2008年高考宁夏理科数学试卷及答案

合集下载

2008年宁夏高考数学试卷(理)及答案

2008年宁夏高考数学试卷(理)及答案

2008年宁夏高考数学试卷(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知函数y=2sin(ωx+φ)(ω>0))在区间[0,2π]的图象如图:那么ω=()A.1 B.2 C.D.2.(5分)已知复数z=1﹣i,则=()A.2i B.﹣2i C.2 D.﹣23.(5分)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.B.C.D.4.(5分)设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.5.(5分)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c6.(5分)已知a1>a2>a3>0,则使得(1﹣a i x)2<1(i=1,2,3)都成立的x 取值范围是()A.B.C.D.7.(5分)=()A.B.C.2 D.8.(5分)平面向量,共线的充要条件是()A.,方向相同B.,两向量中至少有一个为零向量C.∃λ∈R,D.存在不全为零的实数λ1,λ2,9.(5分)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种10.(5分)由直线x=,x=2,曲线y=及x轴所围成的图形的面积是()A.B.C.D.2ln211.(5分)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.B. C.(1,2) D.(1,﹣2)12.(5分)某几何体中的一条线段长为,在该几何体的正视图中,这条线段的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A.B.C.4 D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知向量知=(0,﹣1,1),=(4,1,0),|λ+|=,且λ>0,则λ=.14.(5分)设双曲线﹣=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为.15.(5分)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为.16.(5分)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;②.三、解答题(共8小题,22--24题选做其中一题,满分70分)17.(12分)已知{a n}是一个等差数列,且a2=1,a5=﹣5.(Ⅰ)求{a n}的通项a n;(Ⅱ)求{a n}前n项和S n的最大值.18.(12分)如图,已知点P在正方体ABCD﹣A′B′C′D′的对角线BD′上,∠PDA=60°.(Ⅰ)求DP与CC′所成角的大小;(Ⅱ)求DP与平面AA′D′D所成角的大小.19.(12分)A,B两个投资项目的利润率分别为随机变量X1和X2.根据市场分析,X1和X2的分布列分别为X 15%10%X22%8%12%P0. 8 0.2P.2.50.3(Ⅰ)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1,DY2;(Ⅱ)将x(0≤x≤100)万元投资A项目,100﹣x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.(注:D(aX+b)=a2DX)20.(12分)在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.(Ⅰ)求C1的方程;(Ⅱ)平面上的点N 满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.21.(12分)设函数f(x)=ax +(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程是y=3.(Ⅰ)求y=f(x)的解析式;(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线y=f(x)上任意一点的切线与直线x=1和直线y=x所围成的三角形的面积是定值,并求出这个定值.22.(10分)如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.(1)证明:OM•OP=OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.23.自选题:已知曲线C1:(θ为参数),曲线C2:(t为参数).(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′.写出C1′,C2′的参数方程.C1′与C2′公共点的个数和C与C2公共点的个数是否相同?说明你的理由.24.自选题:已知函数f(x)=|x﹣8|﹣|x﹣4|.(Ⅰ)作出函数y=f(x)的图象;(Ⅱ)解不等式|x﹣8|﹣|x﹣4|>2.2008年宁夏高考数学试卷(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•海南)已知函数y=2sin(ωx+φ)(ω>0))在区间[0,2π]的图象如图:那么ω=()A.1 B.2 C.D.【分析】由图象确定周期T,进而确定ω.【解答】解:由图象知函数的周期T=π,所以.故选B.2.(5分)(2008•海南)已知复数z=1﹣i,则=()A.2i B.﹣2i C.2 D.﹣2【分析】把z代入分式,然后展开化简,分母实数化,即可.【解答】解:∵z=1﹣i,∴,故选B.3.(5分)(2008•海南)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.B.C.D.【分析】先得到3边之间的关系,再由余弦定理可得答案.【解答】解:设顶角为C,因为l=5c,∴a=b=2c,由余弦定理得,故选D.4.(5分)(2008•海南)设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.【分析】根据等比数列的性质,借助公比q表示出S4和a1之间的关系,易得a2与a1间的关系,然后二者相除进而求得答案.【解答】解:由于q=2,∴∴;故选:C.5.(5分)(2008•海南)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.6.(5分)(2008•海南)已知a1>a2>a3>0,则使得(1﹣a i x)2<1(i=1,2,3)都成立的x取值范围是()A.B.C.D.【分析】先解出不等式(1﹣a i x)2<1的解集,再由a1>a2>a3>0确定x的范围.【解答】解:,所以解集为,又,故选B.7.(5分)(2008•海南)=()A.B.C.2 D.【分析】本题是分式形式的问题,解题思路是约分,把分子正弦化余弦,用二倍角公式,合并同类项,约分即可.【解答】解:原式====2,故选C.8.(5分)(2008•海南)平面向量,共线的充要条件是()A.,方向相同B.,两向量中至少有一个为零向量C.∃λ∈R,D.存在不全为零的实数λ1,λ2,【分析】根据向量共线定理,即非零向量与向量共线的充要条件是必存在唯一实数λ使得成立,即可得到答案.【解答】解:若均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得;若,则由两向量共线知,存在λ≠0,使得,即,符合题意,故选D.9.(5分)(2008•海南)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种【分析】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.【解答】解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.10.(5分)(2008•海南)由直线x=,x=2,曲线y=及x轴所围成的图形的面积是()A.B.C.D.2ln2【分析】由题意画出图形,再利用定积分即可求得.【解答】解:如图,面积.故选D.11.(5分)(2008•海南)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.B. C.(1,2) D.(1,﹣2)【分析】先判断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,根据图象知最小值在S,P,Q三点共线时取得,可得到答案.【解答】解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PS+PQ,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是﹣1,故选A.12.(5分)(2008•海南)某几何体中的一条线段长为,在该几何体的正视图中,这条线段的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A.B.C.4 D.【分析】设棱长最长的线段是长方体的对角线,由题意所成长方体的三度,求出三度与面对角线的关系,利用基本不等式即可求出a+b的最大值【解答】解:结合长方体的对角线在三个面的投影来理解计算.如图设长方体的长宽高分别为m,n,k,由题意得,⇒n=1,所以(a2﹣1)+(b2﹣1)=6⇒a2+b2=8,∴(a+b)2=a2+2ab+b2=8+2ab≤8+a2+b2=16⇒a+b≤4当且仅当a=b=2时取等号.故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•海南)已知向量知=(0,﹣1,1),=(4,1,0),|λ+|=,且λ>0,则λ=3.【分析】根据所给的向量坐标写出要求模的向量坐标,用求模长的公式写出关于变量λ的方程,解方程即可,解题过程中注意对于变量的限制,把不合题意的结果去掉.【解答】解:由题意知λ+=(4,1﹣λ,λ),∴16+(λ﹣1)2+λ2=29(λ>0),∴λ=3,故答案为:3.14.(5分)(2008•海南)设双曲线﹣=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为.【分析】根据题意,由双曲线的方程可得a、b的值,进而可得c的值,可以确定A、F的坐标,设BF的方程为y=(x﹣5),代入双曲线方程解得B的坐标,计算可得答案.【解答】解:a2=9,b2=16,故c=5,∴A(3,0),F(5,0),不妨设BF的方程为y=(x﹣5),代入双曲线方程解得:B(,﹣).=|AF|•|y B|=•2•=.∴S△AFB故答案为:.15.(5分)(2008•海南)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为.【分析】先求正六棱柱的体对角线,就是外接球的直径,然后求出球的体积.【解答】解:∵正六边形周长为3,得边长为,故其主对角线为1,从而球的直径,∴R=1,∴球的体积故答案为:.16.(5分)(2008•海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;②乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度.【分析】利用茎叶图中的数据可以计算乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;通过观察茎叶图中数据的分布可知甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大.【解答】解:(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题(共8小题,22--24题选做其中一题,满分70分)17.(12分)(2008•海南)已知{a n}是一个等差数列,且a2=1,a5=﹣5.(Ⅰ)求{a n}的通项a n;(Ⅱ)求{a n}前n项和S n的最大值.【分析】(1)用两个基本量a1,d表示a2,a5,再求出a1,d.代入通项公式,即得.(2)将S n的表达式写出,是关于n的二次函数,再由二次函数知识可解决之.【解答】解:(Ⅰ)设{a n}的公差为d,由已知条件,,解出a1=3,d=﹣2,所以a n=a1+(n﹣1)d=﹣2n+5.(Ⅱ)=4﹣(n﹣2)2.所以n=2时,S n取到最大值4.18.(12分)(2008•海南)如图,已知点P在正方体ABCD﹣A′B′C′D′的对角线BD′上,∠PDA=60°.(Ⅰ)求DP与CC′所成角的大小;(Ⅱ)求DP与平面AA′D′D所成角的大小.【分析】方法一:如图,以D为原点,DA为单位长建立空间直角坐标系D﹣xyz.连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于H.求出.(Ⅰ)利用,求出.即可.(Ⅱ)平面AA'D'D的一个法向量是.通过,得到.即可.方法二:如图,以D为原点,DA为单位长建立空间直角坐标系D﹣xyz.求出解题过程同方法一.【解答】解:方法一:如图,以D为原点,DA为单位长建立空间直角坐标系D ﹣xyz.则,.连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于H.设,由已知,由可得.解得,所以.(4分)(Ⅰ)因为,所以.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是.因为,所以.可得DP与平面AA'D'D所成的角为30°.(12分)方法二:如图,以D为原点,DA为单位长建立空间直角坐标系D﹣xyz.则,,.设P(x,y,z)则,∴(x﹣1,y﹣1,z)=(﹣λ,﹣λ,λ)∴,则,由已知,,cos==∴λ2﹣4λ+2=0,解得,∴(4分)(Ⅰ)因为,所以.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是.因为,所以.可得DP与平面AA'D'D所成的角为30°.(12分)19.(12分)(2008•海南)A,B两个投资项目的利润率分别为随机变量X1和X2.根据市场分析,X1和X2的分布列分别为X 15%10%X22%8%12%P0. 8 0.2P.2.50.3(Ⅰ)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1,DY2;(Ⅱ)将x(0≤x≤100)万元投资A项目,100﹣x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.(注:D(aX+b)=a2DX)【分析】(1)Y1和Y2分别表示投资项目A和B所获得的利润,根据两个投资项目的利润率分别为随机变量X1和X2的分布列,可以得到Y1和Y2的分布列,得到分布列,余下的问题只是运算问题,分别求出变量的方差.(2)由题意知f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和,写出用x表示的方差的解析式,结合二次函数的最值问题,得到结果.【解答】解:(Ⅰ)∵Y1和Y2分别表示投资项目A和B所获得的利润,根据两个投资项目的利润率分别为随机变量X1和X2的分布列可以得到Y1和Y2的分布列分别为Y 151Y22812P0. 8 0.2P0.2.5.3EY1=5×0.8+10×0.2=6,DY1=(5﹣6)2×0.8+(10﹣6)2×0.2=4,EY2=2×0.2+8×0.5+12×0.3=8,DY2=(2﹣8)2×0.2+(8﹣8)2×0.5+(12﹣8)2×0.3=12.(Ⅱ)===,当时,f(x)=3为最小值.20.(12分)(2008•海南)在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.(Ⅰ)求C1的方程;(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.【分析】(Ⅰ)先利用F2是抛物线C2:y2=4x的焦点求出F2的坐标,再利用|MF2|=以及抛物线的定义求出点M的坐标,可以得到关于椭圆方程中参数的两个等式联立即可求C1的方程;(Ⅱ)先利用,以及直线l∥MN得出直线l与OM的斜率相同,设出直线l的方程,把直线方程与椭圆方程联立得到关于A,B两点坐标的等式,整理代入,即可求出直线l的方程.【解答】解:(Ⅰ)由C2:y2=4x知F2(1,0).设M(x1,y1),M在C2上,因为,所以,得,.M在C1上,且椭圆C1的半焦距c=1,于是消去b2并整理得9a4﹣37a2+4=0,解得a=2(不合题意,舍去).故椭圆C1的方程为.(Ⅱ)由知四边形MF1NF2是平行四边形,其中心为坐标原点O,因为l∥MN,所以l与OM的斜率相同,故l的斜率.设l的方程为.由消去y并化简得9x2﹣16mx+8m2﹣4=0.设A(x1,y1),B(x2,y2),,.因为,所以x1x2+y1y2=0.x1x2+y1y2=x1x2+6(x1﹣m)(x2﹣m)=7x1x2﹣6m(x1+x2)+6m2==.所以.此时△=(16m)2﹣4×9(8m2﹣4)>0,故所求直线l的方程为,或.21.(12分)(2008•海南)设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程是y=3.(Ⅰ)求y=f(x)的解析式;(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线y=f(x)上任意一点的切线与直线x=1和直线y=x所围成的三角形的面积是定值,并求出这个定值.【分析】(I)欲求在点(2,f(2))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(Ⅱ)由函数y1=x,都是奇函数.可得和函数也是奇函数,其图象是以原点为中心的中心对称图形.再按向量a=(1,1)平移,即得到函数f(x)的图象,故函数f(x)的图象是以点(1,1)为中心的中心对称图形.(Ⅲ)先在曲线上任取一点.利用导数求出过此点的切线方程为,令x=1得切线与直线x=1交点.令y=x得切线与直线y=x交点.从而利用面积公式求得所围三角形的面积为定值.【解答】解:(Ⅰ),于是解得或因a,b∈Z,故.(Ⅱ)证明:已知函数y1=x,都是奇函数.所以函数也是奇函数,其图象是以原点为中心的中心对称图形.而.可知,函数g(x)的图象按向量a=(1,1)平移,即得到函数f(x)的图象,故函数f(x)的图象是以点(1,1)为中心的中心对称图形.(Ⅲ)证明:在曲线上任取一点.由知,过此点的切线方程为.令x=1得,切线与直线x=1交点为.令y=x得y=2x0﹣1,切线与直线y=x交点为(2x0﹣1,2x0﹣1).直线x=1与直线y=x的交点为(1,1).从而所围三角形的面积为.所以,所围三角形的面积为定值2.22.(10分)(2008•海南)如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.(1)证明:OM•OP=OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.【分析】(1)在三角形OAM中考虑,因为MA是圆O的切线,所以OA⊥AM,从而由射影定理即得;(2)结合(1)问的结论,利用比例线段证明两个三角形△ONP、△OMK相似,通过对应角相等即可得.【解答】证明:(1)因为MA是圆O的切线,所以OA⊥AM,又因为AP⊥OM,在Rt△OAM中,由射影定理知OA2=OM•OP,故OM•OP=OA2得证.(2)因为BK是圆O的切线,BN⊥OK,同(1)有:OB2=ON•OK,又OB=OA,所以OM•OP=ON•OK,即,又∠NOP=∠MOK,所以△ONP~△OMK,故∠OKM=∠OPN=90°.即有:∠OKM=90°.23.(2008•海南)自选题:已知曲线C1:(θ为参数),曲线C2:(t为参数).(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′.写出C1′,C2′的参数方程.C1′与C2′公共点的个数和C与C2公共点的个数是否相同?说明你的理由.【分析】(I)先利用公式sin2θ+cos2θ=1将参数θ消去,得到圆的直角坐标方程,利用消元法消去参数t得到直线的普通方程,再根据圆心到直线的距离与半径进行比较,从而得到C1与C2公共点的个数;(II)求出压缩后的参数方程,再将参数方程化为普通方程,联立直线方程与圆的方程,利用判别式进行判定即可.【解答】解:(Ⅰ)C1是圆,C2是直线.C1的普通方程为x2+y2=1,圆心C1(0,0),半径r=1.C2的普通方程为.因为圆心C1到直线的距离为1,所以C2与C1只有一个公共点.(Ⅱ)压缩后的参数方程分别为C1′:(θ为参数);C2′:(t为参数).化为普通方程为:C1′:x2+4y2=1,C2′:,联立消元得,其判别式,所以压缩后的直线C2′与椭圆C1′仍然只有一个公共点,和C1与C2公共点个数相同.24.(2008•海南)自选题:已知函数f(x)=|x﹣8|﹣|x﹣4|.(Ⅰ)作出函数y=f(x)的图象;(Ⅱ)解不等式|x﹣8|﹣|x﹣4|>2.【分析】(I)这是一个绝对值函数,先转化为分段函数,再分段作出其图象;(II)借助(I)的图象,找出函数值为2的点,依据图象找出不等式的解集.【解答】解:(Ⅰ)f(x)=图象如下:(Ⅱ)不等式|x﹣8|﹣|x﹣4|>2,即f(x)>2,观察知当4<x<8时,存在函数值为2的点.由﹣2x+12=2得x=5.由函数f(x)图象可知,原不等式的解集为(﹣∞,5).。

2008高考理科数学(含答案)

2008高考理科数学(含答案)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··································································································································· 2分 ()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ························································································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ······················································ 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元.········································································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥.···························································································· 3分在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EFCE CF CG EF ⨯==EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--=,,,,,. ······················································································· 3分AB CDEA 1B 1C 1D 1 FH G(Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分1AC ,n 等于二面角1A DE B --的平面角,111cos AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42. ······························································ 12分 20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ·························································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==. ·····································································9分又AB==AEBF的面积为121()2S AB h h=+12===≤当21k=,即当12k=时,上式取等号.所以S的最大值为 ·······························12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ······························································································································9分===当222x y=时,上式取等号.所以S的最大值为··················································12分22.解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++.·····································2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>⎪⎝⎭ ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ····················································································· 12分。

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)函数的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C .D .3.(5分)在△ABC 中,=,=.若点D 满足=2,则=( )A .B .C .D .4.(5分)设a ∈R ,且(a +i )2i 为正实数,则a=( )A .2B .1C .0D .﹣15.(5分)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=() A .138B .135C .95D .236.(5分)若函数y=f (x )的图象与函数y=ln 的图象关于直线y=x 对称,则f (x )=( )A .e 2x ﹣2B .e 2xC .e 2x +1D .e 2x +27.(5分)已知曲线y=在点(3,2)处的切线与直线ax +y +1=0垂直,则a的值为( )A .2B .C .﹣D .﹣28.(5分)为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。

2008年全国高考理科数学试题及答案-宁夏卷

2008年全国高考理科数学试题及答案-宁夏卷

2008年普通高等学校统一考试(宁夏卷)数学(理科)一、选择题:本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( ) A. 1B. 2C. 1/2D. 1/32、已知复数1z i =-,则221z zz -=-( ) A. 2i B. -2i C. 2 D. -23、如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A. 5/18B. 3/4C.3/2 D. 7/84、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.1725、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c6、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a )B. (0,12a )C. (0,31a ) D. (0,32a ) 7、0203sin 702cos 10--=( )是否 开始输入x=ab>x 输出x结束x=bx=c否是A.12B.2C. 2D.28、平面向量a ,b 共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=9、甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。

不同的安排方法共有( ) A. 20种B. 30种C. 40种D. 60种10、由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积为( ) A. 415 B. 417 C. 2ln 21 D. 2ln 211、已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A. (41,-1) B. (41,1) C. (1,2) D. (1,-2)12、某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( )A. 22B. 32C. 4D. 52二、填空题:本大题共4小题,每小题5分,满分20分。

2008年高考理科综合_宁夏卷_(含答案)

2008年高考理科综合_宁夏卷_(含答案)

绝密★启用前2008年普通高等学校招生全国统一考试(宁夏卷)理科综合能力测试本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第30~38题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列过程不.属于细胞分化的是A.B淋巴细胞形成浆细胞B.胚胎干细胞形成神经细胞C.质壁分离植物细胞的复原D.蜥蜴断尾再生2.为证实叶绿体有效放氧功能,可利用含有水绵与好氧细菌的临时装片进行实验,装片需要给予一定的条件,这些条件是A.光照、有空气、临时装片中无NaHCO3稀溶液B.光照、无空气、临时装片中无NaHCO3稀溶液C.黑暗、有空气、临时装片中无NaHCO3稀溶液D.光照、无空气、临时装片中无NaHCO3稀溶液3.刺激某一个神经元引起后一个神经元兴奋。

当给予某种药物后,再刺激同一个神经元,发现神经冲动的传递被阻断,但检测到突触间隙中神经递质的量与给予药物之前相同。

这是由于该药物A.抑制了突触小体中递质的合成B.抑制了突触后膜的功能C.与递质的化学结构完全相同D.抑制了突触前膜递质的释放4.长时间运动引起机体缺氧时,血液pH的变化趋势、引起pH变化的物质、能起缓冲作用的物质分别分A.降低、CO2、Na2CO3B.降低、乳酸、NhHCO3C.升高、CO2、H2CO3D.升高、乳酸、NaHCO35.以下有关基因重组的叙述,错误..的是A.非同源染色体的自由组合能导致基因重组B.非姊妹染色体的交换可引起基因重组C.纯合体自交因基因重组导致子代性状分离D.同胞兄妹间的遗传差异与父母基因重组有关6.有一山区由于开采露天小铁矿等活动,自然生态系统完全被破坏,成为一片废墟,为尽快使该山区恢复到原有自然生态系统状态,应采取的最好措施是在这片废墟上A.回填土壤,引进多种外来物种,重建新的生态系统B.撤出人类全部活动,实行全面封闭,等待自然恢复C.回填土壤,栽培当地经济农作物,发展农业生产D.回填土壤,栽种多种当地原有的植物,实行封山育林7.图标所警示的是A.当心火灾——氧化物B. 当心火灾——易燃物质C.当心爆炸——自然物质D. 当心爆炸——爆炸性物质8.在①丙烯②氯乙烯③苯④甲苯四种有机化合物中,分子内所有原子均在同一平面的是A.①②B.②③C.③④D.②④9.下列说法错误..的是A.乙醇和乙酸都是常用调味品的主要成分B.乙醇和乙酸的沸点和熔点都比C2H6、C2H4的沸点和熔点高C.乙醇和乙酸都能发生氧化反应D.乙醇和乙酸之间能发生酯化反应,酯化反应和皂化反应互为逆反应10.一种燃料电池中发生的化学反应为:在酸性溶液中甲醇与氧作用生成水和二氧化碳。

2008年全国高考理科数学试题及答案-全国卷

2008年全国高考理科数学试题及答案-全国卷

2008年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学(必修+选修Ⅱ)一、选择题 1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥ D .{}|01x x ≤≤解:C. 由()10,0,1,0;x x x x x -≥≥≥=得或2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解:A . 根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s vt at =-结合函数图像可知; 3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b c 解:A. 由()2AD AB AC AD -=- ,322AD AB AC c b =+=+ ,1233AD c b =+;4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-解:D .()()()22221210,1a i i a ai i a a i a +=+-=-+->=-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .23解:C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =()A .21x e-B .2xeC .21x e+ D .22x e+sA .sssB .C .D .解:B.由()()()()21212ln 1,1,y x x y x ef x ef x e --=⇒=-==;7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-解:D. 由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位解:A. 55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像.9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,, D .(10)(01)- ,, 解:D 由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 解:D .由题意知直线1x ya b+=与圆221x y +=22111a b+1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n 可得cos sin 1a b αα=+11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D.23解:B.由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB =,棱柱的高1A O ===(等于点1B 到底面ABC 的距离1BD ),故1AB 与底面ABC 所成角的正弦值为1111B D A O AB AB ==. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060, 长度均为a ,平面ABC的法向量为111133OA AA AB AC =-- ,11AB AB AA =+211112,3OA AB a OA AB ⋅=== 则1AB 与底面ABC 所成角的正弦值为11113OA AB AO AB ⋅=.12.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48解:B.分三类:种两种花有24A 种种法;种三种花有342A 种种法; 种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:9解:可行域如图, 2-z xy=的最大值对应直线2y x z =-截距的最小值. 所以在顶点(3,3)B -处取最大值max 23(3)9z =⨯--=14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .答案:2.解:由抛物线21y ax =-的焦点坐标为 1(0,1)4a -为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .答案:38解:设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 答案:16.解:设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --的平面角,cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=- ,11()()22AN EM AB AC AC AE ⋅=+⋅-= 12故EM AN ,所成角的余弦值16AN EM AN EM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,(,2222M N ---,则31131(,(,,,2222222AN EM AN EM AN EM ==-⋅=== 故EM AN ,所成角的余弦值16AN EM AN EM ⋅= .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan2A B ==时,tan()A B -的最大值为34.18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小. 解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,CDE AB∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CEAD ⊥,AD ∴⊥面CEG ,EGAD ∴⊥则CGE ∠即为所求二面角的平面角.AC CD CG AD == ,DG =,EG ==, CE =222cos 210CG GE CE CGE CG GE +-∠==- ,πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x 在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增(2)2313--,且23a >解得:2a ≥20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.解:(Ⅰ)分别用i A 、i B 表示依甲、乙方案需要化验i 次,则: 121411(),()5P A P A ==⨯=,34311()P A =⨯⨯=,44322()5P A =⨯⨯=。

2008年高考理科数学试题及答案(全国卷2)

2008年高考理科数学试题及答案(全国卷2)

2008年高考理科数学试题及答案(全国卷2)绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学第Ⅰ卷(选择题,共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k nP k (1-P)n -k本卷12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b= B. 223b a= C. 229a b= D.229b a=(3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x (4)若)1,(1-∈ex ,x ln =a ,x ln 2=b ,x 3ln =c ,则球的表面积公式S=42R π 其中R 表示球的半径, 球的体积公式 V=334R π,A .c b a << B. b a c << C. c a b << D. a c b << (5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为A .299 B. 2910 C. 2919 D. 2920(7)()()4611x x +-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为A .1 B. 2 C. 3 D.2 (9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .)2,2(B. )5,2(C. )5,2(D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为A . 31 B. 32C. 33D. 32 (11)等腰三角形两腰所在直线的方程分别为02=-+y x 和47=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31- D. 21- (12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。

2008海南宁夏卷·理科

2008海南宁夏卷·理科

2008年普通高等学校招生全国统一考试(宁夏卷)理科数学数学(理)试题头说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22-24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上.在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 参考公式:样本数据x 1,x 2, …,x n 的标准参 锥体体积公式V =31Sh 其中x 为样本平均数其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31x2.已知复数1z i =-,则122--z zz =( )A .2iB .2i -C .2D .2-3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 B .43 C .23 D .87 4.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215 D .217 5.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( ) A .c x > B .x c > C .c b > D .b c >6.已知a 1>a 2>a 3>0,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( )A .110a ⎛⎫ ⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,7.23sin 702cos 10-=-( )A .12B .2C .2D 8.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种10.由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为( ) A .154B .174C .1ln 22D .2ln 211.已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,12该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( )A .B .C .4D .第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知向量(011)=-,,a ,(410)=,,b ,λ+=a b 0λ>,则λ= .14.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 16根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论: ①______________________________________________________________ ②______________________________________________________________三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知{}n a 是一个等差数列,且21a =,55a =-. (Ⅰ)求{}n a 的通项n a ;(Ⅱ)求{}n a 前n 项和S n 的最大值.18.(本小题满分12分)如图,已知点P 在正方体ABCD A B C D ''''-的对角线BD '上,60PDA ∠=︒. (Ⅰ)求DP 与CC '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.19.(本小题满分12分)A B ,和X .根据市场分析,X 1和X 2的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;A B C D P A ' B 'C 'D '(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a DX +=) 20.(本小题满分12分)在直角坐标系xOy 中,椭圆C 1:2222by a x +=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=35. (Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB =,求直线l 的方程.21.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线AP 垂直直线OM ,垂足为P .(Ⅰ)证明:2OM OP OA =;(Ⅱ)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点.过B 点的切线交直线ON于K .证明:90OKM =∠.23.(本小题满分10分)选修4-4;坐标系与参数方程已知曲线C 1:cos sin x y θθ=⎧⎨=⎩,(θ为参数),曲线C 2:2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). (Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线12C C '',.写出12C C '',的参数方程.1C '与2C '公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数()84f x x x =---. (Ⅰ)作出函数()y f x =的图像; (Ⅱ)解不等式842x x --->.2008年普通高等学校招生全国统一考试(宁夏卷)理科数学试题参考答案一、选择题 1.B 2.B3.D4.C5.A6.B7.C 8.D 9.A 10.D 11.A 12.C二、填空题 13.314.321515.43π 16.1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀. 三、解答题 17.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--. 所以2n =时,n S 取到最大值4. 18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -. 则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DADH =<>, 可得2m =解得2m =,所以2122DH ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为0011cos DH CC+⨯'<>==,所以45DH CC'<>=,.即DP与CC'所成的角为45.(Ⅱ)平面AA DD''的一个法向量是(010)DC=,,.因为01101 cos2DH DC++⨯<>==,,所以60DH DC<>=,.可得DP与平面AA D D''所成的角为30.19.解:(Ⅰ)由题设可知1Y和2Y的分布列分别为150.8100.26EY=⨯+⨯=,221(56)0.8(106)0.24DY=-⨯+-⨯=,220.280.5120.38EY=⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312 DY=-⨯+-⨯+-⨯=.(Ⅱ)12100()100100x xf x D Y D Y-⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x xDY DY-⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭22243(100)100x x⎡⎤=+-⎣⎦2224(46003100)100x x=-+⨯,当6007524x==⨯时,()3f x=为最小值.20.解:(Ⅰ)由2C :24y x =知2(10)F ,. 设11()M x y ,,M 在2C 上,因为253MF =,所以1513x +=, 得123x =,13y =. M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩,消去2b 并整理得 4293740a a -+=,解得2a =(13a =不合题意,舍去). 故椭圆1C 的方程为22143x y +=. (Ⅱ)由12MF MF MN +=知四边形12MFNF 是平行四边形,其中心为坐标原点O , 因为l MN ∥,所以l 与OM 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=.设11()A x y ,,22()B x y ,,12169m x x +=,212849m x x -=.因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=-+21(1428)09m =-=. 所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l的方程为y =-y + 21.解: (Ⅰ)21()()f x a x b '=-+,于是2121210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-. (Ⅱ)证明:已知函数1y x =,21y x=都是奇函数. 所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形. 而1()111f x x x =-++-. 可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+⎪-⎝⎭,. 由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,. 令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,.直线1x =与直线y x =的交点为(11),. 从而所围三角形的面积为00000111212112222121x x x x x +---=-=--. 所以,所围三角形的面积为定值2.22.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥. 又因为AP OM ⊥.在Rt OAM △中,由射影定理知, 2OA OM OP =.(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥. 同(Ⅰ),有2OB ON OK =,又OB OA =,所以OP OM ON OK =,即ON OM OP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==∠∠.23.解:(Ⅰ)1C 是圆,2C 是直线. 1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -=.因为圆心1C到直线0x y -=的距离为1,所以2C 与1C 只有一个公共点.(Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=, 所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.24.解:(Ⅰ)44()2124848.x f x x x x ⎧⎪=-+<⎨⎪->⎩, ≤,, ≤,图像如下:(Ⅱ)不等式842x x --->,即()2f x >, 由2122x -+=得5x =.由函数()f x 图像可知,原不等式的解集为(5)-∞,.。

2008年高考宁夏理科数学试卷及答案

2008年高考宁夏理科数学试卷及答案

2008年普通高等学校统一考试(宁夏卷)数学(理科)一、选择题:本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( ) A. 1B. 2C. 1/2D. 1/32、已知复数1z i =-,则21zz =-( )A. 2B. -2C. 2iD. -2i3、如果等腰三角形的周长是底边长的5倍,那么它的顶角的 余弦值为( ) A. 5/18B. 3/4C.D. 7/84、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.D. 1725、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c6、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )7、203sin 702cos 10--=( ) A. 12B.2 C. 2D. 28、平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈,b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=9、甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。

不同的安排方法共有( ) A. 20种 B. 30种C. 40种D. 60种10、由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是( ) A.415B.417 C.2ln 21D. 2ln 211、已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A. (41,-1) B. (41,1) C. (1,2) D. (1,-2)12、某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( )A. 22B. 32C. 4D. 52二、填空题:本大题共4小题,每小题5分,满分20分。

2008年高考数学考试全国统一考试(宁夏卷)

2008年高考数学考试全国统一考试(宁夏卷)

14.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面 上,且该六棱柱的高为 3 ,底面周长为 3,则这个球的体积为 .
15.过椭圆
x2 y 2 + = 1 的右焦点作一条斜率为 2 的直线与椭圆交于 A,B 两点, O 为坐标 5 4
. 原点,则 △OAB 的面积为 16.从甲、乙两品种的棉花中各抽测了 25 根棉花的纤维长度(单位:mm) ,结果如下: 甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图 甲 3 7 5 5 5 4 8 7 3 3 9 4 8 5 5 7 4 1 0 2 1 0 3 1 2 27 28 29 30 31 32 33 34 35 4 2 4 2 0 1 3 6 乙
高考数学考试全国统一考试 宁夏卷) 国统一考试( 2008 年高考数学考试全国统一考试(宁夏卷)
本试卷分第Ⅰ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第 22~23 题为 选择题)和第Ⅱ 非选择题)两部分,其中第Ⅱ 选考题,其它题为必考题.考生作答时,将答案答在答题卡上.在本试卷上答题无效. 选考题,其它题为必考题.考生作答时,将答案答在答题卡上.在本试卷上答题无效.考 试结束,将本试卷和答题卡一并交回. 试结束,将本试卷和答题卡一并交回. 注意事项: 注意事项: 1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓 .答题前,考生务必先将自己的姓名、准考证号填写在答题卡上, 准考证号,并将条形码粘贴在答题卡的指定位置上. 名、准考证号,并将条形码粘贴在答题卡的指定位置上. 2.选择题答案使用 2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号; . 毫米的黑色中性(签字)笔或碳素笔书写 字体工整、笔迹清楚. 笔书写, 选择题答案使用 0.5 毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. .请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损. .保持卡面清洁,不折叠,不破损. 5.做选考题时,考生按照题目要求作答,并用 2B 铅笔在答题卡上把所选题目对应的题号 .做选考题时,考生按照题目要求作答, 涂黑. 涂黑. 参考公式: 参考公式: 样本数据 x1,x2,…,xn 的标准参 锥体体积公式 s=

2008年普通高等学校招生全国统一考试宁夏卷理

2008年普通高等学校招生全国统一考试宁夏卷理

2008年普通高等学校招生全国统一考试(宁夏卷.理)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟。

参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式s=⎥⎦⎤⎢⎣⎡-++----22221)()()1x x x x x x n n ( V= 31Sh 其中x 为样本平均数 其中S 为底面积,h 为高 柱体体积公式球的表面积、体积公式 V=ShS=4πR 2,V=34πR 3其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.1.已知函数y=2sin )0)((>+ωφωx )在区间[0,2π]的图像如下,那么ω=A .1B .2C .21D .31 2.已知复数z=1-i ,则122--z zz =A .2iB .-2iC .2D .-23.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A .185 B .43 C .23 D .874.设等比数列(a n )的公比q=2,前n 项和为S n , 则24a S = A .2 B .4 C .215 D .217 5.下面的程序框图,如果输入三个实数a, b, c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c>xB .x>cC .c>bD .b>c6.已知a 1>a 2>a 3>0,则使得(1- a i x )2<1(i=1,2,3)都成立的x 取值范围是A .(0,11a ) B .(0,12a ) C .(0,31a ) D .(0,32a ) 7.23sin 702cos 10-︒=-︒A .12B.2C .2 D.28.平面向量a, b 共线的充要条件是A .a, b 方向相同B .a, b 两向量中至少有一个为零向量C .∃λ∈R ,b=λaD .存在不全为零的实数λ1,λ2,λ1a+λ2b=09.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有A .20种B .30种C .40种D .60种10.由直线x=12,x=2,曲线1y x =及x 轴所围图形的面积为 A .154 B .174 C .1ln 22D .2ln211.已知点P 在抛物线24y x =上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .(14,-1) B .(14,1) C .(1,2) D .(1,-2)12.,在该几何体的正视图中,的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a+b 的最大值为A .B .C .4D .第Ⅱ卷本卷包括必考题和选考题两部分。

2008年普通高等学校招生全国统一考试(宁夏卷 ).

2008年普通高等学校招生全国统一考试(宁夏卷 ).

B
遂平县第一高级中学
沈兴河
2008年普通高等学校招生全国统一考试(宁夏卷 )
19.如图a所示,一矩形线圈abcd放置 在匀 强磁场中,并绕过ab、cd中点 的轴OO′以角速度逆时针匀速转动。 若以线圈平面与磁场夹角时(如图b) 为计时起点,并规定当电流自a流向 b时电流方向为正。则下列四幅图中 正确的是
遂平县第一高级中学
沈兴河
2008年普通高等学校招生全国统一考试(宁夏卷 )
(1)质点在磁场中的轨迹为一圆弧。由于质点飞离磁场 时,速度垂直于OC,故圆弧的圆心在OC上。依题意, 质点轨迹与x轴的交点为A,过A点作与A点的速度方 向垂直的直线,与OC交于O'。由几何关系知, AO'垂直于OC',O'是圆弧的圆心。设圆弧的半 径为R,则有R=dsinφ ① 由洛化兹力公式和牛顿第二定律得 v2 ② qvB m R 将①式代入②式,得
qB2 d E sin 3 cos m
遂平县第一高级中学

沈兴河
2008年普通高等学校招生全国统一考试(宁夏卷 )
小” )。写出支持你的看法的一个论据:

遂平县第一高级中学
沈兴河
2008年普通高等学校招生全国统一考试(宁夏卷 )
23.(15分) 天文学家将相距较近、仅在彼此的引力作用下运 行的两颗恒星称为双星。双星系统在银河系中很普 遍。利用双星系统中两颗恒星的运动特征可推算出 它们的总质量。已知某双星系统中两颗恒星围绕它 们连线上的某一固定点分别做匀速圆周运动,周期 均为T,两颗恒星之间的距离为r,试推算这个双星 系统的总质量。(引力常量为G)
【解析】本题考查电路的串并联知识。当 cd端短路时,R2与R3并联电阻为30Ω后与 R1串联,ab间等效电阻为40Ω,A对;若 ab端短路时,R1与R2并联电阻为8Ω后与 R3串联,cd间等效电阻为128Ω,B错;但ab两端接通测试电源时, 电阻R2未接入电路,cd两端的电压即为R3的电压,为Ucd =80V,C 对;但cd两端接通测试电源时,电阻R1未接入电路,ab两端电压 即为R3的电压,为Uab =25V,D错。

2008年高考理科数学试题及答案-全国卷2

2008年高考理科数学试题及答案-全国卷2

2008年普通高等学校招生全国统一考试(全国卷2)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()M MN ðD .()M MN ð2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i -D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( ) A .2OA OB -B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a 9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100xx x y e x +<⎧=⎨⎩,,,≥的反函数是__________. 14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BCA ,C,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值. 20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;A BCDE FP Q H A ' B 'C 'D 'G(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N ) (Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ······················· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =所以ABC △的面积1sin 2S ab C ==······················································ 12分18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为·················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ···························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(理科)2600

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(理科)2600

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(理科) 测试题 2019.91,甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种B .30种C .40种D .60种2,由直线,x=2,曲线及x 轴所围图形的面积为( ) A .B .C .D .3,已知点P 在抛物线上,那么点P 到点的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .B .C .D .4,( ) A .B .C .D .5,下面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )12x =1y x =1541741ln 222ln 224y x =(21)Q -,114⎛⎫- ⎪⎝⎭,114⎛⎫⎪⎝⎭,(12),(12)-,23sin 702cos 10-=-12222A .B .C .D . 6,已知,则使得都成立的x 取值范围是( )A .B .C .D .7,设函数,曲线在点处的切线方程为y=3.(Ⅰ)求的解析式:(Ⅱ)证明:函数的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.8,如图,过圆外一点作它的一条切线,切点为,过点作直线垂直直线,垂足为.(Ⅰ)证明:; (Ⅱ)为线段上一点,直线垂直直线,且交圆于点.过点的切线交直线于.证明:.c x >x c >c b >b c >1230a a a >>>2(1)1(123)i a x i -<=,,110a ⎛⎫ ⎪⎝⎭,120a ⎛⎫⎪⎝⎭,310a ⎛⎫ ⎪⎝⎭,320a ⎛⎫ ⎪⎝⎭,1()()f x ax a b x b =+∈+Z ,()y f x =(2(2))f ,()f x ()y f x =()y f x =O M A A AP OM P 2OM OP OA =N AP NB ON O B B ON K 90OKM =∠9,已知曲线C 1:(θ为参数),曲线C 2:(t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线.写出的参数方程.与公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 10,已知函数.(Ⅰ)作出函数的图像; (Ⅱ)解不等式.测试题答案1, 解:分类计数:甲在星期一有种安排方法,甲在星期二有种安排方法, 甲在星期三有种安排方法,总共有种cossin x y θθ=⎧⎨=⎩,22x y ⎧=-⎪⎪⎨⎪=⎪⎩12C C '',12C C '',1C '2C '()84f x x x =---()yf x =842x x --->2412A =236A =222A =126220++=2,解:如图,面积3,解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,故最小值在三点共线时取得,此时的纵坐标都是,所以选A 。

2008年高考理科数学试卷及答案-全国卷

2008年高考理科数学试卷及答案-全国卷

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分、第Ⅰ卷1至2页、第Ⅱ卷3至10页、考试结束后,将本试卷和答题卡一并交回、第Ⅰ卷注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上、2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑、如需改动,用橡皮擦干净后,再选涂其他答案标号、不能答在试题卷上、3、本卷共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1、设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A 、{}01,B 、{}101-,,C 、{}012,,D 、{}1012-,,,2、设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A 、223b a = B 、223a b =C 、229b a =D 、229a b =3、函数1()f x x x=-的图像关于( )A 、y 轴对称B 、 直线x y -=对称C 、 坐标原点对称D 、 直线x y =对称4、若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A 、a <b <cB 、c <a <bC 、 b <a <cD 、 b <c <a5、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A 、2-B 、4-C 、6-D 、8-6、从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A 、929B 、1029C 、1929D 、20297、64(1(1的展开式中x 的系数是( ) A 、4-B 、3-C 、3D 、48、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A 、1BCD 、29、设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A、B、C 、(25),D、(210、已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A 、13B、3C、3D 、2311、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A 、3B 、2C 、13-D 、12-12、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆、若两圆的公共弦长为2,则两圆的圆心距等于( ) A 、1B 、2C 、3D 、22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分、把答案填在题中横线上、13、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 、 14、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = 、 15、已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点、设FA FB >,则FA 与FB 的比值等于 、16、平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② 、 (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分、解答应写出文字说明,证明过程或演算步骤、 17、(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =、 (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长、 18、(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金、假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立、已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-、(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)、19、(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=、 (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小、20、(本小题满分12分)设数列{}n a 的前n 项和为n S 、已知1a a =,13n n n a S +=+,*n ∈N 、(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围、21、(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点、 (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值、 22、(本小题满分12分) 设函数sin ()2cos xf x x=+、(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围、ABCD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则、2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分、3、解答右端所注分数,表示考生正确做到这一步应得的累加分数、4、只给整数分数、选择题不给中间分、一、选择题1、B2、A3、C4、C5、D6、D7、B8、B9、B 10、C 11、A 12、C 二、填空题13、2 14、2 5、3+16、两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形、注:上面给出了四个充要条件、如果考生写出其他正确答案,同样给分、 三、解答题 17、解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =、所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=、 ····································· 5分 (Ⅱ)由332ABC S =△得 133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故 65AB AC ⨯=, ·············································································· 8分又 sin 20sin 13AB B AC AB C ⨯==, 故 2206513AB =,132AB =、 所以 sin 11sin 2AB A BC C ⨯==、 ································································· 10分18、解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,、(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ····································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =、 ······························································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和、 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯、0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元)、故每位投保人应交纳的最低保费为15元、 ························································· 12分19、解法一:依题设知2AB =,1CE =、(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥、由三垂线定理知,1BD AC ⊥、 ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余、于是1AC EF ⊥、 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED 、 ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H 、由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角、························································ 8分EF =CE CF CG EF ⨯==EG ==、 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=、11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -、依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,、(021)(220)DE DB ==,,,,,,AB CDEA 1B 1C 1D 1 FH G11(224)(204)AC DA =--=,,,,,、 ····································································· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥、 又DBDE D =,所以1AC ⊥平面DBE 、 ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n 、故20y z +=,240x z +=、令1y =,则2z =-,4x =,(412)=-,,n 、 ····················································· 9分1AC ,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC ==,nn n 、 所以二面角1A DE B --的大小为、 ················································· 12分 20、解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-、 ······································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N 、① ······························································ 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥9a ⇔-≥、又2113a a a =+>、综上,所求的a 的取值范围是[)9-+∞,、 ························································· 12分 21、(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>、 ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=、①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+、 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =、 ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==·······················································9分又AB==AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号、所以S的最大值为 ························ 12分解法二:由题设,1BO=,2AO=、设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ····································································································9分===当222x y=时,上式取等号、所以S的最大值为······································· 12分22、解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++、 ·····························2分2008年高考各省各科真题及解析11 / 11当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<、 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数、 ····························· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭、 故当13a ≥时,()0g x '≥、 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤、 ························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-、 故当[)0arccos3x a ∈,时,()0h x '>、因此()h x 在[)0arccos3a ,上单调增加、故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >、于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+、 当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥、 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,、 ··································································· 12分。

2008年高考数学试题

2008年高考数学试题

2008年普通高等学校招生全国统一考试理科数学含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,, 一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。

【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。

其实集合问题是可以出难题的,但高考中的集合问题比较简单。

需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。

建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。

2008年高考试题——理科综合能力测试(宁夏)(精品解析)

2008年高考试题——理科综合能力测试(宁夏)(精品解析)

2008年高考试题——理科综合能力测试(宁夏)(精品解析)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第30~38题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列过程不.属于细胞分化的是A.B淋巴细胞形成浆细胞B.胚胎干细胞形成神经细胞C.质壁分离植物细胞的复原D.蜥蜴断尾再生【解析】本题考查细胞的分化。

细胞分化是指细胞在个体发育中一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程。

简单的说就是一种细胞的后代产生了各种不同的细胞。

但是质壁分离植物细胞的复原只是成熟的发生渗透失水之后又发生吸水的过程。

对于教材中各个概念的把握要注意分析其内涵和外延。

答案:C2.为证实叶绿体有效放氧功能,可利用含有水绵与好氧细菌的临时装片进行实验,装片需要给予一定的条件,这些条件是A.光照、有空气、临时装片中无NaHCO3稀溶液B.光照、无空气、临时装片中无NaHCO3稀溶液C.黑暗、有空气、临时装片中无NaHCO3稀溶液D.光照、无空气、临时装片中无NaHCO3稀溶液【解析】光合作用的进行必须有光照和二氧化碳等原料。

2008年全国高考理科数学试题及答案-全国卷1

2008年全国高考理科数学试题及答案-全国卷1

(Ⅰ)f´(x)=3x2+2ax+1,判别式Δ=4(a2-3) (i)若a>或a<,则在上f´(x)>0,f(x)是增函数; 在 内f´(x)<0,f(x)是减函数; 在上f´(x)>0,f(x)是增函数。 (ii)若<a<,则对所有x∈R都有f´(x)>0,故此时f(x)在R上是增函 数。 (iii)若a=,则f´()=0,且对所有的x≠都有f´(x)>0,故当a=时,f(x) 在R上是增函数。 (Ⅱ)由(Ⅰ)知,只有当a>或a<时,f(x)在内是减函数。 因此 ≤ ① 且 ≥ ② 当|a|>时,由①、②解得a≥2 因此a的取值范围是[2,+∞)。 (20)解: 记A1、A2分别表示依方案甲需化验1次、2次, B1、B2分别表示依方案乙需化验2次、3次, A表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题 意知A2与B2独立。 (Ⅰ) ,,。 P()=P(A1+A2·B2) =P(A1)+P(A2·B2) =P(A1)+P(A2)·P(B2) = = 所以 P(A)=1-P()==0.72 (Ⅱ)ξ的可能取值为2,3. P(B1)=,P(B2)=,P(ξ=2)=P(B1)=,P(ξ=3)=P(B2)= , 所以Eξ=(次)。
t O s t O s t O B. C. D. 3.在中,,.若点满足,则( ) A. B. C. D. 4.设,且为正实数,则( ) A.2 B.1 C.0 D. 5.已知等差数列满足,,则它的前10项的和( ) A.138 B.135 C.95 D.23 6.若函数的图像与函数的图像关于直线对称,则( ) A.e2x-1 B.e2x C.e2x+1 D. e2x+2 7.设曲线在点处的切线与直线垂直,则( ) A.2 B. C. D. 8.为得到函数的图像,只需将函数的图像( ) A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 9.设奇函数在上为增函数,且,则不等式的解集为( ) A. B. C. D. 10.若直线通过点,则( ) A. B. C. D. 11.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心, 则与底面所成角的正弦值等于( ) A. B. C. D. 12.如图,一环形花坛分成四块,现有4种不同的花供选种,要求) A.96 B.84 C.60 D.48 D B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、设等比数列{an}的公比 q
=
2 ,前 n 项和为 Sn ,则
S4 a2
=(

A. 2
B. 4
C.
17
D.
2
输出 x 结束
5、右面的程序框图,如果输入三个实数 a、b、c,要求输出这三个数中最大的数,那么在
空白的判断框中,应该填入下面四个选项中的( )
A. c > x
B. x > c
C. c > b
中国校长网资源频道

处的切线方程为

中国校长网
y = 3 。(1)求 y = f (x) 的解析式;(2)证明:曲线 y = f (x) 的图像是一个中心对称图 形,并求其对称中心;(3)证明:曲线 y = f (x) 上任一点处的切线与直线 x = 1 和直线 y = x 所围三角形的面积为定值,并求出此定值。
由正弦定理得 BC = CD . sin ∠BDC sin ∠CBD
所以 BC = CD sin ∠BDC = s·sin β . sin ∠CBD sin(α + β )
6.C 12.B
在 Rt△ABC
中,
AB
=
BC
tan ∠ACB
=
s·tanθ sin β sin(α + β )

18.证明:
(Ⅰ)由题设 AB=AC=SB=SC = SA ,连结 OA , △ABC 为等腰直角三角形,所以
O − xyz .
设 B(1,0,0) ,则 C(−1,0,0),A(0,1,0),S(0,0,1) .
SC
的中点
M


1 ,0,1 22



uuuur MO
=

1,0,− 2
1 2
,MuuuAr
=

1,1,− 2
1 2
,SuuCur
=
(−1,0,−
1)

uuuur uuur uuur uuur ∴ MO·SC = 0,MA·SC = 0 .

中国校长网
2008 年普通高等学校统一考试(宁夏卷)
数学(理科)参考答案
一、选择题 1.C 7.D 二、填空题
13. 3
三、解答题
2.D 8.B
14. −1
3.A 9.C
4.D 10.D
5.C 11.B
15.1+ 2i
16.240
17.解:在△BCD 中, ∠CBD = π −α − β .
12、某几何体的一条棱长为 7 ,在该几何体的正视图中,这条棱的投影是长为 6 的线段,
在该几何体的侧视图与俯视图中,这条棱的投影分别是长为 a 和 b 的线段,则 a + b 的最
大值为( )
A. 2 2
B. 2 3
C. 4
D. 2 5
二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分。
上,且该六棱柱的体积为 9 ,底面周长为 3,那么这个球的体积为 _________ 8
16、从甲、乙两品种的棉花中各抽测了 25 根棉花的纤维长度(单位:mm),结果如下:
甲品
种: 271 273 280 285 285 287 292 294 295 301 303 303 307
308 310 314 319 323 325 325 328 331 334 337 352
f(x)的最小值,并指出 x 为何值时,f(x)取到最小值。 (注:D(aX + b) = a2DX)
20、(本小题满分
12
分)在直角坐标系
xOy
中,椭圆
C1:
x a
2 2
+
y2 b2
= 1(a
>
b
>
0) 的左、右焦
点分别为 F1、F2。F2 也是抛物线 C2: y2 = 4x 的焦点,点 M 为 C1 与 C2 在第一象限的交
D1
C1
A1
B1
P
D A
C B
19、(本小题满分 12 分)A、B 两个投资项目的利润率分别为随机变量 X1 和 X2。根据市场
中国校长网资源频道


中国校长网
分析,X1 和 X2 的分布列分别为
X1
5%
10%
X2
2%
8%
12%
P
0.8
0.2
三、解答题:本大题共 6 小题,满分 70 分。解答须写出文字说明,证明过程和演算步骤。
17、(本小题满分 12 分)已知数列{an}是一个等差数列,且 a2 = 1, a5 = −5 。 (1)求{an}的通项 an ;(2)求{an}前 n 项和 Sn 的最大值。
18、 (本小题满分 12 分)如图,已知点 P 在正方体 ABCD-A1B1C1D1 的对角线 BD1上,∠PDA=60°。 (1)求 DP 与 CC1 所成角的大小;(2)求 DP 与平面 AA1D1D 所成角的大小。
2
x
15
A.
4
17
B.
4
C. 1 ln 2 2
D. 2 ln 2
11、已知点 P 在抛物线 y2 = 4x 上,那么点 P 到点 Q(2,-1)的距离与点 P 到抛物线焦点
距离之和取得最小值时,点 P 的坐标为( )
A. ( 1 ,-1) 4
B. ( 1 ,1) 4
C. (1,2)
D. (1,-2)
①____________________________________________________________________________ ②____________________________________________________________________________
所以 AO ⊥ OM ,又 AM = 3 SA , 2
故 sin ∠AMO = AO = 2 = 6 . AM 3 3
所以二面角 A − SC − B 的余弦值为 3 . 3
中国校长网资源频道


中国校长网
解法二:
以 O 为坐标原点,射线 OB,OA 分别为 x 轴、 y 轴的正半轴,建立如图的空间直角坐标系
9 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9
7 4 1 33 1 3 6 7 34 3
中国校长网资源频道


中国校长网
2 35 6 根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:


中国校长网
9、甲、乙、丙 3 位志愿者安排在周一至周五的 5 天中参加某项志愿者活动,要求每人参加
一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有( )
A. 20 种
B. 30 种
C. 40 种
D. 60 种
10、由直线 x = 1 ,x=2,曲线 y = 1 及 x 轴所围图形的面积是( )
r
r
rr
13、已知向量 a = (0, −1,1) , b = (4,1, 0) ,| λa + b |= 29 且 λ > 0 ,则 λ = ____________
14、过双曲线 x2 − y2 = 1的右顶点为 A,右焦点为 F。过点 F 平行双曲线的一条渐近线的 9 16
直线与双曲线交于点 B,则△AFB 的面积为______________ 15、一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面
(Ⅱ)解法一:
取 SC 中 点 M , 连 结 AM,OM , 由 ( Ⅰ ) 知 SO = OC,SA = AC , 得 OM ⊥ SC,AM ⊥ SC . ∴∠OMA 为二面角 A − SC − B 的平面角. 由 AO ⊥ BC,AO ⊥ SO,SO I BC = O 得 AO ⊥ 平面 SBC .
中国校长网

已知曲线
C1:
x

y
= =
cosθ sin θ
(θ为参数)
,曲线
C2:
x


y
= =
2t− 2 2t 2
2 (t为参数) 。
(1)指出 C1,C2 各是什么曲线,并说明 C1 与 C2 公共点的个数;
(2)若把 C1,C2 上各点的纵坐标都压缩为原来的一半,分别得到曲线 C1 ' ,C2 ' 。写出 C1 ' ,C2 ' 的参数方程。C1 ' 与 C2 ' 公共点的个数和 C1 与 C2 公共点的个数是否相同?
请考生在第 22、23 题中任选一题做答,如果多做,则按所做的第一题记分。做答时用
2B 铅笔在答题卡上把所选题目对应的题号涂黑。
22、(本小题满分 10 分)选修 4-1:几何证明选讲
如图,过圆 O 外一点 M 作它的一条切线,切点为 A,过 A 作直线 AP 垂直直线 OM,
垂足为 P。
(1)证明:OM·OP = OA2;
乙品
种: 284 292 295 304 306 307 312 313 315 315 316 318 318
320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图:


3 1 27 7 5 5 0 28 4
5 4 2 29 2 5 8 7 3 3 1 30 4 6 7
=(

1
A.
2
2
B.
2
3
C. 2
D.
2
rr
相关文档
最新文档