四年级奥数:速算与巧算

合集下载

(完整版)四年级奥数速算与巧算

(完整版)四年级奥数速算与巧算

四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。

(完整版)四年级奥数速算与巧算.doc

(完整版)四年级奥数速算与巧算.doc

(完整版)四年级奥数速算与巧算.doc四年级奥数知识点:速算与巧算(一 )例1 计算 9+99+999+9999+99999解:在涉及所有数字都是 9 的计算中,常使用凑整法 . 例如将 999 化成 100 0—1 去计算 . 这是小学数学中常用的一种技巧 .9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算 199999+19999+1999+199+19解:此题各数字中,除最高位是1 外,其余都是9,仍使用凑整法 . 不过这里是加 1 凑整.( 如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3 算 (1+3+5+?+1989) - (2+4+6+?+1988)解法 2:先把两个括号内的数分相加,再相减 . 第一个括号内的数相加的果是:从1 到 1989 共有 995 个奇数,凑成 497 个 1990,剩下 995,第二个括号内的数相加的果是:从2 到 1988 共有 994 个偶数,凑成 497 个 1990.1990×497+995—1990×497=995.例 4 算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390 接近,所以选 390 为基准数 .389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法 2:也可以选 380 为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算 (4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6 个相接近的数之和,故可选4940 为基准数 .(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6) ÷6( 这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45 和 54 先结合可得 99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99 ×99=99+99×99=99×(1+99)=99×100=9900.例7 计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错 . 如果将9999 变为3333×3,规律就出现了 .9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法 1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法 2:1999+999×999 =1999+999×(1000 -1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零 .总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二 )例1 比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知 A的第一个因数的个位数字比 B 的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1. 所以不经计算,凭直接观察不容易知道 A 和 B 哪个大 . 但是无论是对 A或是对 B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B 先进行恒等变形,再作判断 .解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例 2 不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1) ×(250 —1)=240×250+1×9;242×248=(240+2) ×(250 —2)=240×250+2×8;243×247=(240+ 3) ×(250 —3)= 240 ×250+3×7;244×246=(240+4) ×(250 —4)=240×250+4×6;245×245=(240+5) ×(250 —5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250 ,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245 的积最大 .一般说来,将一个整数拆成两部分 ( 或两个整数 ) ,两部分的差值越小时,这两部分的乘积越大 .如: 10=1+9=2+8=3+7=4+6=5+5则5×5=25 积最大 .例3 求 1966 、 1976 、 1986 、 1996 、 2006 五个数的总和 .解:五个数中,后一个数都比前一个数大10,可看出1986 是这五个数的平均值,故其总和为:1986×5=9930.例 4 2 、4、6、8、10、12?是偶数,如果五个偶数的和是320,求它中最小的一个 .解:五个偶数的中一个数320÷5=64,因相偶数相差2,故五个偶数依次是60、62、64、66、68,其中最小的是 60.以上两,可以概括巧用中数的算方法. 三个自然数,中一个数首末两数的平均; 五个自然数,中的数也有似的性——它是五个自然数的平均 . 如果用字母表示更明,五个数可以作:x-2 、x—1、x、x+1、x+2. 如此推,于奇数个自然数,最中的数是所有些自然数的平均 .如:于 2n+1 个自然数可以表示:x—n,x—n+1,x-n+2 ,?,x —1, x , x+1 ,? x+n— 1,x+n,其中 x 是 2n+1 个自然数的平均 .巧用中数的算方法,可一步推广,看下面例 .例 5 将 1~1001 各数按下面格式排列:一个正方形框出九个数,要使九个数之和等于:①1986,② 2529,③ 1989,能否到 ?如果不到,明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数 . 又因横行相邻两数相差 1,是 3 个连续自然数,竖列 3 个数中,上下两数相差 7. 框中的九个数之和应是 9 的倍数 .①1986 不是 9 的倍数,故不行 ;②2529÷9=281,是9 的倍数,但是281÷7=40×7+1,这说明281 在题中数表的最左一列,显然它不能做中数,也不行 ;③1989÷9=221,是9 的倍数,且221÷7=31×7+4,这就是说221 在数表中第四列,它可做中数 . 这样可求出所框九数之和为 1989 是办得到的,且最大的数是229,最小的数是 213.这个例题是所谓的“月历卡”上的数字问题的推广. 同学们,小小的月历卡上还有那么多有趣的问题呢! 所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一 )1.算 899998+89998+8998+898+882.算 799999+79999+7999+799+793.算(1988+1986+1984+?+6+4+2)-(1+3+5+ ?+1983+1985+1987)4.算 1—2+3—4+5—6+?+1991— 1992+19935. 1 点敲 1 下,2 点敲 2 下,3 点敲 3 下,依次推 . 从 1 点到 1 2 点 12 个小内共敲了多少下 ?6.求出从 1~25 的全体自然数之和 .7.算1000+999—998—997+996+995—994—993+?+108+107— 106—105+104+103—102—1018.算 92+94+89+93+95+88+94+96+879.算(125 ×99+125)× 1610.算3×999+3+99×8+8+2×9+2+911.算999999×7805312. 两个 10 位数 1111111111和 9999999999 的乘中,有几个数字是奇数?解答1.利用凑整法解 . 899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解 .799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+?+6+4+2)-(1+3+5+?+1983+1985+1987) =1988+1986+1984+?+6+4+2-1-3- 5?-1983-1985-1987=(1988-1987)+(1986- 1985)+?+(6 -5)+(4-3)+(2-1)=994.4.1-2+3 —4+5- 6+?+1991-1992+1993=1+(3-2)+(5- 4)+?+(1991 -1990)+(1 993-1992)=1+1×996 =997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下 ).6.1+2+3+?+24+25=(1+25)+(2+24)+(3+23)+ ?+(11+15)+(12+14)+13 =26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+?+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995 —994- 993)+?+(108+ 107—106—105)+(104+103 —102—101)解法 2 :原式 =(1000—998)+(999 —997)+(104 —102)+(103—101)=2 × 450=900.解法3 :原式=1000+(999—998—997+996)+(995 —994 -993+992)+?+(107— 106—105+104)+(103—102—101+100)-100 =1000—100 =900.9.(125 ×99+125)×16=125×(99+1) ×16= 125 ×100×8×2=125×8×100×2=200000.10.3 ×999+3+99×8+8+2×9+2+9= 3 ×(999+1)+8 ×(99+1)+2 ×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1) ×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111=11111111108888888889.这个积有 10 个数字是奇数 .四年级奥数习题:速算与巧算(二 )1.右图的 30 个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和 ( 如方格中a=14+17=31). 右图填满后,这 30 个数的总和是多少 ?2.有两个算式:①98765×98769,②98766× 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764 和567×765 哪个积大 ?4.在下面四个算式中,最大的得数是多少 ?① 1992 ×1999+1999 ② 1993 ×1998+1998③ 1994 ×1997+1997 ④ 1995 ×1996+19965.五个连续奇数的和是 85,求其中最大和最小的数 .6.45 是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数 .7. 把从 1 到 100 的自然数如下表那样排列 . 在这个数表里,把长的方面 3 个数,宽的方面 2 个数,一共 6 个数用长方形框围起来,这6 个数的和为 81,在数表的别的地方,如上面一样地框起来的6 个数的和为429,问此时长方形框子里最大的数是多少 ?习题解答1. 先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算.解法 1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=37 5最后算 30 个数的总和 =10+360+375=745.解法 2:把每格的数算出填好 .先算出 10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数 . 经观察可以列出下式:(23+37)+(25+35) × 2+(27+33) ×3+(29+31) × 4=60 ×(1+ 2+ 3+4)=600最后算总和:总和 =145+600=745.2.①98765 ×98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1) × 98768 =98765 × 98768+ 98768.所以②比①大 3.3. 同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016 是最大的得数 .5.85 ÷5=17 为中数,则五个数是: 13、15、17、19、21 最大的是 21,最小的数是 13.6.45 ÷5=9 为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数, 10 是上面一行的中间数, 17 是下面一行的中间数,10+17=27是上、下两行中间数之和. 这个中间数之和可以用81÷3=27 求得 .利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7) ÷2=75 75+1=76最大数是 76.。

四年级奥数第一讲速算与巧算课件

四年级奥数第一讲速算与巧算课件
2
方法一 凑整补零法
求一位数的平方,在乘法口诀 的九九表中已经被同学们熟知,如 7×7=49(七七四十九)。对于两 位数的平方,大多数同学只是背熟 了10~20的平方,
11×11=121,12×12=144, 13×13=169,14×14=196
15×15=225,16×16=256,17×17= 3
=100…00
13
3976个0
练习 1、125×25×32
100000 2、567×422+567+577×567
567000 3、5328×9999
53274672 4.482×59+41×159-323×59
15900
14
测试题
一、选择合理的方法简算下面各题(50分) (1)173+58+92+142+108 (573) (2)853-39-153-161 (500) (3)369+245+155-169 (600) (4)903-(774-97)-126 (100) (5)947+(372-447-572) (300) (6)76543+1498+3458+5 (81504) (7)5613-(613+261)-239 (4500)
方法一: 凑整补零法 例1 求292和822的值。 解: 292=29×29
=(29+1)×(29-1)+12 =30×28+1 =840+1 =841 解: 822=82×82 =(82-2)×(82+2)+22
4
由上例看出, 因为29比30少1, 所以给29“补”1, 这叫“补少”;因为82比80多2, 所以从82中“移 走”2, 这叫“移多”。因为是两个相同数相乘, 所 以对其中一个数“移多补少”后, 还需要在另一个数 上“找齐”。本例中, 给一个29补1, 就要给另一个 29减1;给一个82减了2, 就要给另一个82加上2。最 后, 还要加上“移多补少”的数的平方。

四年级《速算与巧算》奥数教案

四年级《速算与巧算》奥数教案

(四年级)备课教员:第一讲速算与巧算一、教学目标: 1.通过观察、比较,领会速算与巧算的基本规律。

2.通过对数字的对比、增减等方式,体会数与数之间的联系,抽象思维能力得到提升。

3.通过即时的方法演练,领会复杂问题简单化的能力,掌握特殊数字之间的联系,增强应用数学的意识。

4.通过活动,学生的口头表达能力、初步的观察推理能力、探究问题的能力、发散思维和逻辑思维能力得到提升。

二、教学重点: 1.学会运用多种方式将复杂的算式简单化。

2.引导学生比较数字与数字之间的相互联系。

三、教学难点: 1.探索发现找出特殊的数字,从而将式子进行简单化。

2.寻找准基数。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:芭啦啦综合教育学校开展了向贫困地区的小学生捐书的活动。

我们一起来看看各年级捐书情况吧!【课件演示一、二年级捐书361本,三、四年级捐书275本,五年级捐书725本,六年级捐书639本。

】师:在大家刚了解了各年级捐书的基本情况的时候,卡尔就马上大声答道:“一年级到六年级一共捐书2000本书!”这时,全场顿时鸦雀无声。

同学们,你知道卡尔是怎么如此快速的计算出这个数字的吗?生:不知道。

师:那你们想掌握这个方法吗?生:想。

师:那好,今天我们就来学一学“速算与巧算”这一课,让我们也变的跟卡尔一样拥有一个智慧的大脑吧!【板书课题:速算与巧算】二、探索发现授课(40分)(一)例题一:(13分)计算:(1)1208+1361+3792+1639 (2)7480-1760-2240 (3)7043+2604-1043 (4)5420-1297+1580师:同学们,我们先看一下第一小题,认真观察这个算式,说一说你发现了什么有趣的或者是特别的东西。

生1:它们全都是加法。

生2:有的数字加起来可以变成1000。

师:嗯,说得很好,那你能说说是哪些数字加起来可以得到1000吗?生2:361加639等于1000。

四年级奥数第一讲-速算与巧算含答案

四年级奥数第一讲-速算与巧算含答案

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。

二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。

解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。

解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

四年级奥数 速算与巧算,带答案

四年级奥数 速算与巧算,带答案

1.。

A.B.C.D.答案:B解析:2.计算:,结果是( )。

A.B.C.D.答案:C解析:通过观察都是接近的数,所以把这些数都表⽰为加减⼀个数:3.计算,结果是( )。

A.B.C.D.答案:C解析:计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=66000109+91+97+101+99+107+102700690706696100100109+91+97+101+99+107+102=100+9+100−9+100−3+100+1+100−1+100+7+100+2=100+100+100+100+100+100+100+9−9−3+1−1+7+2=100×7+6=700+6=70698+101+797+298+199−305128812001188110098+101+797+298+199−305=100+100+800+300+200−300−2+1−3−2−1−5=1200−12=11884.简便计算:。

A.B.C.答案:A解析:加括号时注意除号变乘号。

5.计算:。

A.B.C.答案:C解析:6.计算:。

A.B.C.D.答案:C 解析:7.计算A.B.C.答案:C5000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=30000098+998+9998+99998=99999811111211109211100298+998+9998+99998=(100−2)+(1000−2)+(10000−2)+(100000−2)=111100−8=111092125×64×25×5100001000001000000解析:8.计算:,结果是。

四年级奥数

四年级奥数

速算与巧算(一)计算在人们日常生活中无处不用,人们在生活中买东西要用到;学习活动中,同学求数要用到;科学研究中统筹设计要用到……为了提高我们的工作效率,人们总想算得快些、再快些。

为此,人们总结了不少精彩的简算方法和技巧,还发明了各式各样的计算工具,如古代的算筹和今天超高速的电子计算机。

在计算数学题时,有的同学算得又快又准,赢得同学们的羡慕,都说他解题有窍门,其实“窍门”就是一种速算、巧算的方法和技巧。

在千姿百态的数学计算百花园中,速算与巧算是其最为艳丽的奇葩,同学们也一定希望自己在计算时,算得既正确、迅速又合理灵活吧!那么怎样才能做到这些呢?首先我们要熟练掌握加、减、乘、除基本计算法则和混合运算顺序;其次,还要根据具体题目的持点,灵活应用运算定律、性质及巧算方法。

同学们,为了提高自已的计算正确性和计算速度,你有兴趣试一试吗?金牌例题例1 用简便方法计算下面各题。

(1)375+127+125 (2)27+321+179例2 用简便方法计算下面各题。

(1)685-237-163 (2)824-(197+124)例3 用简便算法计算下列各题(1)543+988 (2)732-97例4 用简便算法计算下列各题。

(1)497+56-297 (2)623-86+177例5 用简便方法计算下面各题。

(1)538+(462-397)(2)767-(467-289)(3)429+654-354 (4)612-493+293小结:加减法中的巧算方法,一般有:1、运用定律和性质。

2、借数凑整。

3、拆小补大。

4、找基准数。

5、数列求和。

加减法中常用的运算定律和性质:1、a+b=b+a2、(a+b)+c=a+(b+c)3、a-b-c=a-(b+c)4、a-(b+c)=a-b-c5、a+b-c=a-c+b6、a+(b-c)=a+b-c7、a-(b-c)=a-b+c=a+c-b【课后作业】一、对应训练1、用简便方法计算下列各题(1)625+187+375 (2)542+97+2032、用简便方法计算下列各题。

四年级暑假奥数学习资料

四年级暑假奥数学习资料

第一讲:速算与巧算㈠速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高自己的计算能力和思维能力。

巧算方法主要是根据运算定律和运算性质,对算式适当变形,或改变运算顺序,或凑整,或改写等,从而变成一个易于算出结果的算式,使计算简便。

【例1】9+99+999+9999+99999 0.9+0.99+0.999+0。

9999+0。

99999 【例2】489+487+483+485+484+486+488 571+569+573+568+567+576+572 【例3】632―136―232 128+186+72-86【例4】248+(152-127)324―(124―97)283+(358-183)【例5】286+879-697 812-593+193练习题(一)⑴9+98+996+9997 ⑵19999+2998+396+497⑶198+297+396+495 ⑷1998+2997+4995+5994⑸19998+39996+49995+69996 ⑹9。

9+9。

99+9。

999+9。

9999+9.99999(二)⑴50+52+53+54+51⑵262+266+270+268+264⑶89+94+92+95+93+91+88+96+87⑷381+378+382+383+379⑸1032+1028+1033+1029+1031+1030⑹2451+2452+2446+2453(三)⑴1208―569―208⑵283+69-183⑶132-85+68⑷2318+625-1318+375(四)⑴348+(252-166)⑵629+(320-129)⑶462―(262―129)⑷662―(315―238)⑸5623―(623―289)+452―(352―211)⑹736+678+2386-(236+278)-186(五)⑴368+1859-859⑵582+393-293⑶632-385+285⑷2756-2478+1478+244⑸612-375+275+(388+286)⑹756+1478+346-(256+278)-246第二讲:速算与巧算㈡【例1】325÷25 30000÷625 22400÷700【例2】25×125×4×8 25×28125×56 25×5×128×125【例3】(360+108)÷36 (450-75)÷156342÷21 630÷15÷2【例4】158×61÷79×3 604×129÷302÷43【例5】103×96÷16 200÷(25÷4)(19×24×7×9)÷(8×7×9)练习题㈠450÷25 525÷25 3500÷12510000÷625 49500÷900 9000÷225㈡125×15×8×4 25×24 125×1675×16 125×25×32 25×5×64×125㈢(720+96)÷24 (4500-90)÷45 6342÷218811÷89 9000÷15÷3 73÷36+105÷36+146÷36㈣238×36÷119×5 138×27÷69×50624×48÷312÷8 406×312÷104÷203㈤612×366÷183 1000÷(125÷4)(13×8×5×6)÷(4×5×6)241×345÷678÷345×(678÷241)第三讲:速算与巧算㈢【例1】6.3×28+6。

小学四年级《速算与巧算》奥数试题及答案

小学四年级《速算与巧算》奥数试题及答案

小学四年级《速算与巧算》奥数试题及答案这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。

这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。

例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764练习一计算下面各题:132×37×27 315×77×13 6666×6666例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000练习二计算下面各题:9999×2222+3333×3334 37×18+27×42 46×28+24×63例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。

根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。

完整版)四年级奥数速算与巧算

完整版)四年级奥数速算与巧算

完整版)四年级奥数速算与巧算用了基准数的特性,直接求解)4940+14941.四年级奥数知识点:速算与巧算(一)例1:计算9+99+999+9999+.解法:在所有数字都是9的计算中,常使用凑整法。

例如,将999化成100-1去计算,这是小学数学中常用的一种技巧。

9+99+999+9999+10-1)+(100-1)+(1000-1)+(-1)+(-1)10+100+1000++-5-5.例2:计算++1999+199+19.解法:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整(如199+1=200)。

++1999+199+19+1)+(+1)+(1999+1)+(199+1)+(19+1)-5++2000+200+20-5-5.例3:计算(1+3+5+…+1989)-(2+4+6+…+1988)。

解法:先把两个括号内的数分别相加,再相减。

第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995;第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995-1990×497=995.例4:计算389+387+383+385+384+386+388.解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数。

389+387+383+385+384+386+388390×7-1-3-7-5-6-42730-282702.解法2:也可以选380为基准数,则有:389+387+383+385+384+386+388380×7+9+7+3+5+4+6+82660+422702.例5:计算(4942+4943+4938+4939+4941+4943)÷6.解法:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。

四年级奥数速算、巧算方法及习题(强烈推荐)

四年级奥数速算、巧算方法及习题(强烈推荐)

四年级奥数速算、巧算方法及习题 知识集锦实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算: ①乘法交换律:a b b a ⨯=⨯②乘法结合律:)(c b a c b a ⨯⨯=⨯⨯③乘法分配律:c b c a c b a ⨯+⨯=⨯+)(由此可以推出:)(c b a c a b a +⨯=⨯+⨯c b c a c b a ⨯-⨯=⨯-)(④除法的性质:)(c b a b c a c b a ⨯÷=÷÷=÷÷利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便. 例题集合例1 计算:)1(12564525⨯⨯⨯; )2(11716556÷÷⨯.练习1 计算:)1(1259625⨯⨯; )2(11111111119999977777÷÷⨯.例2 计算:)1(81254000÷÷; )2(3334333322229999⨯+⨯.练习2 计算:)1(852********÷÷÷÷; )2(3711111799999⨯+⨯.例3 计算:737820730218⨯+⨯.练习3 计算:482750480375⨯-⨯.例4 不用计算结果,请你指出下面哪道题得数大.458452⨯ 457453⨯练习4不用计算结果,比较下面两个积的大小.1234554321⨯=A 1234454322⨯=B例5 求)65()54()43()32(1÷÷÷÷÷÷÷÷的值.练习5 求)3516()1611()117(5÷÷÷÷÷÷的值.课堂练习一、选择题。

1、下列各式中没有反映出简便运算的是( ).(A )42000020002002019999199919919-+++=+++(B ))654(45006544500÷÷=⨯÷(C )481251920481252408÷⨯=÷⨯⨯(D ))25542(100002554210000⨯⨯⨯÷=÷÷÷÷二、简算下列各题.2、)9025(4500⨯÷;3、1812518000÷÷;4、5335613542⨯-⨯+⨯;5、16)12599125(⨯+⨯;6、1675⨯;7、9814998105981⨯+⨯+;8、)425(1000÷÷; 9、636237÷;10、201020112011201120102010⨯-⨯; 11、)199976578()198579975(+⨯÷-⨯.13、不用笔算,请你指出下面哪个积大?248242⨯ 247243⨯14、计算:3436⨯,2327⨯,6169⨯,5852⨯,1218⨯.)1( 你能从上面的计算中,总结出个位数字的和等于10、十位数相同的两位数相乘的简便算法吗?)2( 利用上面的结论计算:=⨯7872 =⨯5885 =⨯9991家庭作业一、计算题.1、25124⨯; 2、12591000÷;3、5325125⨯⨯⨯; 4、111199984444÷⨯;5、852********÷÷÷÷; 6、)272524()817548(⨯⨯÷⨯⨯;7、计算:7754054230⨯+⨯; 8、计算:123789456789456123÷⨯÷÷⨯.。

(完整版)四年级奥数专题速算与巧算

(完整版)四年级奥数专题速算与巧算

四年级奥数专题:速算与巧算【试题1】计算9+99+999+9999+99999【试题2】计算199999+19999+1999+199+19【试题3】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【试题4】计算9999×2222+3333×3334【试题5】56×3+56×27+56×96-56×57+56【试题6】计算98766×98768-98765×98769四年级奥数专题:速算与巧算答案【解析1】在涉及所有数字都是9的计算中,常使用凑整法。

例如将999化成1000—1去计算。

这是小学数学中常用的一种技巧。

9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105【解析2】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225【分析3】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500【分析4】此题如果直接乘,数字较大,容易出错。

四年级奥数专题速算与巧算

四年级奥数专题速算与巧算

四年级奥数专题:速算与巧算【试题1】计算9+99+999+9999+99999【试题2】计算199999+19999+1999+199+19【试题3】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【试题4】计算9999×2222+3333×3334【试题5】56×3+56×27+56×96-56×57+56【试题6】计算98766×98768-98765×98769四年级奥数专题:速算与巧算答案【解析1】在涉及所有数字都是9的计算中,常使用凑整法。

例如将999化成1000—1去计算。

这是小学数学中常用的一种技巧。

9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105【解析2】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225【分析3】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500【分析4【分析5】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。

四年级奥数第一讲_速算与巧算含答案解析

四年级奥数第一讲_速算与巧算含答案解析

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。

二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。

解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。

解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

解:原式3427=⨯ 2394=练一练:(445443440439433434)6+++++÷答案:439例(6) 482594115932359⨯+⨯-⨯分析:先改变运算顺序,把4159⨯与32359⨯交换位置,48259⨯与32359⨯都有公共因素59,将48259⨯与32359⨯的差算出再与41159⨯求和。

四年级奥数速算与巧算练习及答案

四年级奥数速算与巧算练习及答案

四年级奥数速算与巧算练习及答案四年级奥数速算与巧算练习及答案一、(1+2+3+……+2009+2010+……+2+1)÷2010【分析】1+2+3+……+2009+2010+……+2+1)÷2010=2010×2010÷2010=2010二、123×9+82×8+41×7-2009【分析】40123×9+82×8+41×7-2010=41×3×9+41×2×8+41×7-2010=41×(27+16+7)-2010=2050-2010=40三、(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)解答:分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500。

四、6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)解答:原式==6472-1996+5319-1996+9354-1996+6839-1996=6472+5319+9354+6839-1996 4=6472+5319+9354+6839-7984=(6472+5319+6839)+(9200+154)-(7900+84)=(6472+5319+6839)+(9200-7900)+(154-84)=(6472+5319+6839)+1300+70=18630+1370=20000四年级奥数速算与巧算练习及答案【例题1】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000。

四年级奥数解题技巧

四年级奥数解题技巧

四年级奥数解题技巧一、速算与巧算。

1. 计算:9999 + 999 + 99+9。

解析:把每个数看作整十、整百、整千……减1的形式,再进行计算。

9999+999 + 99+9 =(10000 - 1)+(1000-1)+(100 - 1)+(10 - 1) =10000+1000 + 100+10-4 =11110- 4 =111062. 计算:489 + 487+483+485+484+486+488。

解析:选480为基准数,489+487 + 483+485+484+486+488 =(480 +9)+(480+7)+(480+3)+(480+5)+(480+4)+(480+6)+(480+8) =480×7+(9 + 7+3+5+4+6+8)=3360+(9+1+6+3+5+4+8) =3360+(10+6+3+5+4+8) =3360+(16+3+5+4+8)=3360+(19+5+4+8) =3360+(24+4+8) =3360+(28+8) =3360+36 =3396二、数列求和。

3. 求1 + 2+3+…+100的和。

解析:这是一个等差数列求和,公式为S_n=(n(a_1 + a_n))/(2)(n是项数,a_1是首项,a_n是末项)这里n = 100,a_1=1,a_n = 100S_100=(100×(1 + 100))/(2)=50×101 = 50504. 求数列3,5,7,9,…,21的和。

解析:这是一个首项a_1 = 3,末项a_n=21,公差d=2的等差数列。

先求项数n=(a_n - a_1)/(d)+1=(21-3)/(2)+1=(18)/(2)+1=10再根据求和公式S_n=(n(a_1 + a_n))/(2)S_10=(10×(3 + 21))/(2)=5×24=120三、定义新运算。

5. 设a、b都表示数,规定a△b=(a + b)×2。

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案1. 数的速算法2. 快速计算3. 小学奥数加减乘除练习4. 常见乘法口诀5. 方便的除法计算技巧6. 巧妙的加减法运算7. 优化的百分数计算方法8. 实用的几何图形计算技巧9. 实战的生活中的计算题目10. 视觉记忆的速算训练答案:1. 数的速算法答案:速算法指的是运用一些简便的技巧与方法来快速计算的方法。

例如用9段样条线来表示数字1,将数字的表达与视觉形象结合在一起,可以达到快速计算的效果。

2. 快速计算答案:快速计算技巧包括了加减乘除各个方面,如加法有凑数法、抵数法等;减法有加倍数法、分解数法等;乘法有竖式运算方法,交叉相乘计算法等;除法有竖式运算法、分解分子分母法等。

3. 小学奥数加减乘除练习答案:加减乘除是小学奥数的基础,掌握了这些基础的数学运算能力,才能在学习高阶数学知识时更加游刃有余。

可以通过刻意而有目的地训练来提高计算速度和准确度。

4. 常见乘法口诀答案:小学奥数中最为基础的技能之一就是乘法口诀,通过熟练掌握乘法口诀,可以极大地方便我们的计算。

如:1×8=8,2×8=16,3×8=24,8的下一个是9,所以 4×8=32,5×8=40,等等。

5. 方便的除法计算技巧答案:除法相对而言更为复杂一些,但我们可以通过一些简单易行的技巧来提高计算效率。

如:除法的大小关系可以和乘法相互转换,而某些数字的约数和倍数也可以有助于除法的计算。

6. 巧妙的加减法运算答案:加减法其实是一种递归的过程。

一旦我们掌握了这些技巧,就可以通过这些技巧来递归计算出较为复杂的问题。

例如,在求两个小数的相加时,我们可以把两个小数的小数位数统一,然后相加即可。

7. 优化的百分数计算方法答案:百分数在日常生活中也很常见,要精通百分数计算,通常需要对常用的百分数进行速算。

例如:50%等于1/2,25%等于1/4,10%等于1/10,更高级的百分数转化可以运用推导法来操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数:速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领.准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展.我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法.例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75.求这10名同学的总分.分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错.观察这些数不难发现,这些数虽然大小不等,但相差不大.我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小.于是得到总和=80×10+(6-2-3+3+11-=800+9=809.实际计算时只需口算,将这些数与80的差逐一累加.为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809.例1所用的方法叫做加法的基准数法.这种方法适用于加数较多,而且所有的加数相差不大的情况.作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差.由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数.在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差.同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数.例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461.求平均每块麦田的产量.解:选基准数为450,则累计差=12+30-7-30+23-21+18-11+25+11=50,平均每块产量=450+50÷10=455(千克).答:平均每块麦田的产量为455千克.求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九).对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了.有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法.所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数.下面通过例题来说明这一方法.例3 求292和822的值.解:292=29×29=(29+1)×(29-1)+12=30×28+1=840+1=841.822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724.由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”.因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”.本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2.最后,还要加上“移多补少”的数的平方.由凑整补零法计算352,得35×35=40×30+52=1225.这与三年级学的个位数是5的数的平方的速算方法结果相同.这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值.例4求9932和20042的值.解:9932=993×993=(993+7)×(993-7)+72=1000×986+49=986000+49=986049.20042=2004×2004=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016.下面,我们介绍一类特殊情况的乘法的速算方法.请看下面的算式:66×46,73×88,19×44.这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10.这类算式有非常简便的速算方法.例5 88×64=?分析与解:由乘法分配律和结合律,得到88×64=(80+8)×(60+4)=(80+8)×60+(80+8)×4=80×60+8×60+80×4+8×4=80×60+80×6+80×4+8×4=80×(60+6+4)+8×4=80×(60+10)+8×4=8×(6+1)×100+8×4.于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1).例6 77×91=?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07.用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算.练习11.求下面10个数的总和:165,152,168,171,148,156,169,161,157,149.2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):26,25,25,23,27,28,26,24,29,27,27,25.求这批麦苗的平均高度.3.某车间有9个工人加工零件,他们加工零件的个数分别为:68,91,84,75,78,81,83,72,79.他们共加工了多少个零件?4.计算:13+16+10+11+17+12+15+12+16+13+12.5.计算下列各题:(1)372;(2)532;(3)912;(4)682:(5)1082;(6)3972.6.计算下列各题:(1)77×28;(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46×99.练习1 答案1.1596.2.26厘米.3.711个.4.147.5.(1)1369;(2)2809;(3)8281;(4)4624;(5)11664;(6)157609.6.(1)2156;(2)3630;(3)627;(4)3608;(5)1221;(6)4554.第2讲速算与巧算(二)上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法.两个数之和等于10,则称这两个数互补.在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况.72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型.计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法.例1 (1)76×74=?(2)31×39=?分析与解:本例两题都是“头相同、尾互补”类型.(1)由乘法分配律和结合律,得到76×74=(7+6)×(70+4)=(70+6)×70+(7+6)×4=70×70+6×70+70×4+6×4=70×(70+6+4)+6×4=70×(70+10)+6×4=7×(7+1)×100+6×4.于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积.“同补”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×(头+1)”.我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法.例2 (1)78×38=?(2)43×63=?分析与解:本例两题都是“头互补、尾相同”类型.(1)由乘法分配律和结合律,得到78×38=(70+8)×(30+8)=(70+8)×30+(70+8)×8=70×30+8×30+70×8+8×8=70×30+8×(30+70)+8×8=7×3×100+8×100+8×8=(7×3+8)×100+8×8.于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数.“补同”速算法简单地说就是:积的末两位数是“尾×尾”,前面是“头×头+尾”.例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法.当被乘数和乘数多于两位时,情况会发生什么变化呢?我们先将互补的概念推广一下.当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补.如43与57互补,99与1互补,555与445互补.在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型.例如,因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型.又如,等都是“同补”型.当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型.例如,等都是“补同”型.在计算多位数的“同补”型乘法时,例1的方法仍然适用.例3 (1)702×708=?(2)1708×1792=?解:(1)(2)计算多位数的“同补”型乘法时,将“头×(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位.注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”.在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了.例4 2865×7265=?解:练习2计算下列各题:1.68×62;2.93×97;3.27×87;4.79×39;5.42×62;6.603×607;7.693×607;8.4085×6085.答案练习11.1596.2.26厘米.3.711个.4.147.5.(1)1369;(2)2809;(3)8281;(4)4624;(5)11664;(6)157609.6.(1)2156;(2)3630;(3)627;(4)3608;(5)1221;(6)4554.练习21.4216.2.9021.3.2349.4.3081.5.2604.6.366021.7.420651.8.24857225.。

相关文档
最新文档