损为3、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为,长为,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为的薄绝缘涂层,匀强磁场的磁感应强度大小为,方向与导轨平面垂直,质量为的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。

导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为,其他部分的电阻均不计,重力加速度为,求:(1)导体棒与涂层间的动摩擦因数;(2)导体棒匀速运动的速度大小;(3)整个运动过程中,电阻产生的焦耳热。

4、如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。

若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。

学.科网物块与桌面间的动摩擦因数为()A. B. C. D.5、如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa 水平,b点为抛物线顶点。

已知h=2m,,s=。

高考物理试题真题及答案

高考物理试题真题及答案

高考物理试题真题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项符合题意)1. 以下关于光的干涉现象的描述,正确的是:A. 光的干涉现象是光的波动性的体现B. 光的干涉现象只发生在光的传播过程中C. 光的干涉现象需要两个相干光源D. 光的干涉现象是光的粒子性的体现答案:A2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相同B. 作用力和反作用力大小相等,方向相反C. 作用力和反作用力同时产生,同时消失D. 作用力和反作用力可以是不同性质的力答案:B3. 一个物体在水平面上做匀速直线运动,以下关于摩擦力的描述,正确的是:A. 摩擦力的方向与物体运动方向相反B. 摩擦力的方向与物体运动方向相同C. 摩擦力的大小与物体的速度成正比D. 摩擦力的大小与物体的质量成正比答案:A4. 以下关于电磁感应现象的描述,正确的是:A. 电磁感应现象是电场和磁场相互转化的结果B. 电磁感应现象是磁场对导体中自由电子的作用C. 电磁感应现象是导体在磁场中运动的结果D. 电磁感应现象是导体中电流的产生答案:D5. 一个物体从静止开始做自由落体运动,以下关于其运动的描述,正确的是:A. 物体下落过程中速度不断减小B. 物体下落过程中速度不断增大C. 物体下落过程中加速度不断减小D. 物体下落过程中加速度保持不变答案:D6. 以下关于原子核结构的描述,正确的是:A. 原子核由质子和中子组成B. 原子核由电子和质子组成C. 原子核由质子和电子组成D. 原子核由中子和电子组成答案:A7. 以下关于电磁波的描述,正确的是:A. 电磁波在真空中的传播速度是光速B. 电磁波在真空中的传播速度是声速C. 电磁波在真空中的传播速度是音速D. 电磁波在真空中的传播速度是光速的一半答案:A8. 以下关于热力学第一定律的描述,正确的是:A. 热力学第一定律是能量守恒定律的另一种表述B. 热力学第一定律表明能量可以被创造或消灭C. 热力学第一定律只适用于理想气体D. 热力学第一定律表明能量可以从高温物体转移到低温物体答案:A9. 以下关于光的折射现象的描述,正确的是:A. 光从空气斜射入水中时,折射角大于入射角B. 光从空气斜射入水中时,折射角小于入射角C. 光从水中斜射入空气中时,折射角大于入射角D. 光从水中斜射入空气中时,折射角小于入射角答案:B10. 以下关于电流的描述,正确的是:A. 电流的方向与电子运动的方向相反B. 电流的方向与电子运动的方向相同C. 电流的方向与正电荷运动的方向相反D. 电流的方向与正电荷运动的方向相同答案:A二、填空题(本题共5小题,每小题4分,共20分)1. 根据欧姆定律,电阻R、电压U和电流I之间的关系是:__________。

2024高考物理试题及答案解析

2024高考物理试题及答案解析

2024高考物理试题及答案解析一、选择题(每题3分,共30分)1. 下列关于光的描述中,正确的是:A. 光在真空中传播速度为3×10^8 m/sB. 光在所有介质中传播速度都比在真空中快C. 光是电磁波的一种D. 光的传播不需要介质答案:AC解析:光在真空中传播速度确实是3×10^8 m/s,这是光速的常数值。

光在介质中传播速度会因为介质的折射率不同而变慢,所以选项B是错误的。

光是电磁波的一种,这是正确的,因此选项C也正确。

光的传播不需要介质,这是光的波动性质决定的,所以选项D也是正确的。

2. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力作用在不同的物体上C. 作用力和反作用力同时产生,同时消失D. 作用力和反作用力是同一种力答案:ABC解析:牛顿第三定律指出,对于两个相互作用的物体,它们之间的力是大小相等、方向相反的,并且作用在不同的物体上,同时产生和消失。

因此,选项A、B和C都是正确的。

选项D是错误的,因为作用力和反作用力虽然是大小相等、方向相反的,但它们是作用在不同物体上的,所以它们不是同一种力。

3. 以下关于电场的描述中,错误的是:A. 电场线是电场中实际存在的线B. 电场线的方向是正电荷所受电场力的方向C. 电场线越密,电场强度越大D. 电场线是正电荷运动的轨迹答案:AD解析:电场线是人为引入的虚拟线,用于描述电场的分布和方向,因此选项A是错误的。

电场线的方向确实是正电荷所受电场力的方向,所以选项B是正确的。

电场线越密,表示电场强度越大,因此选项C是正确的。

电场线并不是正电荷运动的轨迹,因此选项D是错误的。

二、填空题(每题4分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在没有外力作用下保持______。

答案:不变解析:能量守恒定律指出,一个封闭系统的总能量是恒定的,即能量不能被创造或消失,只能从一种形式转化为另一种形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.(7分)如图14所示,两平行金H导轨间的距离L=O40 m,金属导轨所在的平面与水平面夹角0 =37° ,在导轨所在平面内,分布着磁感应强度B=0 50T、方向垂点于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=45V、内阻r=0 50 Q的直流电源.现把一个质⅛m=0 040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接图14触的两点间的电阻R0=25Q,金属导轨电阻不计,g取10n√s2.已知SIn 37° =0 60, COS 370 =0 80,求:(1)通过导体棒的电流;(2)导体棒受到的安培力人小:(3)导体棒受到的摩擦力15.(7分)如图15所示,边长L=O dOm的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R O=IOQ, 金属棒W与正方形导线框的对角线长度恰好相等,金属棒Mi的电阻r=0 20 Ω .导线框放置在匀强磁场中,磁场的磁感应强度B=O 50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金屈棒以v=4 0m∕s的速度向右匀速运动,当金属棒运动至AC的位置时,求(计算结果保留两位有效数字):图15(1)金属棒产生的电动势大小:(2)金属棒MN匕通过的电流人小和方向;(3)导线框消耗的电功率.16.(8分)如图16所示,正方形导线框abed的质量为m、边长为1, 导线框的总电阻为R.导线框从垂直紙面向里的水平有界匀强磁场的上方某处由静止自由卜•落,卜落过程中,导线框始终在与磁场垂直的竖直平面内,Cd边保持水平.磁场的磁感应强度人小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为1己.知Cd边刚进入磁场时线框恰好做匀速运动.觅力加速度为g. rrrrrry (1)求Cd边刚进入磁场时导线框的速度大小. XXXXXX i .f> <(2)请证明:导线框的Cd边在磁场中运动的任意瞬间,导线框克Λ..×..χ..χ.χ..χJ.服安培力做功的功率等于导线框消耗的电功率•图16 (3)求从导线框Cd边刚进入磁场到ab边刚离开磁场的过程中,导线框克服安培力所做的功.17・(8分)图17 (甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴00'匀速转动,线圈的匝数n=100、电阻r=10 Ω ,线圈的两端经集流坏与电阳R连接,电阻R=90Q,与R并联的交流电圧表为理想・在t=0时刻, 线圈平面与磁场方向平行,穿过每匝线圈的磁通量0随时间t按图17 (乙)所示正弦规律变化.求:(1)交流发电机产生的电动势垠大值:O t(2)电路中交流电压表的示数.18.(8分)图18为示波管的示意图,竖直偏转电极的极板长1=4 O cm,两板间距离d=l Ocm,极板右端与荧光屏的距C离L=I8 cm.由阴极发出的电子经电场加速后,以v=l. 6 占卜JjT二 .................. ×107m∕s的速度沿中心线进入竖直偏转电场.若电子由阴O y极逸出时的初速度、电子所受重力及电子之间的相互作用力阴极]H I均可忽略不计,已知电子的电荷量e=16×10"19 C,质量 * i∙∕*-------------- L ------ * m=0 91×10'3° kg.图 18(1)求加速电压Uo的大小:(2)要使电子束不打在偏转电极的极板上,求加在竖直偏转电极上的电压应满足的条件;(3)若在竖直偏转电极上加u=40sm IOon t (V)的交变电压,求电子打在荧光屏上产生亮线的长度.19.(9分)如图19所示,在以O为圆心,半径为R的圆形区域内,有一个水平方向的匀强磁场,磁场的磁感应强度人小为B,方向垂直纸面向外.竖II平行正对放置的两金属板A、K连在电压町调的电路中.S HS?为A、K板上的两个小孔,且Si、S2和O在同一直线上,另有一水平放置的足够大的荧光屛D, 0点到荧光屏的距离为 h.比荷(电荷量与质量之比)为k的带正电的粒子由Sl进入电场后,通过S2射向磁场中心,通过磁场后打在荧光屏D 上•粒子进入电场的初速度及其所受重力均町忽略不计.(1)请分段描述粒子自Sl到荧光屏D的运动情况;(2)求粒子垂直打到荧光屏上P点时速度的大"广D PQ图19 兰.(3)移动滑片P,使粒子打在荧光屏上Q点,PQ= 3 h (如图19所示),求此时A、K 两极板间的电压.20.(9分)如图20所示,地面上方竖II界面N左侧空间存在着水平的、垂直纸面向里的匀强磁场,磁感应强度B=IOT.与N平行的竖直界IfflM左侧存在竖直向卜•的匀强电场,电场强度E I=I(X) N/C・在界面M与N之间还同时存在着水平向左的匀强电场,电场强度E2=WO N/C.在紧靠界面M处有一个固定在水平地面上的竖直绝缘支架,支架上表面光滑,支架上放有质量m2=l. 8×W4kg的带正电的小物体b (町视为贡点),电荷量q2=l. OXW5C. 一个质⅛m1=l 8× 10^4 kg,电荷⅛qι=3 0×W5 C的带负电小物体(可■视为质点)a以水平速度VO 射入场区,沿直线运动并与小物体b相碰,a、b两个小物体碰后粘合在一起成小物体c,进入界而M右侧的场区,并从场区右边界N射岀,落到地面上的Q点(图屮未画出).己知支架顶端距地而的高度h=1.0m, M和N两个界面的距离L=O lOm, g取IOnVS2・求:(1)小球a水平运动的速率:(2)物体C刚进入M右侧的场区时的加速度;(3)物体C落到Q点时的速率.14. (7 分)(1)导体棒、金属导轨和直流电源构成闭介电路•根据闭介电路欧姆定律有:(2)导体棒受到的安培力F ⅛ = B (3)导体棒所受重力沿斜面向下的分力F ι=mgsin 37° =0. 24N 由于F 】小于安培力,故导体棒受沿斜面向卜的摩擦力f …… 分根据共点力平衡*件mgs解得:f=6. OXW 3N(1)金属棒产生的电动势人小为:E=B√2 Lv=0.4√2 V=O. 56 V(2)金属棒运动到AC 位宜时,导线框左、右两侧电阻并联,其并联电阻为:ER 戸1. 0 Q ,根据闭合电路欧姆定律I= Rl +r =0. 47 A .......................根据右手定则,电流方向从N 到M ...........(3)导线框消耗的功率为:P ∙≡I ⅜ )∣=0. 22 W 16. (8 分)(1) 设线框Cd 边刚进入磁场时的速度为V,则在Cd 边进入磁场过程时产生的感应电 动势为E=Blv,根据闭合电路欧姆定律,通过导线框的感应电流为I=—2∣2 R导线框受到的安培力为F^lI= —- ........................................ 1分R因Cd 刚进入磁场时导线框做匀速运动,所以有F αF, (1)分以上各式联立,得:V= (1)Bi-分(2) 导线框Cd 边在磁场中运动时,克服安培力做功的功率为:P e v*> *» •>代入(1)中的结果,整理得:P 厂Bw .............................. I 15. (7分)30 ,••• 2 分1 •1导线框消耗的电功率为:R 二 ............................................. 1 分(3)导线框ab 边刚进入磁场时,Cd 边即离开僦场,因此导线框继续做匀速运动.导 线框穿过磁场的整个过程中,导线框的动能不变.设导线框克服安培力做功为W 安,根据动能定理有Zmgl-W 8 = O ............. 1分解得 W ¾ = 2mgl (1)17. (8 分)(1 >交流发电机产生电动势的最大值E n r=nBS ω ......................... 1分 工忌 2π 曰-2nπΦm而Gm 迪S 、OJ = -- ,所以,E m = (1)T T由G-t 图线可知:Φn r=2. OXW 2 Wb, T=6. 28× W 2 S ........................... 所以 E m =200 V (1)(2)电动势的有效值E= -E n t=IOO√2 V ................................. 1分2 E L由闭合电路的欧姆定律,电路中电流的有效值为I= ---- =√2 A (1)R+r交流电压表的示数为U=IR=90√2 V=I27 V ................................. 2分18. (8分)(1)对子通过加速电场的过程,根据动能定理有eU 0= mv 2 (2)1解得 UO=728 V .................................... 亍 .. (1)(2) 设偏转电场电压为UI 时,电子刚好飞出偏转电场,则此时电子沿电场方向的位移 恰好为d∕2,U d 1. 1 eU 1 .即一=-at∕ ---- - ∙ L ................................................... 1 2 2 2 Ind 电子通过偏转电场的时间t= - ........................................... 1分加 VZ dm解得 Ui=-r r-91 V,et -所以,为使电子束不打在偏转电极上,加在偏转电极上的电压U 应小于91V ……1分(3) 由 u=40sinl00∏ t (V )可知3=100∏ s^1, U m =40V 2 yr 1 偏转电场变化的周期T=—=0. 02 s,而t=- =2. 5×10^9S . 可见每个电子通过ω V偏转电场的过程中,电场可视为稳定的匀强电场•当极板间加最大电压时,电子有最大偏转最y m =lat 2=-巴竺・t7. 20cm ∙Bi-VR lB 2I 2V 2 R电子飞出偏转电场时平行极板方向分速度V I=Vl42(7 5?)吹(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:EI = =1. 5A ................................................................... 2分(2)导体棒受到的安培力F ⅛= BIL = O. 30 N ........................................................................ 2分(3)导体棒所受重力沿斜面向下的分力Fι=mgsin 37。

相关文档
最新文档