第一章 溶液和胶体
第一章溶液胶体
第一章溶液胶体提要1.基础知识⑴分压定律:p=p A+ p B+ p C+ …;p A=px A;p B=px B⑵理想气体状态方程:pV=nRT;R可以是8.314J·mol-1·K-1或8.314kPaL·mol-1·K-1⑶基本单元,在使用物质的量及其导出单位时,必须指明基本单元。
基本单元可以是分子、原子、离子、电子及其他粒子或者上述粒子的组合与分割。
⑷质量摩尔浓度:每千克溶剂中所含溶质的物质的量。
符号b B,单位mol·kg-1。
⑸稀释定律:同一物质的溶液,稀释前后,物质的量相等。
即c1V1=c2V2⑹一定温度下,液体和它的蒸气处于平衡状态时,蒸气所具有的压力叫做饱和蒸气压,简称蒸气压。
2.难挥发非电解质稀溶液的依数性(通性),即:蒸气压下降(△p = p︒x B),凝固点下降(△T b=K b·b B),沸点上升(△T f =K f·b B),及溶液具有渗透压(π = c RT,对于极稀溶液,c≈b B)。
蒸气压下降必然导致凝固点下降,沸点上升。
渗透压是所有溶液都具有的性质。
只要知道稀溶液的依数性其中的一种性质,就可以把其它性质计算出来。
3.由固态分散质分散在液态的分散介质中所形成的胶体分散体系,称为胶体溶液,简称溶胶。
其分散质颗粒直径在1~100nm之间。
溶胶为多相体系,故有一些特殊的性质。
作布朗运动时,整个胶团一起运动;电泳现象是带电的胶粒向异电荷电极的定向运动;电渗是扩散层反离子向其异电极的定向运动。
丁达尔效应是溶胶粒子散射光的现象。
溶胶是由无数胶团构成的,每个胶团的结构可用胶团结构式表示。
书写胶团结构式时要注意两点:一是胶团的内部构造。
胶核是核心,胶核外边是吸附层,胶核与吸附层组成胶粒,胶粒外是扩散层;二是电荷。
整个胶团是电中性的。
胶粒所带电荷必定与扩散层反离子所带电荷相等,但符号相反。
胶粒与扩散层之间的电位差,称为ζ电位。
无机化学基础知识
思考:0.4克氢氧化钠溶于水配成 100ml溶液,所得溶液的物质的 量浓度是多少?
质量摩尔浓度bB
溶质B的物质的量与溶剂的质量之比。
农 业 基 础 化 学
设某溶液由溶剂A和溶质B组成,则溶 质B的质量摩尔浓度为: 溶质 B 的物 质量摩尔浓 质的量mol - 1 度mol· Kg n
bB
B
溶剂A的质 ☆质量摩尔分数bB不受温度变化的影响 量Kg
农 业 基 础 化 学
• • • •
溶液的渗透压(Osmotic pressure)
渗透现象:
扩散现象 半透膜 渗透现象
农 业 基 础 化 学
在烧杯中装满清水, 不同的物质在接触时, 然后将一滴红墨水轻轻滴 彼此进入对方的现象,叫做 入清水中。开始时,红墨 水和清水间的界线分明, 扩散现象。也即由于粒子 但是它们逐渐就会混合均 (原子、分子或分子集团) 匀,变成一杯淡红色的水。
1~100
能穿过滤纸
<1
能穿过滤纸和半透膜
分散系的分类
分子、离子 分散系
胶体分散系 粗分散系
胶体溶液 高分子溶 低分子溶液 (分散质是 浊液(分散质是 液(分散质 (分散质是小分子) 是大分子) 分子的小 分子的大集合体) 集合体) 最稳定 农 业 基 础 化 学 很稳定 稳定 不稳定
电子显微镜不可见 超显微镜可观察其存在 一般显微镜可见
此式就是非电解质稀溶液的范特荷甫渗透 压公式--溶液渗透压与溶液中溶质的浓度和 温度成正比,而与溶质的本性无关,故渗透压 也是溶液的依数性质。
=CRT的重要意义
• 在一定温度下,溶液的渗透压与溶液的 浓度成正比, • 即与溶液中溶质的数目成正比,而与溶 质的本性无关 • 不论溶质微粒是小分子或大分子,只要 溶液中溶质粒子的数目相等,则渗透压 就相同
第一章溶液和胶体
Van’t Hoff (范特霍夫)
V nRT
cRT bRT
:渗透压;V:溶液体积; T: 热力学温度; n: 溶质物质的量; c:物质的量浓度; R:气体常数; R = 8.314 J ·mol-1 ·K-1
▪ 渗透压平衡与生命过程的密切关系
①人的营养循环; ② 植物的生长; ③给患者输液的浓度。水主分要在依小靠肠营的养吸素收吸
(374℃) 。即高于647.35K水只能以气态的形式存在, 再加多大外压气体也不能液化。所以647.35K和221Pa是 气-液平衡曲线的顶端。就是水的临界状态。临界状态是气液 共存的一种边缘状态。 8、超临界流体
处于超过物质本身的临界温度和临界压力状态时的流体。 特点:密度接近于液体,溶解度高,黏度、扩散系数接近于气 体,扩散速率快,容易实现快速分离。
二、稀溶液的依数性
1、 蒸气压下降(核心) (1)液体的饱和蒸气压(简称蒸气压) 蒸发:在液体表面,超过平均动能的分子克服邻 近分子的吸引进入气相中的过程。 凝聚:在一密闭容器中,在不断蒸发的同时,部 分蒸气分子又会重新回到液体的过程。 饱和蒸气:一定温度,在密闭容器中,当蒸发与 凝聚达到平衡时液面上的蒸气。 饱和蒸气压:由饱和蒸气产生的压强。 蒸气压只与液体本质和温度有关。不决定于液体 或蒸气的体积。
Δp: 纯溶剂蒸气压与稀溶液蒸气压之差。
对于稀溶液,溶剂物质的量nA 远远大于溶质物质 的量nB ,即nA nB
X B nB (/ nB nA ) nB / nA
设溶液的浓度以1000g溶剂(水)中含的溶质物质的
量nB为单位,则溶液的质量摩尔浓度b为: b = nB(mol ∙ kg-1)
相的概念
系统中物理性质和化学 性质完全相同的且与其他部 分有明确界面分隔开来的任 何均匀部分,叫做相。
第一章溶液和胶体
[学生练习]
1 .在100ml水中,溶解17.1g蔗糖(C12H22O11),溶液 的密度为1.0638g/ml,求蔗糖的物质的量浓度,质量
摩尔浓度。
• 解:(1)
V mB mA 17.1 100 110.1(m l)
1.0638
nB
mB
/
MB
17.1 342
0.05(m ol)
Δp= K bB
二、溶液的沸点升高
难挥发非电解质稀溶液的沸点升 高与溶液的质量摩尔浓度成正比, 而与溶质的本性无关。
Tb=Tb-Tb=KbmB
式中为mB质量摩尔浓度, Kb为溶 的沸点升高常数。应用上式可以测
定溶质的摩尔质量M。
几种溶剂的Tb和Kb
溶剂 名称
水 苯 四氯 丙酮 三氯 乙醚
化碳
解:(1)先计算溶液浓度 查知樟脑的Tf=452.8K, Kf=39.7 bB = (0.115 / M) /(1.36×10-3)
(2) 再计算结晶的摩尔质量 ∵△Tf = Kf·bB
(452.8-442.6)= 39.7×0.115/(M×1.36×10-3) 解之得:M = 329 g/mol
XB=nB/Ʃn XB组分B的摩尔分数,无量纲。
2.质量浓度
质量分数
溶质的质量mB与溶液的 体积V之比,称为质量浓
度,用符号ρB表示,其 表达式为
ρB=mB/V 单位可用g·L—1、mg·L—1、 g·mL—1、ug·L—1等。
溶液中某种组分B的质量占 溶液总质量的百分数,其表 达式为
ωB=WB/ƩW x100% XB组分B的质量分数,无量 纲。
c(B)
nB V
第一章 溶液和胶体
(见表1-5)
p11
说明稀溶液的△Tf ∝bB (即∝一定 量溶剂中所含溶质的微粒数),与溶质
种类和本性无关。
∴ △Tf 是一种依数性
【思考题1-2 】 若在273K时,将小块 冰投入糖水溶液,冰将发生什么变化?
答案 冰将溶化
【例1-2】 1%( g/ml)蔗糖(C12H22O11)溶液 的密度为1(g/ml)(蔗糖Mr=342), 计算该溶 液的沸点和凝固点。 解:先算溶液的质量摩尔浓度
③蒸气压的大小与容积大小及液体多少无关。
▲冰的蒸气压: 与冰(固相)平衡的水蒸气压力称
冰的饱和蒸气压,但较小。
升华 H2O(固) H2O(气)
凝华
(二)溶液的蒸气压下降
纯溶剂气—液平衡 溶剂分子
(二)溶液的蒸气压下降
纯溶剂气—液平衡 溶剂分子
溶液气—液平衡 难挥发溶质微粒
(二)溶液的蒸气压下降
A 溶剂 B 溶质
∴p =p0(1-xB) = p0-p0xB
p0 - p = p0xB
(1-10)
p9
△p = p 0xB
~拉乌尔定律 表达式之一
(1-11)
表示在一定温度下,难挥发非电解质
稀溶液的△p∝xB
拉乌尔定律(Law of Rault)
△p = p 0xB (表达式之一)
(1-11)
稀溶液中 xB =
nB=
mB
MB
当以g·mol-1为单位时,
原子:MB=Ar (Ar为相对原子质量) 分子:MB=Mr (Mr为相对分子质量)
n(1/nM)=n n(M)
(二)物质的量浓度
●符号: cB
●定义式:
cB =
nB V
第一章 物质的状态、溶液和胶体
溶液的蒸气压下降、沸点上升和凝固点下降 的应用:
•植物的抗旱耐寒性:植物体内细胞中有多种可溶物(氨基 酸、糖等),这些物质使细胞液的蒸气压下降、凝固点降低, 从而使植物表现出一定的抗旱和耐寒性。 •冰盐冷冻剂:1份食盐和3份碎冰混合,体系的温度可降至 20度;10份六水氯化钙与7~8份碎冰混合,体系的温度可降 至20~ 40度。 •汽车防冻剂:汽车水箱中加入甘油或乙二醇等物质,可以 降低水的冰点,防止水箱冻坏。
20
1.2 溶液
表1-2 按分散质颗粒大小分类的分散系
颗粒直径大小 类 型 主要特征 粒子能通过滤纸与半 透膜,扩散速度快 实 例
小于1nm(10–9) 分子离子 分散系 1~100nm 胶 体 分散系 粗 分散系
下页
NaCl溶液
粒子能通过滤纸但不 Fe(OH)3溶液 能透过半透膜,扩散慢 蛋白质溶液 粒子不能通过滤纸不 能透过半透膜,不扩散 豆浆 乳汁
(单相区)
上页 下页 主页
T
18
1.2 溶液
一、 分散体系(分散系):
一种或几种物质被分散成微小的粒子分布在另一种物质中所构成 的体系。
分散质:被分散的物质,通常分散质含量较少,一般不连续。
分散剂:起分散作用的物质,存在于分散质周围,一般是连
续相。
二、分散系分类:
• 按分散系的聚集状态可分九类(见表1-1)。
• 按分散系的粒子大小可分三类(见表1-2)。
上页
下页
主页
19
1.2 溶液
表1-1 按物质聚集状态分类的分散系 p6
分散剂 分散质 实 例
气 液 液 固 气 固 液 固 气 气
上页 下页
肥皂泡沫 牛 奶 Fe(OH)3溶胶、泥浆水 泡沫塑料 珍 空 珠 气 有机玻璃 云、雾
大学化学1溶液和胶体
14
溶液的通性 — 溶液的沸点上升的原因
3.溶液的沸点上升(boiling point)
液体的沸点 ( boiling point ) 当P 液 = P 外,液体沸腾时的温度。
正常沸点:当P外=P标时的液体的沸点。
溶液的沸点升高
是溶液蒸气压下降的直接结果
2024/9/30
15
溶液的通性 — 溶液的沸点上升的数值
p溶液= p*-⊿p = 2.338kPa - 0.021kPa = 2.317kPa
溶液的通性 — 凝固点下降
2.液体的凝固点降低(freezing point)
凝固点:某物质的液相蒸汽压与固相蒸汽压相等时 的温度。用Tf表示 或在一定外压下,物质固、液两相平衡共存时的温 度。
如 :H2O(l) 273K,101.3kPa H2O(s)
该温度下的饱和蒸汽压,简称蒸汽压。
加入一种难挥发的非电解质
束缚一部分高能水分子
P↓
占据了一部分水的表面
2024/9/30
8
溶液的通性 — Raoult定律
在一定温度下,难挥发性非电解质稀溶液的蒸气压
(P)等于纯溶剂的蒸气压(PA*)乘以溶液中溶剂的 摩尔分数(xA )。
p
p* A
xA
xA
nA nA nB
1.蒸气压下降 2.凝固点降低 3.沸点升高 4.渗透压力
p
p* A
xB
ΔTf=kf • bB
ΔTb =kb• bB
= CBRT
的数值与溶液中质点 的个数成正比
2024/9/30
23
第 4 章 酸碱解离平衡和沉淀溶解平衡
4.1 电解质溶液 4.2 酸碱理论 4.3 弱电解质的解离平衡 4.4 缓冲溶液 4.5 沉淀溶解平衡
溶液和胶体
4.56 ÷ 60.0 -1 b ) 解:(B)= = 0.76mol ⋅ kg 100 ÷1000
∆Tb = 0.512×0.76 = 0.39K
∴ Tb = T + ∆Tb
* b
= 373+ 0.39 = 373.39K
(2) 测定难挥发非电解质的摩尔质量
0.40g葡萄糖溶于20.0g水中 葡萄糖溶于20.0g水中, 例5. 将0.40g葡萄糖溶于20.0g水中,测得溶液的沸 点为100.056 ℃,计算葡萄糖的摩尔质量 计算葡萄糖的摩尔质量。 点为100.056 ℃,计算葡萄糖的摩尔质量。
三、溶液浓度的相互换算
物 质的 量浓 度与 质量 数 分 的换 算公 式: M(B) ×V(L) M B) ( 的硫酸溶液的密度为1.38g·ml-1, 计算 例2. 48%的硫酸溶液的密度为 的硫酸溶液的密度为 此溶液的
(1) 物质的量浓度; ) (2) 质量摩尔浓度; ) (3) 摩尔分数; )
显然也是溶液的蒸气压下降引起的。 显然也是溶液的蒸气压下降引起的。
ω1 ⋅ m = ω2 ⋅ m2 1
特点:直观明了,数值不随温度而变, ③ 特点:直观明了,数值不随温度而变,但无法描 述物质的量。 述物质的量。
5)质量百万分比浓度 ppm
定义: ① 定义:用溶质的质量占溶液的质量的百万分比表 示浓度称为质量百万分比浓度, 表示。 示浓度称为质量百万分比浓度,用ppm 表示。 公式: ② 公式:
nA xA = nA + nB
nB xB = nA + nB
③ 量纲: 1
质量分数ω 4)质量分数ω
定义: ① 定义:用溶质的质量除以溶液的质量表示浓度称 为质量分数, 表示。 为质量分数,用ω表示。 公式: ② 公式:
第一章 溶液与胶体
V nRT m RT M
测定分子量的三种方法: 小分子:凝固点降低法、沸点升高法(不常用) 高分子:渗透压法
1.3.4 渗透压力的意义 一、渗透浓度(osmolarity) Cos/mmol·L-1 ,也有用mOsmol·L-1表示的 例题 计算50.0g·L-1葡萄糖溶液和生理盐水的渗
透浓度。
1.4.2 溶胶的性质
一、光学性质——丁铎 尔现象(丁达尔现象, Tyndall)
产生原因:分散相粒子的 直径(1~100nm)略小于入 射光波长(400~760nm), 形成散射,产生乳光。
粗分散相:分散相粒子直径大于光波波长,发生 发射。
溶液:溶质的直径远小于光波波长,发生透射。 胶体:发生散射,形成乳光。 高分子溶液:发生散射,但由于均相体系,散射
分散系 食盐水 糖水 牛奶 泥浆 Fe(OH)3胶体
分散相 Na+ ,Cl-
蔗糖 蛋白质、脂肪 砂石 Fe(OH)3胶粒
分散介质 水 水 水 水 水
分散系的分类
分散相颗粒大小 分散系统类型 分散相组成
实例
<1nm
1~~100nm 胶体分散系 >100nm
真溶液(溶液)
溶胶
高分子溶液 粗分散系(乳状 液、悬浮液)
当粒子半径增大(大于5 m ),撞击的次数增多, 而作用力会抵消,Brown运动消失。
液体分子对胶体粒子的碰撞
(2)扩散现象
当溶胶存在浓度差时,胶粒自发地 由浓度大的区域向浓度小的区域迁移, 这种过程称为扩散
高浓度
低浓度
扩散
在生物体内,扩散是物质的输送的动力之一。 分子、离子透过细胞膜的也是通过扩散进行的。
B
mB V
cB MB
第一章 溶液和胶体
第一章溶液和胶体教学目的:通过讲解使学生熟悉溶液组成的几种表示方法并能进行有关计算。
了解稀溶液的通性及其在有关专业中的应用.教学要求;1、熟练掌握物质的量、摩尔、摩尔质量等基本概念。
熟练掌握溶液组成的常用表示方法。
2、熟练掌握等物质的量规则及其应用。
3、了解稀溶液的通性及其在专业课中的应用。
重点内容:1、溶液组成的表示方法及计算。
2、稀溶液的依数性。
难点内容:1、等物质的量规则及应用。
2、稀溶液具有依数性的原因。
使用教具:挂图(表)教学方法:讲解式结合启发式学时分配:第一节分散系 2学时第二节溶液组成的表示方法 2学时第三节稀溶液的依数性 2学时作业:14--15页 1---16、19、20第一节分散系体系:化学上把所选取的研究对象成为体系相:体系中物理性质和化学性质完全相同的均匀部分称为相。
分为均相体系和单相系分散系:一种或几种物质一微粒形式分散在另一种物质里形成的体系分散质:分散系中被分散的物质分散剂:起分散作用的物质又称分散介质分散系按分散质粒子的大小,常把液体分散系分为粗分散系(d>100nm)、胶体分散系(1~100nm)、分子或离子分散系(d<1nm)第二节 溶液的一般概念1.溶液是由两种或两种以上组分所组成的均匀混合物。
如:气体溶液(空气),液体溶液(海水),固体溶液(合金)。
2.通常所说溶液一般指液态溶液,最常见的是水溶液。
3.溶液的性质在很大程度上取决于溶质和溶剂的相对组成。
4.溶液组成的量度是用在一定的溶液或溶剂中所含溶质的多少来表示的。
[提问]:1。
中学已学过的表示溶液组成的方法有那些( 质量分数和物质的量浓度)2.什么是物质的量浓度 一、物质的量及其导出量:1.物质的量及其单位SI 规定:使用n 或mol 时必须指明基本单元:七个基本单位长度 质量 时间 电流 热力学温度 发光强度 物质的量量符号 L m t I T I u n单位名称 米 千克 秒 安 开(尔文) 坎(德拉) 摩(尔)单位符号 m kg s A K Cd mol(1)“物质的量”与质量、长度、时间等一样,是一个物理量,用符号“n ”表示(2)“物质的量”的单位为摩尔(mol )(3) 摩尔是一物系的物质的量,是含有同数分子、原子、离子等微粒数目的集体,该物系中所包含的基本单元数与0.0012kgC 12的原子个数相等,即N A 个(阿佛加德罗常数个)。
第一章 气体 溶液 胶体
第一章气体、溶液和胶体一、气体:理想气体状态方程:PV=nRT=m/M·RT p=101.03kpa(高温低压)R=8.314J/mol·k摩尔气体常量Pa·m3/mol•k或kPa•L/mol•k 题目上有温度和压强,就常用此方程。
应用1.求容器中气体的质量。
2.求容器的体积。
理想气体分压定律:Pi=ni/v·RT=PXi求用排水法收集的气体,干燥后的体积?解:已知温度、总压强、水蒸气压强、收集到的气体体积。
由P总压=P气体+P水蒸气得P气体,在代入PV=nRT,n由题可以求出,最后得出v。
溶液:浓度的表示方法:①质量分数W B=m B/m总②质量浓度ρ=m/V 单位g/L③物质的量浓度C B=n B/v=ρw B/M B=1000ρw B/M B④质量摩尔浓度b B=n B/m A 单位mol/kg⑤物质的量分数x B=n B/n总溶液的依数性:①蒸气压下降:△P=K P·b B②凝固点下降(最适合摩尔质量测定):△T f=K f·b B 应用:测定除蛋白质等高分子物质外的溶质的摩尔质量。
③沸点升高:△T b=K b·b B④渗透压升高:π=c B RT≈b B RT(对于稀溶液)应用:测生物大分子的相对分子质量。
3%的Nacl溶液渗透压接近1.0mol/kg葡萄糖溶液。
求溶液蒸气压(下降)?解:△P=K P·b B=Kp·n B/m A,再加上原来蒸气压。
已知蒸气压、凝固点、沸点的变化值,求溶质的质量分数?解:由变化值就可求出b B,由b B=n B/m剂,得m B=n B·M B=b B·m剂·M B(m剂已知,或默认1kg),W=mB/(mB+m剂)·100%知凝固点求沸点?解:对于难挥发非电解质的水溶液,由于纯水溶液的凝固点是0度,又已知溶液的凝固点,故可得凝固点下降值△T f,由△T f=K f b B可求b B,再代入沸点升高△Tb=K b b B可求△T b,因为水的沸点为100度,加上△T b即为溶液的沸点。
第一章 溶液和胶体
Tb Tb Tb* Kb b
Tb* 为纯溶剂的沸点; Tb 为溶液的沸点 Kb:溶剂沸点上升常数,决定于溶剂的本性。与溶剂的摩尔质量、沸 点、汽化热有关。 Kb:溶液的浓度m = 1 mol · kg-1时的溶液沸点升高值,其单位是 ℃·kg·mol-1或K·kg·mol-1。
从蒸气压曲线上看沸点升高
例题
例4: 计算由1.00g CO(NH2 )2 尿素溶于48.0 g水所 配成溶液的质量摩尔浓度? 解: CO(NH2 )2摩尔质量M=60.0g/mol nB=1.00g/60.0(g/mol)=0.167mol
n[CO( NH 2 ) 2 ] 0.167 b[CO( NH 2 ) 2 ] 0.348m ol/ kg 3 m( H 2 O) 48.0 10
二、 理想气体状态方程式
理想气体:忽略分子的大小和分子间的作用力 理想气体状态方程:pV= nRT
R:摩尔气体常数,8.315 Pam3 mol-1K-1; kPaLmol-1K-1 ;Jmol-1K-1
实际气体处于低压(低于数百千帕)、高温(高于 273K)的情况下,可以近似地看成理想气体。 气体状态方程式的另一些形式:
质量摩尔浓度(mol/kg)
溶液中溶质B的物质的量n除以溶剂的质量m,单位为kg, 称为溶质B的质量摩尔浓度,用符号bB表示,单位是mol·kg1 。表达式为:
nB bB (m ol/ kg) mA
nB m bB mA M B mA
在1000g溶剂中含溶质的物质的量;质量摩尔浓度与体积无 关,故不受温度改变的影响。这个表示方法的优点是可以用 准确的称重法来配制溶液,不受温度影响。 若溶液是稀的水溶液,则: c B bB
溶液和胶体溶液PPT课件
-
17
1.2.1溶液的蒸气压下降
(二)溶液的蒸气压下降 溶液的蒸气压低于溶剂的蒸气压——溶液的 蒸气压下降(vapor pressure lowering)
-
18
纯溶剂
◆ ◆◆
◆◆ ◆
◆ ◆◆
溶液
原因:溶液表面溶剂接触空气的面积减小, 溶剂分子不易逸出,v蒸减小,v凝>v蒸,平 衡向凝结的方向移动,达到新的平衡时, p下降,故蒸气压降低。p=po-p与浓度有 关。
-
14
第二节 稀溶液的依数性
一、溶液的蒸气压下降 二、溶液的沸点升高与凝固点降低 三、溶液的渗透压力 四、稀溶液的依数性
-
15
1.2.1溶液的蒸气压下降 (一)蒸气压
-
16
1.2.1溶液的蒸气压下降 (一)蒸气压 动能较高的水分子自水面逸出,扩散到水面上部的空间, 形成气相——蒸发(evaporation)
-
19
Raoult定律: 一定温度下,稀溶液的蒸气压等于纯溶剂的蒸气
压乘以溶剂的摩尔分数。
p = po xA xA= 1- xB Δp = po- p = po xB 一定温度下,溶液的蒸气压下降Δp 与溶质的摩 尔分数成正比。 稀溶液,nA>> nB ,因而nA + nB ≈ nA,则
若稀释前后溶液浓度分别为c1、 c2 ,体积分别为V1、 V2 ,所含溶质的物质的量分别为n1、n2 ,可得:
c1 V1 = c2 V2 ∴12V1 =0.2×1000 由此解得: V1 17ml.
休息
-
9
例题:要配制c(NaOH)=0.2mol·L-1的NaOH溶液1000 ml,需称取NaOH多少克?
-
6
第一章胶体和溶液ppt课件
p
纯水
0.1mol/Kg糖水
1/16/2020
1 纯溶剂
2 溶液
第20页
上一页
0.5 mol/Kg糖水
t
下一页
总目录
(3)拉乌尔定律
1887年,法国化学家Raoult从实验中归纳出一个经验定律:一 定温度下,在难挥发非电解质稀溶液中,溶液的蒸气压等于纯溶 剂蒸气压乘以溶液中溶剂的物质的量分数xA,用公式表示为:
二、分散系组成:分散质+分散剂 三、分散系分类 :
1、按照分散质粒子直径大小 2、按照分散质和分散剂的聚集状态
1/16/2020
第2页
上一页
下一页
总目录
按照分散质粒子大小
类型
粒子直径 名 称
主要特征
分子、离子分散 系
胶体分散系
粗分散系
<1nm 1-100nm >100nm
真溶液 (如:NaCI
溶液)
第8页
上一页
下一页
总目录
2、质量摩尔浓度
在1000克溶剂中所含有溶质的物质的量, 用 bB表示 。 (1) 公式: bB= nB/mA (2) 单位: mol/kg
(3)其中:nB为物质B的物质的量; mA为溶剂的质量。
注意:溶剂的质量随温度不会发生变化。所以同 一溶液在不同温度的地区其bB相同。
p p*xA
如果溶液中只有A,B两个组分,则:xA+xB=1
p=p*(1-xB)
Δp=p*- p=p* xB
拉乌尔定律也可表示为:在一定温度下,难挥发非电解质稀
溶液的蒸气压下降(Δp),与溶质的摩尔分数(xB)成正比。 p*: 纯溶剂的蒸气压 p : 难挥发非电解质稀溶液的蒸气压
第一章 溶液与胶体溶液
医用化学
化学工业出版社
高职高专“十一五”规划教材 医用化学
学习目标
1.掌握溶液组成量度的常见表示方法及溶液的配制 方法;掌握渗透现象产生的原因、条件及影响渗 透压大小的因素;掌握溶胶的性质;掌握表面张 力的概念。
2.熟悉渗透浓度的概念、胶团结构及胶粒带电情况。 3.了解渗透压在医学上的意义、高分子溶液对溶胶 的保护作用等。
化学工业出版社
高职高专“十一五”规划教材 医用化学
第三节
溶胶和高分子化合物溶液
人们通常把具体的研究对象称为体系。 一种或几种物质分散在另一种(或几种)物 质中所形成的体系称为分散系,其中被分散 的物质称为分散相(或分散质),而容纳分 散相的连续介质则称为分散介质(或分散 剂)。 例如,蔗糖水就是一种分散系,其中蔗糖 分子是分散相,水是分散介质。
0.278 m ol L1 278 m m ol L1 0.308 m ol L1 308 m m ol L1
cos , NaCl 2 cNaCl 2
278mol·-1,9g·-1生理盐水溶液的渗透浓度为 L L 308mol·-1。 L
化学工业出版社
化学工业出版社
高职高专“十一五”规划教材 医用化学
在暗室中用一束强光投射到溶胶上,从光束的垂直 方向上可以清楚地观察到一条光带,这是溶胶的丁 达尔效应。丁达尔效应是光的散射现象。
NaCl
m NaCl 0.90g -1 9gL V 0.10L
答:生理盐水的质量浓度为9 g·-1。 L
化学工业出版社
高职高专“十一五”规划教材 医用化学
三、质量分数和体积分数 质量分数是指溶液中溶质质量mB与溶液质量m 之比,符号为ωB。即:
第一章溶液和胶体
=KfbB
应用:
1、测分子量。
△Tf =KfbB= Kf mB/(mAMB) MB=KfmB/(mA△Tf)
2、往冰雪覆盖的路面上撒盐。 3、汽车水箱中加甘油等。 4、建筑工人冬天在沙浆中加盐(CaCl2)。 5、植物的抗寒性。
回本节目录
四、 溶液的渗透压
1。半透膜:只允许溶剂分子(水分子)通过而 不允许溶质分子通过的薄膜称为半透膜。动物 的膀胱膜、肠膜、植物细胞原生质膜、羊皮纸、 等都是半透膜。
图 1-2 渗透和渗透压示意图
2.渗透:单位时间内由纯水侧透过半透膜进入 溶液侧的水分子数大于由溶液侧进入纯水侧水 分子数,总结果是水分子由纯水侧进入溶液侧, 使溶液液面上升的过程。
由物质粒子通过半透膜单向扩散的现象叫渗透。
3.渗透压:为阻止渗透作用发生所需加给溶液 的最小压力。
渗透压与浓度有关,溶液浓度越高,其渗透压 越大。反之,溶液浓度越低,其渗透压越小. 等渗溶液:渗透压相等的两种溶液。 高渗溶液:渗透压高的溶液,
低渗溶液:渗透压低的溶液,
渗透压的有关计算
溶液体积
溶质物质的量
V nRT
cRT bRT
体积摩尔浓度
温度 气体常数
渗透压
质量摩尔浓度
与理想气体方程形式相同,但无本质联系。
渗透压平衡与生命过程的密切关系: ① 给患者输液的浓度;② 植物的生长; ③ 人的营养循环。
CuSO4溶液 分分 散散 剂质 :: 水硫 (酸 液铜 )晶 体 固 ( )
泡 沫 塑 料 拖 鞋 ( 气 - 固 )
干燥剂吸潮 分分 散散 剂质 :: 干空 燥气 剂中 (的 固水 )( 液 )
彩色玻璃 分分 散散 剂质 :: 玻氧 璃化 (亚 固铜 )( 固 )
溶液及胶体(第一章)
稀溶液依数性4---渗透压
h
纯溶剂 蔗糖溶液 纯溶剂 蔗糖溶液
达到渗透平衡 Π V = nRT 电解质溶液
施外压达到渗透平衡 Π =cRT Π = icRT
式中单位:
当溶液很稀时 Π ≈bRT
R/8.314 KPa·L·K-1 ·mol-1, cB/mol · L-1, T/K, Π /KPa
解
1.86 K.kg.mol-1´ 0.000638 kg M (CON2 H4 )= 0.250 kg´ 0.079 K =0.060 kg.mol-1 =60 g.mol-1
M r =60g / mol
电解质稀溶液的依数性行为
Δp = i K b ΔTb = i Kbb ΔTf = i Kfb
K取决于溶剂本性及T,与溶质本性及浓度无关
对于稀溶液
p K c
稀溶液的 P 与溶质的质量摩尔浓度成正比
例1:已知293K时水的饱和蒸气压为2.338 kPa,将6.840 g蔗 糖(C12H22O11)溶于100.0 g水中,计算蔗糖溶液的质量摩 尔浓度和蒸气压 。M蔗糖=342.0g/mol
高渗溶液: cos
>320 mmol·L-1
等渗溶液: cos 280 ~ 320 mmol· L-1 低渗溶液 :cos <280 mmol· L-1
例4 计算补液用50.0 g· L-1葡萄糖溶液和9.00 g· L-1 NaCl溶液 (生理盐水)的渗透压。已知:葡萄糖(C6H12O6)的摩尔质量 为180 g· mol-1,NaCl的摩尔质量为58.5 g· mol-1 解
蒸发
凝聚
液体的蒸气压p
p与液体的本性有关
温度升高,p增大
无机及分析化学第一章溶液和胶体
1.3.3 B的质量分数
物质B的质量与混合物的质量之比。
B
mB m
mB — 物质B的质量; m —混合物的质量;
B — B的质量分数,SI单位为1。
1.3.5 几种溶液浓度之间的关系
1. 物质的量浓度与质量分数
cB
nB V
mB M BV
mB
M Bm /
mB
M Bm
B
MB
CB —溶质B的量浓度;
pB p
nB n
xB
x B B的摩尔分数
pB
nB n
p
xB p
B的摩尔分数
B
nB n
nB—B的物质的量,SI单位为mol; n —混合物总的物质的量,SI单位为mol ;
B— SI单位为1。
两组分的溶液系统 :
溶质B的量分数:
B
nB nA nB
溶剂A的量分数:
A B 1
A
nA nA nB
的基本概念和特征。
溶液(solution):
凡是由一种或多种物质分散在另 一种物质中所形成的混合体系。
1.1 分散系
分散系:一种或几种物质分散在另一种物质 里所形成的系统称为分散系统 ,简称分散 系。如泥浆、云雾、牛奶等分散系。
分散质:被分散的物质叫做分散质(或分散 相);
分散剂:而容纳分散质的物质称为分散剂( 或分散介质)。
表 1-1 按聚集状态分类的各种分散系
分散质
分散剂
实例
气
气
液
气
固
气
气
液
液
液
固
液
气
固
液
固
固
固
空气、家用煤气 云、雾 烟、灰尘 泡沫、汽水 牛奶、豆浆、农药乳浊液 泥浆、油漆、墨水 泡沫塑料、木炭、浮石 肉冻、硅胶、珍珠 红宝石、合金、有色玻璃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数年
蒸汽压
水蒸气
水蒸气
蒸
凝
蒸
凝
发
聚
发
聚
纯溶剂 xA=1
M
pM ? ? RT
m 质量(kg);M摩尔质量(kg?mol-1);ρ 密度(kg?m-3)
第二节 非电解质稀溶液的依数性
稀溶液的依数性:
只与溶液的浓度有关,而与溶质的本性无关。 这些性质包括: 蒸气压下降 、沸点升高 、凝固 点下降 及渗透压 等。
电介质与非电解质
举例:NaCl溶液(强电解质)、HAC(弱电解质)、 甘油
的非电解质稀溶液 ,蒸气压下降数值 只取决于溶剂的本
性 ( K) 及溶液的质
量摩尔浓度 b
例题
例1: 计算293K时,17.1g 蔗糖溶于1000g水中,溶液 的蒸汽压下降值。 解: 293K 时, P*(H2O)=2.33kPa
M(B)=342g.mol -1
x( B ) ? 9.0 ? 10 ? 4 ? P ? P*xB ? 2.1?10?3 kPa
m 1.00 n[ CO(NH 2 ) 2 ] ? M ? 60.0 ? 0.167mol
n 0.167 C[ CO( NH 2 ) 2 ] ? V ? 50.0 ? 10 ? 3 ? 3.34mol / L
例题
例2: 已知80%的硫酸溶液的密度为1.74g·mL-1,求该硫酸 溶液的物质的量浓度c(H2SO4)和c(1/2H2SO4)?
在1000g溶剂中含溶质的物质的量;质量摩尔浓度与体积无 关,故不受温度改变的影响。这个表示方法的优点是可以用 准确的称重法来配制溶液,不受温度影响。
若溶液是稀的水溶液,则: c B ? b B
例题
例4: 计算由1.00g CO(NH 2 )2 尿素溶于48.0 g 水所 配成溶液的质量摩尔浓度?
例题
例2:在298k,纯水的蒸汽压为3167.73Pa,若100g水中溶 解了3.3g尿素(CO(NH2)2),求溶液的蒸汽压?
解:P*=3167.73pa m(H2O)=100g m(CO(NH2)2)=3.3g
M(CO(NH2)2)=60g/mol 求:p
n(H2O)=3.3/60.0=0.055mol n(CO(NH2)2)=100/18.0=5.55mol Δ p=0.055/(0.055+5.55) ×3167.37=31.08(pa)
解: CO(NH 2 )2摩尔质量 M=60.0g/mol n B=1.00g/60.0(g/mol)=0.167mol
b[CO(NH 2 )2 ] ?
n[CO(NH 2 ) 2 ] m(H 2O)
?
0.167 48.0 ? 10? 3
?
0.348mol / kg
二、 理想气体状态方程式
理想气体:忽略分子的大小和分子间的作用力
bB ? 溶剂的质量
?B
(mol / Kg )
M B ? mA
物质的量浓度 (mol·dm -3 )
CB
?
nB V
?
溶质B的物质的量 混合物体积
例1: 计算由1.00g CO(NH 2)2 尿素溶于50.0 mL 水 所配成溶液的物质的量浓度?
解:CO(NH2 )2 摩尔质量M=60.0g/mol
理想气体状态方程:pV= nRT
? R:摩尔气体常数,8.315 Pa ?m3 ?mol-1?K-1; kPa ?L?mol-1?K-1 ;J ?mol-1?K-1
实际气体处于低压(低于数百千帕)、高温(高于 273K)的情况下,可以近似地看成理想气体。
气体状态方程式的另一些形式:
m pV ? RT
m ? 1000 mL ? 1.74 g ?mL? 1 ? 80% ? 1392 g
c(H 2 SO4 ) ?
1392 g 98g ?mol ?1 ? 1L
? 14.20mol ?L?1
c(1/ 2H2SO4 ) ? 2c(H2SO4 ) ? 2?14.20mol?L?1 ? 28.40mol?L?1
? c(H 2SO4) ? 1 / 2c(1 / 2H2SO4 )
质量摩尔浓度( mol/kg)
溶液中溶质B的物质的量n除以溶剂的质量m,单位为kg, 称为溶质B的质量摩尔浓度,用符号 bB表示,单位是mol·kg 1 。表达式为:
bB
?
nB mA
(mol / kg)
bB
?
nB mA
?
m M BmA
所以溶液的蒸汽压为:p=3167.37-31.8=3136.65 (pa)
二、 沸点上升
1、沸点定义:液体的沸点是指其蒸气压等于外界大气压力时的温度。 2、特点:液体的沸点与外界压力有关,外界压力降低,液体的沸点将
溶液xA=0.9
液体中溶解有少量难挥发性的溶质时,液体的蒸气压下降,溶
液的蒸气压总是低于纯溶剂的蒸气压,纯溶剂蒸气压与溶液蒸
气压之间的差,称为溶液的蒸气压下降。
拉乌尔定律: (1887年,法国物理学家) 在一定温度下,难挥发非电解质稀溶液的蒸气压等
于纯溶剂的蒸气压乘以溶剂的摩尔分数 :
p ? p ? ?xA
P:溶液的蒸气压;p*: 纯溶剂的蒸气压;x:溶剂的摩尔分数, 设溶质的摩尔分数为XB
p ? p ? ?xA x A ? x B ? 1 xA ? 1? xB
p ? p ? (1? xB ) ? p ? ? p ? xB
? p ? p ? ? p ? p ? xB
对于稀溶液:
? p ? K ?b
结论: 难挥发性
第一章 溶液和胶体
பைடு நூலகம்
无机
物质的聚集状态 分散系
及
分
溶液的浓度
析
稀溶液的依数性
学化
胶体溶液
乳浊液
第一节 溶 液
一、溶液浓度的表示方法
1、物质的量浓度(mol·dm -3 )
CB
?
nB V
?
溶质B的物质的量 混合物体积 (mol / L)
2、质量摩尔浓度(mol/kg)
溶质 B的物质的量 m ? 1000
溶液(非电解质) 挥发性:甘油(难挥发)、酒精(易挥发)
一、 蒸气压下降
1 、饱和蒸气压:将液体放在密闭容器中,液体能不断蒸发,同时,
生成的蒸气也在不断凝聚,当单位时间内由液面蒸发的分子数和由气相 中回到液体中的分子数相等时,气液两相处于平衡状态,这时蒸气的压 力称为该液体的饱和蒸气压,简称 蒸气压。