初中数学模型解题法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学模型解题法

解答题

1. (2001江苏苏州6分)如图,已知AB是半圆O的直径,AP为过点A的半圆的切线。在上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C 作CE⊥AB,垂足为E.连接BD,交CE于点F。

(1)当点C为的中点时(如图1),求证:CF=EF;

(2)当点C不是的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论。

【答案】解:(1)证明:∵DA是切线,AB为直径,∴DA⊥AB。

∵点C是的中点,且CE⊥AB,∴点E为半圆的圆心。

又∵DC是切线,∴DC⊥EC。

又∵CE⊥AB,∴四边形DAEC是矩形。

∴CD∥AO,CD=AD。∴,即EF= AD= EC。

∴F为EC的中点,CF=EF。

(2)CF=EF保持不变。证明如下:

如图,连接BC,并延长BC交AP于G点,连接AC,

∵AD、DC是半圆O的切线,∴DC=DA。

∴∠DAC=∠DCA。

∵AB是直径,∴∠ACB=90°。∴∠ACG=90°。

∴∠DGC+∠DAC=∠DCA+∠DCG=90°。

∴∠DGC=∠DCG。

∴在△GDC中,GD=DC。

∵DC=DA,∴GD=DA。

∵AP是半圆O的切线,∴AP⊥AB。

又∵CE⊥AB,∴CE∥AP。∴△BCF∽△BGD,△BEF∽△BAD。

∴。

∵GD=AD,∴CF=EF。

【考点】探究型,圆的综合题,切线的性质,矩形的判定和性质,平行线分线段成比例定理,等腰三角形的判定,相似三角形的判定和性质。

【分析】(1)由题意得DA⊥AB,点E为半圆的圆心,DC⊥EC,可得四边形DAEC是矩形,即可得出,即可得EF与EC的关系,可知CF=EF。

(2)连接BC,并延长BC交AP于G点,连接AC,由切线长定理可得DC=DA,∠DAC=∠DCA,由角度代换关系可得出∠DGC=∠DCG,即可得GD=DC=DA,由已知可得CE∥AP,所以,即可知CF=EF。

2. (2001江苏苏州7分)已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x。

(1)用x表示△AMN的面积;

(2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM 所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y。

①用的代数式表示y,并写出x的取值范围;

②当x为何值时,重叠部分的面积y最大,最大为多少?

【答案】解:(1)∵MN∥BC,∴△AMN∽△ABC。∴。

∴,即。

(2)①当点A′落在四边形BCMN内或BC边上时,

(0<x≤5)。

当点A′在四边形BCMN外,

连接AA′与MN交于点G与BC交于点F,

∵MN∥BC,∴,即。

∴AG= x。∴AA′=2AG=x。∴A′F=x-5。

∴,即。

∴。

∴重合部分的面积。

综上所述,重合部分的面积。

②∵

∴当x= 时,y最大,最大值为y最大= 。

【考点】翻折变换(折叠问题),相似三角形的判定和性质,二次函数的最值。

【分析】(1)根据已知条件求出△AMN∽△ABC,再根据面积比等于相似比的平方的性质即可求出△AMN的面积。

(2)根据已知条件分两种情况进行讨论,当点A′落在四边形BCMN内或BC边上时和当点A′在四边形BCMN外时进行讨论,第一种情况很容易求出,第二种情况进行画图,连接AA′与MN交于点G与BC交于点F,再根据面积比等于相似比的平方的性质求出即可.再根据求出的式子,即可求出重叠部分的面积y的最大值来。

3. (江苏省苏州市2002年7分)已知:⊙与⊙外切于点,过点的直线分别交⊙、⊙于点、,⊙的切线交⊙于点、,为⊙的弦,

(1)如图(1),设弦交于点,求证:;

(2)如图(2),当弦绕点旋转,弦的延长线交直线B 于点时,试问:是否仍然成立?证明你的结论。

【答案】解:(1)证明:连结,过点作⊙与⊙的公切线。

∴。

又∵是⊙的切线,∴。

又∵,∴。

又∵,∴。

∴,即。

(2)仍成立。证明如下:

连结,过点作⊙和⊙的公切线。

∵是⊙的切线,∴。∴。

∴。

又∵,∴。

又∵,∴。

∴,即。

【考点】相切两圆切线的性质,弦切角定理,切线长定理,等腰三角形的性质,对顶角的性质,相似三角形的判定和性质。

【分析】(1)连结,过点作⊙与⊙的公切线。根据弦切角定理可得,由也是⊙的切

线,根据切线长定理可得,从而根据等腰三角形等边对等角的性质,得到,由对顶角相等的性质,得到。又,从而,根据相似三角形的性质即可证明。

(2)同(1)可以证明。

4.(江苏省苏州市2002年7分)如图,梯形OABC中,O为直角坐标系的原点,A、B、C 的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自己的终点时,另一点也停止运动。

(1)设从出发起运动了秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q 在OC上或在CB上时的坐标(用含的代数式表示,不要求写出的取值范围);

(2)设从出发起运动了秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半。

①试用含的代数式表示这时点Q所经过的路程和它的速度;

②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的的值和P、Q的坐标;如不可能,请说明理由。

【答案】解:(1)当点Q在OC上时,如图,过点C作CE⊥OA于点E,过点Q作QF⊥OA于点F。

依题意,有OE=4,EC=3,OC=5,OQ=2 。

由△OCE∽△OQF得,

即。

∴。∴当点Q在OC上时,点Q的坐标为。

当点Q在CB上时,如图,过点C作CM⊥OA于点M,过点Q作QN⊥OA于点N。

∵CQ=2 -5,∴OM=4+2 -5=2 -1。

又MQ=3,∴当点Q在CB上时,点Q的坐标为()。

(2)①∵点P所经过的路程为,点Q所经过的路程为OQ,且点P与点Q 所经过的路程之和恰好为梯形OABC的周长的一半,

∴+OQ= (14+3+10+5),即OQ=16-。

∴点Q所经过的路程为16-,速度为。

②不能。理由如下:

当Q点在OC上时,如图,过点Q作QF⊥OA于点F。

则OP= ,QF= 。

∴。

又∵,∴令,解之,得。

∵当时,,这时点Q不在OC上,故舍去;

当时,,这时点Q不在OC上,故舍去。

∴当Q点在OC上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。

当Q在CB上时,CQ=16--5=11-,

∴。

∵,

∴当Q点在CB上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。

综上所述,这时PQ不可能同时平分梯形OABC的面积。

【考点】动点问题,勾股定理,相似三角形的判定和性质。

【分析】(1)当点Q在OC上时,作直角三角形OCE和OQF,由二者相似即可求出此时点

相关文档
最新文档