主成分分析计算方法和步骤

合集下载

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法与步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间得差异研究者往往要考虑增加测量指标,这样就会增加研究问题得负载程度。

但由于各指标都就是对同一问题得反映,会造成信息得重叠,引起变量之间得共线性,因此,在多指标得数据分析中,如何压缩指标个数、压缩后得指标能否充分反映个体之间得差异,成为研究者关心得问题。

而主成分分析法可以很好地解决这一问题。

主成分分析得应用目得可以简单地归结为:数据得压缩、数据得解释。

它常被用来寻找与判断某种事物或现象得综合指标,并且对综合指标所包含得信息给予适当得解释,从而更加深刻地揭示事物得内在规律。

主成分分析得基本步骤分为:①对原始指标进行标准化,以消除变量在数量极或量纲上得影响;②根据标准化后得数据矩阵求出相关系数矩阵R;③求出R矩阵得特征根与特征向量;④确定主成分,结合专业知识对各主成分所蕴含得信息给予适当得解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析得就是全国各个省市高校绩效评价,利用全国2014年得相关统计数据(见附录),从相关得指标数据我们无法直接评价我国各省市得高等教育绩效,而通过表5-6得相关系数矩阵,可以瞧到许多得变量之间得相关性很高。

女口:招生人数与教职工人数之间具有较强得相关性,教育投入经费与招生人数也具有较强得相关性,教工人数与本科院校数之间得相关系数最高,到达了0、963,而各组成成分之间得相关性都很高,这也充分说明了主成分分析得必要性。

表5-6相关系数矩阵表5-7给出得就是各主成分得方差贡献率与累计贡献率,我们选取主成分得标准 有 两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分得解释力度太 弱,还比不上直接引入一个原始变量得平均解释力度大;第二,方差贡献率大于85%如果这两个标准不能同时符合要求,则往往就是因为选择得指标不 合理或 者样本容量太小,应继续调整。

表5-7还显示,只有前2个特征根大于1,因此SPSS 只提取了前两个主成分,而这两个主成分得方差贡献率达到了 081%因此选取 87、 前两个主成分已经能够很好地描述我国高等教育地区现状。

主成分分析

主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

思路:一个研究对象,往往是多要素的复杂系统。

变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。

新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ΛM M M ΛΛ212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z ΛΛΛ22112222121212121111............p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。

主成分分析法及其应用

主成分分析法及其应用

主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。

它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。

本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。

我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。

然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。

我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。

二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。

这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。

变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。

主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。

方差最大化:主成分分析的另一个重要原理是方差最大化。

这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。

通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。

数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。

主成分分析计算方法和步骤56323

主成分分析计算方法和步骤56323

主成分分析计算方法和步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵R; ③求出R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0.2790.3290.252重点高校数0.3450.2040.310教工人数0.9630.9540.896本科院校数 1.0000.9380.881招生人数0.938 1.0000.893教育经费投0.8810.893 1.000入师生比重点高校数教工人数相关性师生比 1.000-0.2180.208重点高校数-0.218 1.0000.433教工人数0.2080.433 1.000本科院校数0.2790.3450.963表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。

主成分分析方法

主成分分析方法

主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它可以将高维数据转化为低维数据,同时保留数据的主要特征。

主成分分析方法在数据挖掘、模式识别、图像处理等领域被广泛应用,本文将介绍主成分分析的基本原理、算法步骤和应用场景。

1. 基本原理。

主成分分析的基本原理是通过线性变换将原始的特征空间转换为新的特征空间,新的特征空间是由原始特征的线性组合构成的,这些线性组合被称为主成分。

主成分分析的目标是找到能够最大程度保留原始数据信息的主成分,从而实现数据的降维。

2. 算法步骤。

主成分分析的算法步骤如下:(1)标准化数据,对原始数据进行标准化处理,使得每个特征的均值为0,方差为1。

(2)计算协方差矩阵,根据标准化后的数据计算特征之间的协方差矩阵。

(3)计算特征值和特征向量,对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

(4)选择主成分,按照特征值的大小,选择最大的k个特征值对应的特征向量作为主成分。

(5)数据转换,利用选定的主成分进行数据转换,将原始数据映射到新的低维空间中。

3. 应用场景。

主成分分析方法在实际应用中具有广泛的场景,例如:(1)数据可视化,通过主成分分析可以将高维数据转化为二维或三维数据,便于数据的可视化展示和分析。

(2)特征提取,在图像处理和模式识别领域,主成分分析可以用于提取图像的主要特征,从而实现图像的压缩和识别。

(3)数据预处理,在机器学习和数据挖掘任务中,主成分分析可以用于数据的降维处理,减少特征的数量和复杂度,提高模型的训练效率和预测准确度。

总结。

主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间,从而实现数据的降维和特征提取。

在实际应用中,主成分分析具有广泛的应用场景,能够帮助人们更好地理解和分析数据。

希望本文的介绍能够帮助读者更好地理解主成分分析方法,并在实际工作中加以应用。

主成分分析法的原理应用及计算步骤57270

主成分分析法的原理应用及计算步骤57270

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠与高度相关会给统计方法的应用带来许多障碍。

为了解决这些问题,最简单与最直接的解决方案就是削减变量的个数,但这必然又会导致信息丢失与信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

↓主成分能够反映原有变量的绝大部分信息因子并不就是原有变量的简单取舍,而就是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

↓主成分具有命名解释性总之,主成分分析法就是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、基本原理主成分分析就是数学上对数据降维的一种方法。

其基本思想就是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。

那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤1.计算协方差矩阵:首先,我们需要将原始数据进行标准化处理,即使每个特征都有零均值和单位方差。

假设我们有m个n维样本,数据集为X,标准化后的数据集为Z。

那么,计算协方差矩阵的公式如下:Cov(Z) = (1/m) * Z^T * Z其中,Z^T为Z的转置。

2.计算特征向量:通过对协方差矩阵进行特征值分解,可以得到特征值和特征向量。

特征值表示了新坐标系中每个特征的重要性程度,特征向量则表示了数据在新坐标系中的方向。

将协方差矩阵记为C,特征值记为λ1, λ2, ..., λn,特征向量记为v1, v2, ..., vn,那么特征值分解的公式如下:C*v=λ*v计算得到的特征向量按特征值的大小进行排序,从大到小排列。

3.选择主成分:从特征向量中选择与前k个最大特征值对应的特征向量作为主成分,即新坐标系的基向量。

这些主成分可以解释原始数据中大部分的方差。

我们可以通过设定一个阈值或者看特征值与总特征值之和的比例来确定保留的主成分个数。

4.映射数据:对于一个n维的原始数据样本x,通过将其投影到前k个主成分上,可以得到一个k维的新样本,使得新样本的方差最大化。

新样本的计算公式如下:y=W*x其中,y为新样本,W为特征向量矩阵,x为原始数据样本。

PCA的应用:1.数据降维:PCA可以通过主成分的选择,将高维数据降低到低维空间中,减少数据的复杂性和冗余性,提高计算效率。

2.特征提取:PCA可以通过寻找数据中的最相关的特征,提取出主要的信息,从而减小噪声的影响。

3.数据可视化:通过将数据映射到二维或三维空间中,PCA可以帮助我们更好地理解和解释数据。

总结:主成分分析是一种常用的数据降维方法,它通过投影数据到一个新的坐标系中,使得投影后的数据具有最大的方差。

通过计算协方差矩阵和特征向量,我们可以得到主成分,并将原始数据映射到新的坐标系中。

PCA 在数据降维、特征提取和数据可视化等方面有着广泛的应用。

PCA主成分分析计算步骤

PCA主成分分析计算步骤

PCA主成分分析计算步骤步骤一:数据标准化首先,对原始数据进行标准化处理。

因为PCA是基于协方差矩阵计算的,所以数据的尺度差异会影响结果。

通过标准化处理,可以使得各个特征具有相同的尺度,避免尺度差异对计算结果的影响。

步骤二:计算协方差矩阵协方差矩阵描述了不同属性之间的关联性。

计算协方差矩阵是PCA的核心步骤之一、协方差矩阵是一个n×n的矩阵,其中n是原始数据的特征数。

协方差矩阵的第i行第j列元素表示第i个特征与第j个特征的协方差。

协方差矩阵可以通过下面的公式计算得到:Cov(X) = 1/(n-1) * (X - mean(X))' * (X - mean(X))其中,Cov(X)是协方差矩阵,X是标准化后的数据,mean(X)是每个特征的平均值,n是样本数。

步骤三:计算特征值和特征向量通过对协方差矩阵进行特征值分解,可以得到特征值和特征向量。

特征值表示特征向量的重要程度,特征向量表示样本在新的特征空间中的投影方向。

特征值和对应的特征向量可以通过下面的公式计算得到:Cov(X) * v = λ * v其中,Cov(X)是协方差矩阵,v是特征向量,λ是特征值。

特征向量v的维度与数据的特征数相同。

步骤四:选择主成分根据特征值的大小,可以确定主成分的个数。

通常选择特征值最大的几个作为主成分,因为它们能够尽可能多地保留原始数据的信息。

步骤五:构造新的特征空间选择主成分后,可以将原始数据投影到新的特征空间中。

新的特征空间的维数等于主成分的个数。

步骤六:重构数据在PCA中,可以通过将投影数据转换回原始空间来进行数据的重构,以检验降维的信息损失程度。

具体计算步骤如下:重新计算投影矩阵P:P=U(:,1:K)重构数据:Z=X*P*P'其中,U表示特征向量矩阵,K表示选择的主成分个数,X表示原始数据,Z表示重构后的数据。

步骤七:解释方差解释方差是评估PCA模型性能的指标之一、通过计算每个主成分的方差占总方差的比例,可以评估降维后保留的信息量。

主成分的计算步骤

主成分的计算步骤

⑷ 主成分的计算步骤① 数据的标准化处理设有n 只待样本单位,每只单位有p 个指标,则有矩阵p n ij x X ⨯=)(,其中ij x 表示第i 单位的第j 指标值。

矩阵X 表示如下:),(21212222111211p np n n p p X X X x x x x x x x x x X =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡= 对上述数据进行标准化处理,标准化处理的计算公式如下:jx jij ij x x z σ-= ),,2,1,(p j i j i ==≠ 其中j x 是j X 的算数平均数,jX σ是j X 的标准差。

并记p n ij z Z ⨯=)(为标准化之后的数据矩阵。

② 计算标准化数据的协方差矩阵变量),,(21p z z z Z =中变两两的相关系数的计算公式是∑=-=nk kj ik ij z z n r 111 ),,2,1,(p j i = 由于Z 中的变量已是标准化的变量,此时Z 的列变量的协方差矩阵就是相关系数矩阵。

⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==∑pp p p p p r r r r r r r r r R 212222111211 ③ 计算R 的特征根和特征向量相关矩阵R 的特征方程为:0=-I R λ,利用特征方程可以求出矩阵R 的特征根jλ(p j ,,2,1 =)。

将特征根从小到大进行排列p λλλ≥≥≥ 21,再由特征多项式i i i u Ru λ=,'21),,(ip i i i u u u u =求出相应的特征向量'21),,(ip i i i γγγγ =,以特征向量的分量值为权数,将标准化的指标进行加权就得到第i 个主成分。

p ip i i i z z z Y γγγ+++= 2211 ),,2,1(p i =④ 计算主成分的方差贡献率及累计方差贡献率相关矩阵R 的特征根就等于对应的主成分的方差,其大小反映了第i 个主成分所包含原始数据全部信息的比重,也反映了各主成分贡献的大小。

主成分分析( principal components analysis,PCA )

主成分分析( principal components analysis,PCA )

主成分分析的主要作用
3.多维数据的一种图形表示方法。 我们知道当维数大于3时便不能画出几何图形,多元统 计研究的问题大都多于3个变量。要把研究的问题用图形 表示出来是不可能的。然而,经过主成分分析后,我们可 以选取前两个主成分或其中某两个主成分,根据主成分的 得分,画出n个样品在二维平面上的分布况,由图形可直 观地看出各样品在主分量中的地位,进而还可以对样本进 行分类处理,可以由图形发现远离大多数样本点的离群点。 4.由主成分分析法构造回归模型。即把各主成分作为 新自变量代替原来自变量x做回归分析。
主成分分析( PRINCIPAL COMPONENTS ANALYSIS,PCA )
主成分分析介绍 基本思想 基本原理 作用 计算 主成分个数选取原则 例题 SPSS操作

主成分分析介绍

在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线 性变换。这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一大方差在第一个坐标(称为第 一主成分)上,第二大方差在第二个坐标(第二主成分)上, 依次类推。主成分分析经常用减少数据集的维数,同时 保持数据集的对方差贡献最大的特征。这是通过保留低 阶主成分,忽略高阶主成分做到的。这样低阶成分往往 能够保留住数据的最重要方面。但是,这也不是一定的, 要视具体应用而定。
x3

例题
1. 求样本均值和样本协方差矩阵
46.67 S 17.12 21.11 30.00 32.58 55.53 2. 求解协方差矩阵的特征方程 S I 0
46.67 17.12 30.00 17.12 30.00 21.11 32.பைடு நூலகம்8 0 32.58 55.53

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单位特征向量i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:Fi ='i a X主成分的方差(信息)贡献率用来反映信息量的大小,i α为:1/mi i ii αλλ==∑(3)选择主成分最终要选择几个主成分,即F1,F2,……,Fm 中m 的确定是通过方差(信息)累计贡献率G(m)来确定11()/pmi ki k G m λλ===∑∑当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m 就是抽取的前m 个主成分。

(4)计算主成分载荷主成分载荷是反映主成分Fi 与原变量Xj 之间的相互关联程度,原来变量Xj (j=1,2 ,…, p )在诸主成分Fi (i=1,2,…,m )上的荷载 lij ( i=1,2,…,m ; j=1,2 ,…,p )。

:(,)(1,2,,;1,2,,)i j i ij l Z X a i m j p λ===在SPSS 软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。

(5)计算主成分得分计算样品在m 个主成分上的得分:1122...i i i pi p F a X a X a X =+++ i = 1,2,…,m实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。

消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:*1,2,...,;1,2,...,ij jijjx x x i n j ps -===其中:11n j ij i x x n ==∑,2211()1n j ij j i s x x n ==--∑ 根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法和步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0.279 0.329 0.252重点高校数0.345 0.204 0.310教工人数0.963 0.954 0.896本科院校数 1.000 0.938 0.881招生人数0.938 1.000 0.893教育经费投0.881 0.893 1.000入师生比重点高校数教工人数相关性师生比 1.000 -0.218 0.208重点高校数-0.218 1.000 0.433教工人数0.208 0.433 1.000本科院校数0.279 0.345 0.963招生人数0.329 0.204 0.954教育经费投0.252 0.310 0.896入(元)表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。

主成分分析法

主成分分析法

1.759
0.858 2.096 … -0.337 …
2
3 1 … 23 …
Bartlett 值= 313.417, P<0.0001,即相关矩阵 不是一个单位矩阵,故 考虑进行因子分析。
特征值、贡献率及累积贡献率
Total Variance Explained Initial Eigenvalues Extraction Sums of Squared Loadings % of Variance Cumulative % Total % of Variance Cumulative % 61.638 61.638 4.315 61.638 61.638 27.917 89.554 1.954 27.917 89.554 5.138 94.692 2.644 97.335 1.978 99.313 .473 99.786 .214 100.000
r1 p r2 p ... r pp
2、计算特征值和特征向量 解特征方程
|λE-R|=0
求出特征值 λi(i=1,2,…,p) 将这P个特征值按大小顺序排列,即 λ1≥λ2≥…≥λp≥0 然后按公式
| λi E-R|ei=0
分别求出对应于λi的特征向量ei(i=1,2,…,p)
3、计算主成分贡献率及累计贡献率
从上表知:前三个主成分累计贡献率达92.273%,因此,这三个主成 分Z1、Z2、Z3能够充分反映31个区域第三产业发展的综合水平 。
4、计算主成分载荷
主成分载荷lij
原变量xi
x1 x2 x3 x4 x5 x6 x7
第一主成分l1i 0.946 0.971 0.220 0.795 0.930 -0.0763 0.899
5 计算各省区在一二三主成分上的综合得分

主成分分析法的原理和步骤

主成分分析法的原理和步骤

主成分分析法的原理和步骤
主成分分析(Principal Component Analysis,PCA)是一种常用的降维技术,主要用于数据预处理和特征提取。

其原理是通过线性变换将原始数据转换为具有特定性质的新坐标系,使得转换后的坐标系上数据的方差最大化。

主成分分析的步骤如下:
1. 标准化数据:对原始数据进行标准化处理,即对每个特征进行零均值化。

这是为了消除不同量纲的影响。

2. 计算协方差矩阵:计算标准化后的数据的协方差矩阵。

协方差矩阵描述了不同特征之间的相关性。

3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值表示新坐标系上每个特征的方差,而特征向量则表示原始特征在新坐标系上的投影。

4. 选择主成分:按照特征值的大小排序,选择前k个特征值对应的特征向量作为主成分。

选择的主成分应该能够解释数据中大部分的方差。

5. 构造新的特征空间:将选择的主成分组合起来,构成新的特征空间。

这些主成分通常被视为数据的“重要”特征,用于表示原始数据。

通过主成分分析,可以将原始数据降维到低维度的子空间上,并且保留了原始数据中的信息。

这样做的好处是可以减少数据维度,简化模型,降低计算复杂度。

同时,通过选择合适的主成分,还可以实现数据的压缩和特征的提取。

主成分分析计算方法和步骤

主成分分析计算方法和步骤

主成分分析计算方法与步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都就是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找与判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根与特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的就是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以瞧到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费与招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0、963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0、279 0、329 0、252重点高校数0、345 0、204 0、310教工人数0、963 0、954 0、896本科院校数1、000 0、938 0、881招生人数0、938 1、000 0、893教育经费投0、881 0、893 1、000入师生比重点高校数教工人数相关性师生比1、000 -0、218 0、208重点高校数-0、218 1、000 0、433教工人数0、208 0、433 1、000本科院校数0、279 0、345 0、963招生人数0、329 0、204 0、954教育经费投0、252 0、310 0、896入(元)表5-7给出的就是各主成分的方差贡献率与累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往就是因为选择的指标不合理或者样本容量太小,应继续调整。

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、基本原理主成分分析是数学上对数据降维的一种方法。

其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。

那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

主成分分析法

主成分分析法

人均GDP→ x1 第二产业增加值比重→ x3 第三产业从业人员比重→ x5 城市化水平→ x7
人均第三产业增加值→ x2 第三产业增加值比重→ x4 第三产业固定资产投资比重→ x6
2、计算各指标之间的相关系数矩阵
x1
x2
Rij
x3 x4
x5
x6
x7
x1
x2
1 0.988
0.988 1
0.339 0.241
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
3.5 主成分分析法
本节主要内容:
❖ 主成分分析的基本原理 ❖ 主成分分析的计算步骤 ❖ 主成分分析方法应用实例 ❖ 主成分分析方法的SPSS实现
主成分分析法
概念:把原来多个变量划为少数几个综合指标 的一种统计分析方法,是一种降维处理技术.
一个研究对象,往往是多要素的复杂系统。变量太多无疑会增 加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少 的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留 原来较多的变量所反应的信息,这样问题就简5 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
0.011 0.012 0.034 0.055 0.076 0.001 0.015 0.002 5.055 0.01 0.011 0.154 0.012 0.069 0.048 0.092

主成分分析的计算步骤

主成分分析的计算步骤

主成分分析的计算步骤1.数据预处理:首先,对原始数据进行预处理,包括数据清洗、缺失值处理、标准化等。

确保数据的质量以及统一度,以便更好地进行后续计算。

2.计算协方差矩阵:得到预处理后的数据后,计算协方差矩阵。

协方差矩阵可以反映不同变量之间的相关性。

协方差矩阵大小为n×n,其中n 是原始变量的个数。

3.计算特征值和特征向量:通过对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值是一个标量,表示对应特征向量的重要程度。

特征向量是一个n维列向量,代表主成分的方向。

4.特征值排序:将特征值按照大小降序排列,对应的特征向量也要相应地排序。

一般来说,特征值越大,对应的特征向量表示的主成分的重要性越高。

5.选择主成分数量:根据前面排好序的特征值和特征向量,确定需要选择的主成分数量。

一般可以根据累计贡献率来决定。

累计贡献率是指前k个主成分的特征值之和占总特征值之和的比例,一般要求累计贡献率达到一定的阈值,例如90%以上。

6.构建降维矩阵:根据选择的主成分数量,取对应的特征向量组成一个降维矩阵。

该降维矩阵的大小是n×k,其中n是原始变量的个数,k是选择的主成分数量。

7.数据降维:将原始数据与降维矩阵相乘,得到降维后的数据矩阵。

降维后的数据矩阵的大小是m×k,其中m是样本数量,k是选择的主成分数量。

8.主成分解释:计算降维后的数据矩阵的方差占比和累计方差占比。

方差占比是降维后的数据矩阵的方差占总方差的比例,累计方差占比是指前k个主成分的方差占总方差的比例。

通过方差占比和累计方差占比,可以评估主成分分析的效果和解释程度。

9.主成分得分:将降维后的数据矩阵乘以降维矩阵的转置,得到主成分得分矩阵。

主成分得分矩阵的大小是m×n,其中m是样本数量,n是原始变量的个数。

主成分得分表示每个样本在主成分上的投影值,可以用于后续的机器学习任务和数据可视化。

总结:主成分分析的计算步骤包括数据预处理、计算协方差矩阵、计算特征值和特征向量、特征值排序、选择主成分数量、构建降维矩阵、数据降维、主成分解释、主成分得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析计算方法和步骤:
在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析
本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6相关系数矩阵
本科院校
数招生人数教育经费投入
相关性师生比0.279 0.329 0.252
重点高校数0.345 0.204 0.310
教工人数0.963 0.954 0.896
本科院校数 1.000 0.938 0.881
招生人数0.938 1.000 0.893
教育经费投
0.881 0.893 1.000

表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。

表5-7还显示,只有前2个特征根大于1,因此SPSS 只提取了前两个主成分,而这两个主成分的方差贡献率达到了87.081%,因此选取前两个主成分已经能够很好地描述我国高等教育地区现状。

可以看出,标准化后的第一主成分( 简称1F ) 对所有变量都有载荷,且载荷绝对值几乎都在0.7以上, 因此可以说第一主成分是对人口结构的度量,代表了一个地区人口结构状况,可以称之为“综合因子”。

在综合因子中,平均每户人口,农业与非农业人口比例, 人口的自然增长率比重即 人口自然增长各指标具有较强的作用,人与经济等其他指标所起的作用次之,男女比例也起一定作用。

第二主成分( 简称 2F ) 对重点高校数和教工人数具有负载荷,其他变量具有正载荷,并且除 师生比和重点高校数载荷绝对值均小于0.2,有的甚至 接近于 0.1。

因此,第二个主成分只是汇集了第一主成分遗漏的部分信息,我们称之为“辅助 因子”。

表5-8主成分矩阵
成分
1F 2F 师生比
0.317 0.799 重点高校数
0.396 -0.759 教工人数
0.984 -0.095 本科院校数
0.973 0.005 招生人数
0.964 0.131 教育经费投

0.939 0.011
表5-9 主成分评分系数矩阵
成分
1F 2F 师生比
.079 .643 重点高校数
.099 -.612 教工人数
.247 -.077 本科院校数
.244 .004 招生人数
.242 .106 教育经费投

.236 .009
根据表5-9可以得到各主成分的表达式 1123456=0.0790.0990.2470.2440.2420.236F x x x x x x +++++
21234560.6430.6120.0770.0040.1060.009F x x x x x x =--+++
把变量分别代入以上表达式,可以得出1F 和2F 两个主成分得分,但单独一个主成分不能很好地评价十个地区人口结构的情况,因此需要按照各主成分对应的方
差贡献率为权数计算综合统计F ,(120.66390.206910.87081
F F F +=)
主成分分析法的优点:
1、 可消除评价指标之间的相关影响 因为主成分分析在对原指标变量进行变换后形成了彼此相互独立的主成分,而且实践证明指标之间相关程度越高,主成分分析效果越好。

2、 可减少指标选择的工作量 对于其它评价方法,由于难以消除评价指标间的相关影响,所以选择指标时要花费不少精力,而主成分分析由于可以消除这种相关影响,所以在指标选择上相对容易些。

3、 当评级指标较多时还可以在保留绝大部分信息的情况下用少数几个综合指标代替原指 标进行分析 主成分分析中各主成分是按方差大小依次排列顺序的,在分析问题时,可以舍弃一部分主成分,只取前后方差较大的几个主成分来代表原变量,从而减少了计算工作量。

4、 在综合评价函数中,各主成分的权数为其贡献率,它反映了该主成分包含原始数据的信 息量占全部信息量的比重,这样确定权数是客观的、合理的,它克服了某些评价方法中认为确定权数的缺陷。

5、 这种方法的计算比较规范,便于在计算机上实现,还可以利用专门的软件
主成分分析法的缺点:
1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到
一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。

2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。

因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。

相关文档
最新文档