第1章 常用半导体器件

合集下载

《模拟电子技术基础》(童诗白)课后习题答案

《模拟电子技术基础》(童诗白)课后习题答案

模拟电子技术基础第 1 章常用半导体器件1.1选择合适答案填入空内。

(l)在本征半导体中加入( A )元素可形成N 型半导体,加入( C )元素可形成P 型半导体。

A.五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将(A) 。

A.增大B.不变C.减小(3)工作在放大区的某三极管,如果当I B 从12 uA 增大到22 uA 时,I C 从l mA 变为2mA ,那么它的β约为( C ) 。

A.83B.91C.100(4)当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将( A ) 。

A.增大;B.不变;C.减小1.2电路如图P1.2 所示,已知u i = 10sinωt (V),试画出u i 与u o 的波形。

设二极管导通电压可忽略不计。

图P1.2 解图P1.2解:u i 与u o 的波形如解图Pl.2 所示。

1.3电路如图P1.3 所示,已知u i =5sinωt(V),二极管导通电压U D=0.7V。

试画出u i 与u o 的波形图,并标出幅值。

图P1.3 解图P1.31.4电路如图P1.4 所示, 二极管导通电压U D=0.7V,常温下U T≈ 26mV ,电容C 对交流信号可视为短路;u i 为正弦波,有效值为10mV。

试问二极管中流过的交流电流的有效值为多少?解:二极管的直流电流I D = (V −U D ) / R = 2.6mA其动态电阻:r D ≈U T / I D =10Ω图 P1.4故动态电流的有效值: I d = U i / r D ≈1mA1.5 现有两只稳压管,稳压值分别是 6V 和 8V ,正向导通电压为 0.7V 。

试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?解:(1)串联相接可得 4 种:1.4V ;14V ;6.7V ;8.7V 。

(2)并联相接可得 2 种:0.7V ;6V 。

常用半导体器件

常用半导体器件

1.特点:非线性
I
反向击穿 电压U(BR)
反向电流 在一定电压 范围内保持 常数。
P– + N 反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
正向特性
P+ – N
导通压降
硅0.6~0.8V 锗0.1~0.3V
U
硅管0.5V, 开启电压
锗管0.1V。
外加电压大于开启 电压二极管才能通。
+ + ++ + + + + ++ + + + + ++ + +
P IF
内电场 N
外电场
+–
P接正、N接负
动画
内电场被 削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
总目录 章目录 返回 上一页 下一页
PN 结加反向电压(反向偏置) P接负、N接正
掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。
总目录 章目录 返回 上一页 下一页
一、本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
是保证二极管不被击穿而给出的反向峰值电压, 一般是二极管反向击穿电压UBR的一半或三分之二。 二极管击穿后单向导电性被破坏,甚至过热而烧坏。

第1章 常用半导体器件(1)

第1章 常用半导体器件(1)

(a)
空间电荷区
N区
移到P型区的空穴填补了原来交界
面上P型区所失去的空穴, 从P型区
漂移到N型区的自由电子填补了原 来交界面上N型区所失去的自由电 子,漂移运动的结果是使空间电荷
内电场 Uho
区变窄。空间电荷区称为阻挡层。
第第1章1章常晶用体半二导极体管器与件三极管
1. PN结的形成
当多子的扩散运动和少子 的漂移运动达到动态平衡时,空 间电荷区的宽度一定,PN结电 流为零。在动态平衡时,由内电 场产生的电位差称为内建电位差 Uho, 如图(b)所示。处于室温 时 , 锗 的 Uho≈0.2~0.3 V , 硅 的 Uho≈0.5~0.7 V。
多子扩散运动使空间电荷区加宽。
第第1章1章常晶用体半二导极体管器与件三极管
1. PN结的形成
空穴 负离子 正离子 自由电子
内电场:在空间电荷区里,由带正 P区
N区
电的N型区指向带负电的P型区的电 场。 内电场阻止多子的扩散运动、
内电场推动少数载流子产生漂移运 动(载流子从浓度低的区域向浓度 高的区域的运动。) 。从N型区漂 P 区
第第1章1章常晶用体半二导极体管器与件三极管
2. P型半导体
因三价杂质原子 在与硅原子形成共价 键时,缺少一个价电 子而在共价键中留下 一个空穴。
空穴很容易俘获电子,使杂质原子成为负离子。 三价杂质 因而也称为受主原子。
在P型半导体中空穴是多数载流子,它主要由掺杂 形成;自由电子是少数载流子, 由热激发形成。
第第1章1章常晶用体半二导极体管器与件三极管
第1章 常用半导体器件
1.1 半导体基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 半导体场效应管

常用半导体器件

常用半导体器件

流的限流电阻!
稳压二极管的应用
稳压二极管技术数据为:稳压值UZ=10V,Izmax=12mA, Izmin=2mA,负载电阻RL=2k,输入电压ui=12V,限流电阻 R=200 ,求iZ。
若负载电阻变化范围为1.5 k -- 4 k ,是否还能稳 压?
i
iL
R ui DZ
iz UZ RL uO
i
工作原理: 无光照时,与普通二极管一样。
有光照时,分布在第三、四象限。
三、变容二极管 四、隧道二极管 五、肖特基二极管
• 作业 • 1.3 1.4 1.6 1.7
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
PN结的伏安特性
i = f (u )之间的关系曲线。
i/ mA
60
40
正向特性
20
–50 –25
反 向
0 0.5 1.0 u / V 击穿电–压0.002

U(BR–) 0.004

图 1.1.8 PN结的伏安特性
反向击穿 齐纳击穿 雪崩击穿
四、PN结的电容效应
当PN上的电压发生变化时,PN 结中储存的电荷量 将随之发生变化,使PN结具有电容效应。
ui和uo的波形如图所示
u o /V
10
t
O
讨论:解决两个问题
• 如何判断二极管的工作状态? • 什么情况下应选用二极管的什么等效电路?
对V和Ui二极管的模 型有什么不同与uD可比,则需图解: ID 实测特性
Q
uD=V-iR
UD
五、稳压二极管
限流电阻

模电1常用半导体器件

模电1常用半导体器件

ICEO = (1+β) ICBO
三. 极限参数
1. 集电极最大允许电流ICM 2. 集电极最大允许功耗PCM 3. 反向击穿电压U(BR)CEO 、U(BR)CBO
α=β/(1+β)
三极管的安全工作区
1 .4 场效应管(Field Effect Transistor )
场效应管是单极性管子,其输入PN结处于反偏或 绝缘状态,具有很高的输入电阻(这一点与三极管相 反),同时,还具有噪声低、热稳定性好、抗辐射性 强、便于集成等优点。
1 .3 .5 共射NPN三极管伏安特性曲线
二. 输出特性曲线 IC=f ( IB ,UCE )
实际测试时如下进行:
IC= f ( UCE )|IB
发射结正偏、集电结反 偏时,三极管工作在放大 区(处于放大状态),有放 大作用:IC =βIB + ICEO
两结均反偏时,三极管 工作在截至区(处于截止状 态) ,无放大作用。 IE=IC=ICEO≈0
第五章 负反馈放大器
第六章 信号运算电路
第七章 波形发生电路
第八章 功率放大电路 第九章 直流电源
前进
返回
退出
第一章 常用半导体器件
本章主要内容:
半导体材料、由半导体构成的PN 结、二极管结构特性、三极管结构特性及 场效应管结构特性。
前进
返回
1 .1 半导体(Semiconductor)基本知识
• 2、《电子技术实验》.石焕玉等编. • 3、《电子技术基础》(模拟部分).康华光
主编. 高等教育出版社 • 4、《模拟电子技术基础》华成英(第四
版)习题解答(因网络不通,暂时没法放 在系网页上,需要者来复制)
第一章 半导体器件 第二章 基本放大电路 第三章 放大电路的频率特性 第四章 集成运算放大器

第1章-半导体器件基础

第1章-半导体器件基础

3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。
以上均是二极管的直流参数,二极管的应用是 主要利用它的单向导电性,主要应用于整流、限幅、 保护等等。下面介绍两个交流参数。
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1、由施主原子提供的电子,浓度与施主原子相同。 2、本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
二、P 型半导体
ui
ui
RL
uo
t
uo t
二极管的应用举例2: ui
ui
R
uR RL
uR
t
uo t
uo
t
1.2.5 稳压二极管
-
曲线越陡, I
电压越稳
定。
+
UZ
稳压
动态电阻: 误差
r U Z
Z
I Z
rz越小,稳 压性能越好。
UZ
IZ
U IZ IZmax
稳压二极管的参数:
(1)稳定电压 UZ
(2)电压温度系数U(%/℃)
基区空穴
向发射区
的扩散可
忽略。
B
进 少入部P分区与R的基B 电区子的
空穴复合,形成
电流IBEE,B 多数
扩散到集电结。
C
N

第1章半导体器件

第1章半导体器件

外电场
形成的电流,故反向电流
非常小,PN结呈现高阻性。
在一定的温度条件下,由本征激发决定的 少子浓度是一定的,故少子形成的漂移电流 是恒定的,基本上与所加反向电压的大小无 关,这个电流也称为反向饱和电流。
PN结加反向电压时的导电情况
PN结加反向电压时的导电 情况
图01.07 PN结加正向电压 时的导电情况
因五价杂质原子中四 个价电子与周围四个 半导体原子中的价电 子形成共价键,多余 的一个价电子因无共 价键束缚而很容易形 成自由电子。
热激发产生 的自由电子
掺杂磷产生 的自由电子
Si
SPi
Si
Si
Si
Si
•掺杂磷产生的自由电子数 〉〉热激发产生的自由电子数
•N型半导体中自由电子数 〉〉空穴数
•自由电子为 N型半导体的多数载流子(简称多), 空穴为N型半导体的少数载流子(简称少子)
N型半导体简化图
多 子
Si
P
Si
Si
Si
Si




l P型半导体:
往本征半导体中掺杂三价杂质硼形成的杂质半导体, P 型半导体中空穴是多数载流子,主要由掺杂形成;电 子是少数载流子,由热激发形成。空穴很容易俘获电 子,使杂质原子成为负离子。因而也称为受主杂质。
Si
B
Si
Si
Si
Si
热激发产生 的空穴
T=300K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cm3
掺杂后 N 型半导体中的自由电子浓度:
n= 5×1016/cm3
本征硅的原子浓度: 4.96×1022/cm3 以上三个浓度基本上依次相差106/cm3

电工学下册电子技术教学课件艾永乐等第1章常用半导体器件

电工学下册电子技术教学课件艾永乐等第1章常用半导体器件

IR
为反向饱和电流。但IR与温内电场 E
度有关。
EW
R
1.1 半导体的导电特性
PN结加正向电压时,呈现低电阻,具 有较大的正向扩散电流;
PN结加反向电压时,呈现高电阻,具 有很小的反向漂移电流。
由此可以得出结论:PN结具有单向导 电性。
1.2 半导体二极管 1. 二极管的结构
在PN结上加上引线和封装,就成为一个二极管。二极 管按结构分有点接触型、面接触型和P平N结面面型积三小大,类结。电
RL
-
1.3 特殊二极管
稳压二极管主要参数
(1) 稳定电压VZ
在规定的稳压管反向工作
电流IZ 下,所对应的反向工作
电压。
(2) 动态电阻rZ
rZ =VZ /IZ
(3)额定功率 PZ (4)最大稳定工作电流 IZmax 和最小稳定工作电流 IZmin
(5)稳定电压温度系数——VZ
1.3 特殊二极管
VT 称为开启电压
1.5 场效应晶体管
vDS对沟道的控制作用
当vGS一定(vGS >VT )时,
vDS iD 沟道电位梯度 靠近漏极d处的电位升高 电场强度减小 沟道变薄
整个沟道呈楔形分布
1.5 场效应晶体管
vDS对沟道的控制作用
当vGS一定(vGS >VT )时,
vDS iD 沟道电位梯度
0.04 0.06 0.08 0.10 1.50 2.30 3.10 3.95 1.54 2.36 3.18 4.05
结论:
• 1)三电极电流关系
• 2) IC IB , IC IE • 3) IC IB
IE = IB + IC
把基极电流的微小变化能够引起集电极电流较大

常用半导体手册

常用半导体手册

电子发烧友/第1章 常用半导体元器件 半导体元器件是用半导体材料制成的电子元器件,随着电子技术的飞速发展,各种新型半导体元器件层出不穷。

半导体元器件是组成各种电子电路的核心元件,学习电子技术必须首先了解半导体元器件的基本结构和工作原理,掌握它们的特性和参数。

本章从讨论半导体的导电特性和PN 结的单向导电性开始,分别介绍二极管、双极型晶体管、绝缘栅场效应晶体管和半导体光电器件等常用的半导体元器件。

1.1 半导体的导电特性1.1.1 导体、绝缘体和半导体自然界的物质,按导电能力的强弱可分为导体、绝缘体和半导体三类。

物质的导电能力可以用电导率σ或电阻率ρ来衡量,二者互为倒数。

物质的导电能力越强,其电导率越大,电阻率越小。

导电能力很强的物质称为导体。

金属一般都是导体,如银、铜、铝、铁等。

原因是其原子最外层的电子受原子核的束缚作用很小,可以自由移动,成为自由电子。

在外电场个用下,自由电子逆电场方向运动而形成电流。

导体的主要特征是电阻率ρ很小,一般在0.01~1m /mm 2⋅Ω之间,例如铜的电阻率为0.0175m /mm 2⋅Ω。

 绝缘体是导电能力极弱的物质。

这种物质的核外电子被束缚得很紧,因而不能自由移动。

如橡胶、塑料、陶瓷、石英等都是绝缘体。

绝缘体的电阻率大于1014 m /mm 2⋅Ω。

 半导体是导电能力介于导体和绝缘体之间的物质。

其电阻率在10~1013 m /mm 2⋅Ω之间。

如硅、锗、硒、砷化镓等都属于半导体。

例如,在27℃ 时,纯硅的电阻率为21×108 m /mm 2⋅Ω;纯锗的电阻率为47×108 m /mm 2⋅Ω。

此外,半导体还具有不同于其他物质的一些特性:(1) 热敏特性 金属的电阻率随温度的变化很小,例如,温度每升高1℃ ,铜的电阻率增加0.4%左右,即温度升高100℃ ,电阻率增加不到一半。

电子发烧友电子技术 而半导体的导电能力对温度变化反应灵敏,电阻率随温度升高而显著降低。

1.常用半导体器件

1.常用半导体器件
返回
第五节 场效应晶体管
N沟道增强型MOS管 N沟道耗尽型MOS管 MOS管的主要参数及使用注意事项
返回
场效应晶体管是用输入回路的电场效应来控 制半导体中的多数载流子,使流过半导体内的电 流大小随电场强弱而变化,形成电压控制其导电 的一种半导体器件。与晶体管相比场效应晶体管 更易于集成。
场效应晶体管有两种: 结型场效应晶体管 绝缘栅型场效应晶体管
发光二极管的发光颜色取决于使用的材料。
发光二极管只能工作在正向偏置状态,工 作 时电路中必须串接限流电阻。
返回
第四节 晶体管
晶体管的基本结构和类型 晶体管的电流分配和放大原理 晶体管的特性曲线 晶体管的主要参数 温度对晶体管特性和参数的影响
返回
一、晶体管的基本结构和类型
集电极
集电结
集电区
基极
基区
返回
例2、已知ui = 6sinωt,UZ =3V,画输出波形。
ui /V
6
ui
VS
3
uo O
ωt
uo
3
O
ωt
返回
例3、图示电路中,稳压管VS1、VS2的稳压值分
别为UZ1=5V,UZ2=7V,正向压降为0.7V,若
输入电压Ui波形如图所示,试画出输出电压波
形。
Ui
R
12V
Ui R
Uo 6V VS1 VS2 -2V
( NPN: VBC. > VNBP>NVE V C V B V E
PNP: VC<PUNB <PVE)V C V B V E
返回
例2:有三只晶体管,分别为 锗管β=150, ICBO=2μA; 硅管β=100,ICBO=1μA; 硅管β=40,ICEO=41μA;试从β和温度稳定 性选择一只最佳的管子。 解: β 值大,但ICBO也大,温度稳定性较差; β 值较大,ICBO=1μA,ICEO=101 μA ; β 值较小,ICEO=41μA, ICBO=1μA。 、 ICBO相等,但 的β 较大,故 较好。

半导体、二级管和三极管概述

半导体、二级管和三极管概述

PN结加反向电压
PN结加反向电压时, 内建电场被增强,势垒 高度升高,空间电荷区 宽度变宽。这就使得多 子扩散运动很难进行, 扩散电流趋于零;
而少子漂移运动处于优势,形成微小的反向的电流。
流过PN结的反向电流称为反向饱和电流(即IS), PN结呈现为大电阻。由于IS很小,可忽略不计,所 以该状态称为:PN结反向截止。 总结 PN结加正向电压时,正向扩散电流远大于漂移电 流, PN结导通;PN结加反向电压时,仅有很小的 反向饱和电流IS,考虑到IS≈0,则认为PN结截止。
基区空穴 的扩散
扩散运动形成发射极电流IE,复合运动Байду номын сангаас成基极电 流IB,漂移运动形成集电极电流IC。
电流分配:
IE=IB+IC
IE-扩散运动形成的电流 IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
IC IB
iC iB
交流电流放大系数
I CEO (1 ) I CBO
稳压管的伏安特性
稳压管的主要参数 稳定电压Uz:Uz是在规定电流下稳压管的反向击 穿电压。 稳定电流IZ:它是指稳压管工作在稳压状态时, 稳压管中流过的电流,有最小稳定电流IZmin和最大 稳定电流IZmax之分。
(6)其它类型二极管 发光二极管:在正向导通其正向电流足够大时, 便可发出光,光的颜色与二极管的材料有关。广 泛用于显示电路。
图4 本征半导体中 自由电子和空穴
本征半导体的载流子的浓度 本征激发:半导体在热激发下产生自由电子和空 穴对的现象称为本征激发。 复合:自由电子在运动过程中如果与空穴相遇就 会填补空穴,使两者同时消失。 在一定的温度下,本征激发所产生的自由电子与 空穴对,与复合的自由电子与空穴对数目相等,达 到动态平衡。即在一定温度下本征半导体的浓度是 一定的,并且自由电子与空穴浓度相等。

第1章常用半导体器件

第1章常用半导体器件
1.1.1 本征半导体
纯净的具有晶体结构的半导体
一、导体、半导体和绝缘体 导体、
导体:自然界中很容易导电的物质称为导体, 导体:自然界中很容易导电的物质称为导体,金属 导体 一般都是导体。 一般都是导体。 绝缘体:有的物质几乎不导电,称为绝缘体 绝缘体, 绝缘体:有的物质几乎不导电,称为绝缘体,如橡 陶瓷、塑料和石英。 皮、陶瓷、塑料和石英。 半导体: 半导体:另有一类物质的导电特性处于导体和绝缘 半导体, 体之间,称为半导体 如锗、 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。 和一些硫化物、氧化物等。
二、P 型半导体
杂质元素, 在硅或锗的晶体中掺入少量的 3 价杂质元素,如 铟等, 型半导体。 硼、镓、铟等,即构成 P 型半导体。
+4 +4 +4
3 价杂质原子称为 受主原子。 受主原子。 空穴浓度多于电子 浓度, 浓度,即 p >> n。空穴 。 为多数载流子, 为多数载流子 , 电子为 少数载流子。 少数载流子。
五、PN结的电容效应 结的电容效应
上的电压发生变化时, 当PN上的电压发生变化时,PN 结中储存的电荷量 上的电压发生变化时 将随之发生变化, 结具有电容效应。 将随之发生变化,使PN结具有电容效应。 结具有电容效应 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容 b 势垒电容C 结的空间电荷区变化形成的。 是由 PN 结的空间电荷区变化形成的。
公式推导过程略
四、PN结的伏安特性 结的伏安特性
i = f (u )之间的关系曲线。 之间的关系曲线。
i/ mA
60 40 20 –50 –25 0 0.5 1.0 u / V – 0.002
正向特性

第第11章章常用半导体器件常用半...

第第11章章常用半导体器件常用半...


拟 电
PN结正偏 ⇒ 内电场削弱 ⇒
耗尽层变窄⇒



基 础
多子扩散 > 少子漂移 ⇒ 正向电流大,反向电流小
外加正向电场:促使扩散,阻止漂移。
第1章 常用半导体器件
(2)、PN结加反向电压时的导电情况
1.1 概述
外加的反向电压方向与PN结内电场方向相同,加强了内电
模 拟
场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。
3、本征半导体导电能力较弱。
空 穴:
a: 空穴带正电量; b:空穴是半导体中所特有的带单位正电荷的粒子,
与电子电量相等,符号相反; c:在外电场作用下电子、空穴运动方向相反,两
者对电流的贡献是迭加的。
第1章 常用半导体器件
1.1 概述
1.1.2 杂质半导体
为什么要掺
模 杂质半导体:人为掺入杂质的半导体。

扩散电容远小于势垒电容

术 基
• 低频工作时,PN结的结电容的容抗大,可视为开路。

低频可不考虑结电容的影响;
图二极管高频等效道路
• 高频工作时,因容抗变小,结电容将旁路PN结的等效电 阻,使PN结的单向导电性变差。
高频时必须考虑结电容的影响;
频率越高,结电容 效应越明显。
高频电路中应使用结电容小的二极管。
第1章 常用半导体器件
2、电子空穴对
1.1 概述
当导体处于热力学温度0K时,导体中没有自由电子。
模 拟
当温度升高或受到光的照射时,价电子能量增高,有的
电 价电子可以挣脱原子核的束缚,而参与导电,成为自由
子 技
电子。
术 基
这一现象称为本征激发,也称热激发。

模电助教版第1章常用半导体器件FE

模电助教版第1章常用半导体器件FE

半导体器件的频率特性
01
02
03
频率响应
描述半导体器件在不同频 率下的工作性能。
频率限制
由于半导体器件内部电子 和空穴的运动速度限制, 存在一个最高工作频率。
频率变换
通过改变半导体器件的结 构和材料,可以实现不同 频率下的工作。
半导体器件的噪声特性
噪声来源
主要包括热噪声、散粒噪 声和闪烁噪声等。
04伏安特性定义
描述半导体器件在工作状态下, 输入电压与输出电流之间的关系。
线性区与饱和区
在一定的工作电压范围内,半导体 器件的伏安特性呈现线性关系;超 过该范围,器件进入饱和区,电流 不再随电压增大而增大。
截止区与击穿区
当输入电压过低或过高时,半导体 器件处于截止区或击穿区,此时电 流极小或为零。
05
04
1970年代
超大规模集成电路技术的突破,使得 电子设备更加微型化和智能化。
02
半导体基础知识
半导体的定义与分类
总结词
半导体的定义与分类
详细描述
半导体的定义是具有导电性,但导电性介于导体和绝缘体之间的材料。根据导 电性能的不同,半导体可以分为n型和p型两种类型。
半导体材料特性
总结词
半导体材料特性
详细描述
半导体材料具有特殊的物理和化学性质,如高掺杂性、光电效应等。这些特性使 得半导体在电子、光电子、微电子等领域具有广泛的应用。
半导体物理基础
总结词
半导体物理基础
详细描述
半导体物理是研究半导体材料中电子状态和运动的学科,包括能带理论、载流子类型与浓度、迁移率等基本概念。 这些理论为理解半导体的性质和应用提供了基础。
三极管
总结词

第一章常用半导体器件111

第一章常用半导体器件111
导体:载流子--自由电子 半导体:载流子--自由电子和空穴
温度越高,载流子的浓度越高。因此本征半导 体的导电能力越强,温度是影响半导体性能的一个 重要的外部因素。
第1章 常用半导体器件
1.1.2 杂质半导体
在本征半导体中掺入某些微量的杂质(元素), 就会使半导体的导电性能发生显著变化。其原因是 掺杂半导体的某种载流子浓度大大增加。
结束
(1-16)
第1章 常用半导体器件
多余 电子
+4 +4
磷原子
+5
+4
N 型半导体中 的载流子是什 么?
1、由施主原子提供的电子,浓度与施主原子相同。 2、本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
P型区
空间电 N型区 荷区
结束
(1-24)
电位V
UD
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P型区
空间电 荷区
N型区
空间电荷区两边存在电位差UD-称电位壁垒。
硅:0.6~0.8V
锗:0.2~0.3V
(空间电荷区、耗尽层)
+ +++++ + +++++ + +++++ + +++++

第1章 常用半导体器件PrelectEdition

第1章  常用半导体器件PrelectEdition

电子—空穴对
电子电流
空穴电流
载流子
第1章 常用半导体器件 章
+4
+4
+4
由于热激发而产 生的自由电子
+4 +4 +4
自由电子移走 后留下的空穴
+4 +4 +4
图1.1.3本征半导体中的自由电子和空穴
第1章 常用半导体器件 章
本征半导体在热激发下产生电子空穴对的现象称为本征激 发。在电子空穴对产生的同时,自由电子在运动的过程中 如果与空穴相遇就会填补空穴,两者一起消失,这种现象 称为复合 复合。电子空穴对的产生和复合都在不停的发生,在 复合 一定的温度下,本征激发产生的电子空穴对与复合的电子 空穴对数目相等,达到动态平衡 动态平衡。即在一定温度下,本征 动态平衡 半导体中的载流子浓度 载流子浓度是一定的。当温度升高时,热运动 载流子浓度 加剧,挣脱共价键束缚的自由电子增多,空穴也相应增多; 电子空穴对的增多也增加了电子空穴对复合的机会,最终 在升高的载流子浓度下达到新的动态平衡 动态平衡,导电能力提高。 动态平衡
第1章 常用半导体器件 章
+4
+4
+4
自由电子
+4 +5 +4
施主原子
+4 +4 +4
图1.1.4N型半导体示意图
第1章 常用半导体器件 章
由于掺入晶体的杂质原子可以提供电子,故称之为施主原 施主原 子。掺入的杂质越多,自由电子的浓度就越高,导电性能 就越强。N型半导体中自由电子的浓度大于空穴的浓度, 因此称自由电子为多数载流子 多数载流子,简称多子 多子,空穴为少数载 多数载流子 多子 少数载 流子,简称少子 少子。 流子 少子 在N型半导体中,由于自由电子的浓度增加,于是增加了 电子与空穴复合的机会,因此在同一温度下本征激发产生 的空穴的浓度降低。J.米尔曼证明了半导体中两种载流子 的浓度的乘积在同一温度下是恒定值,与掺杂浓度无关, 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 常用半导体器件自 测 题一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。

(1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。

( )(2)因为N 型半导体的多子是自由电子,所以它带负电。

( ) (3)PN 结在无光照、无外加电压时,结电流为零。

( )(4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。

( ) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。

( )(6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。

( )解:(1)√ (2)× (3)√ (4)× (5)√ (6)×二、选择正确答案填入空内。

(1)PN 结加正向电压时,空间电荷区将 。

A. 变窄 B. 基本不变 C. 变宽 (2)设二极管的端电压为U ,则二极管的电流方程是 。

A. I S e U B. TU U I eS C. )1e (S -T U U I(3)稳压管的稳压区是其工作在 。

A. 正向导通B.反向截止C.反向击穿(4)当晶体管工作在放大区时,发射结电压和集电结电压应为 。

A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏(5)U G S =0V 时,能够工作在恒流区的场效应管有 。

A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。

图T1.3解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V,U O6≈-2V。

四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z mi n=5mA。

求图T1.4所示电路中U O1和U O2各为多少伏。

图T1.4解:U O1=6V,U O2=5V。

五、某晶体管的输出特性曲线如图T1.5所示,其集电极最大耗散功率P C M =200mW ,试画出它的过损耗区。

图T1.5 解图T1.5解:根据P C M =200mW 可得:U C E =40V 时I C =5mA ,U C E =30V 时I C ≈6.67mA ,U C E =20V 时I C =10mA ,U C E =10V 时I C =20mA ,将各点连接成曲线,即为临界过损耗线,如解图T1.5所示。

临界过损耗线的左边为过损耗区。

六、电路如图T1.6所示,V C C =15V ,β=100,U B E =0.7V 。

试问: (1)R b =50k Ω时,u O =? (2)若T 临界饱和,则R b ≈? 解:(1)R b =50k Ω时,基极电流、集电极电流和管压降分别为26bBEBB B=-=R U V I μAV2mA 6.2 C C CC CE B C =-===R I V U I I β所以输出电压U O =U C E =2V 。

图T1.6 (2)设临界饱和时U C E S =U B E =0.7V ,所以Ω≈-====-=k 4.45A6.28mA 86.2BBEBB b CB c CESCC C I U V R I I R U V I μβ七.测得某放大电路中三个MOS管的三个电极的电位如表T1.7所示,它们的开启电压也在表中。

试分析各管的工作状态(截止区、恒流区、可变电阻区),并填入表内。

表T1.7解:因为三只管子均有开启电压,所以它们均为增强型MOS管。

根据表中所示各极电位可判断出它们各自的工作状态,如解表T1.7所示。

解表T1.7习题1.1选择合适答案填入空内。

(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。

A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。

A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。

A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。

A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。

因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。

1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。

设二极管正向导通电压可忽略不计。

图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。

1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。

试画出u i与u O的波形,并标出幅值。

图P1.4解图P1.4解:波形如解图P1.4所示。

1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。

试画出输出电压u O的波形,并标出幅值。

图P1.5解:u O的波形如解图P1.5所示。

解图P1.51.6 电路如图P1.6所示,二极管导通电压U D =0.7V ,常温下U T ≈26mV ,电容C 对交流信号可视为短路;u i 为正弦波,有效值为10mV 。

试问二极管中流过的交流电流有效值为多少?解:二极管的直流电流I D =(V -U D )/R =2.6mA其动态电阻 r D ≈U T /I D =10Ω 故动态电流有效值I d =U i /r D ≈1mA 图P 1.61.7 现有两只稳压管,它们的稳定电压分别为6V 和8V ,正向导通电压为0.7V 。

试问:(1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少? 解:(1)两只稳压管串联时可得 1.4V 、6.7V 、8.7V 和14V 等四种稳压值。

(2)两只稳压管并联时可得0.7V 和6V 等两种稳压值。

1.8 已知稳压管的稳定电压U Z =6V ,稳定电流的最小值I Z m i n =5mA ,最大功耗P Z M =150mW 。

试求图P1.8所示电路中电阻R 的取值范围。

解:稳压管的最大稳定电流 I Z M =P Z M /U Z =25mA电阻R 的电流为I Z M ~I Z m i n ,所以其取值范围为 Ω=-=k 8.136.0ZZI ~I U U R 图P 1.81.9 已知图P1.9所示电路中稳压管的稳定电压U Z =6V ,最小稳定电流I Z m i n =5mA ,最大稳定电流I Z ma x =25mA 。

(1)分别计算U I 为10V 、15V 、35V 三种情况下输出电压U O 的值; (2)若U I =35V 时负载开路,则会出现什么现象?为什么?解:(1)当U I =10V 时,若U O =U Z=6V ,则稳压管的电流为4mA ,小于其最小稳定电流,所以稳压管未击穿。

故V 33.3I LLO ≈⋅+=U R R R U当U I =15V 时,稳压管中的电流大于最 图P 1.9 小稳定电流I Z m i n ,所以U O =U Z =6V 同理,当U I =35V 时,U O =U Z =6V 。

(2)=-=R U U I )(Z I D Z 29mA >I Z M =25mA ,稳压管将因功耗过大而损坏。

1.10 在图P1.10所示电路中,发光二极管导通电压U D =1.5V ,正向电流在5~15mA 时才能正常工作。

试问: (1)开关S 在什么位置时发光二极管才能发光? (2)R 的取值范围是多少? 解:(1)S 闭合。

(2)R 的范围为。

Ω=-=Ω≈-=700)(233)(DminD max Dmax D min I U V R I U V R图P 1.101.11 电路如图P1.11(a)、(b)所示,稳压管的稳定电压U Z=3V,R的取值合适,u I的波形如图(c)所示。

试分别画出u O1和u O2的波形。

图P1.11解:波形如解图P1.11所示解图P1.111.12 在温度20℃时某晶体管的I C B O=2μA,试问温度是60℃时I C B O ≈?I=32μA。

解:60℃时I C B O≈5CT(CBO)20=1.13 有两只晶体管,一只的β=200,I C E O=200μA;另一只的β=100,I C E O=10μA,其它参数大致相同。

你认为应选用哪只管子?为什么?解:选用β=100、I C B O=10μA的管子,因其β适中、I C E O较小,因而温度稳定性较另一只管子好。

1.14已知两只晶体管的电流放大系数β分别为50和100,现测得放大电路中这两只管子两个电极的电流如图P1.14所示。

分别求另一电极的电流,标出其实际方向,并在圆圈中画出管子。

图P1.14解:答案如解图P1.14所示。

解图P1.141.15测得放大电路中六只晶体管的直流电位如图P1.15所示。

在圆圈中画出管子,并分别说明它们是硅管还是锗管。

图P 1.15解:晶体管三个极分别为上、中、下管脚,答案如解表P1.15所示。

解表P1.15管号 T 1T 2 T 3 T 4 T 5 T 6 上 e c e b c b 中 b b b e e e 下 c e c c b c 管型 PNP NPN NPN PNP PNP NPN 材料SiSiSiGeGeGe1.16 电路如图P1.16所示,晶体管导通时U B E =0.7V ,β=50。

试分析V B B 为0V 、1V 、1.5V 三种情况下T 的工作状态及输出电压u O 的值。

解:(1)当V B B =0时,T 截止,u O =12V 。

(2)当V B B =1V 时,因为 60bBEQBB BQ =-=R U V I μAV9mA 3 C CQ CC O BQ CQ =-===R I V u I I β所以T 处于放大状态。

(3)当V B B =3V 时,因为160bBEQBB BQ =-=R U V I μA图P 1.16BEC CQ O BQ CQ mA 8 U R I V u I I CC <-===β所以T 处于饱和状态。

1.17 电路如图P1.17所示,试问β大于多少时晶体管饱和?解:取U C E S =U B E ,若管子饱和,则Cb C BECC b BE CC R R R U V R U V ββ=-=-⋅所以,100Cb=≥R R β时,管子饱和。

图P 1.171.18 电路如图P1.18所示,晶体管的β=50,|U B E |=0.2V ,饱和管压降|U C E S |=0.1V ;稳压管的稳定电压U Z =5V ,正向导通电压U D =0.5V 。

相关文档
最新文档