现代控制理论复习题[1]
最新现代控制理论复习题[1]
![最新现代控制理论复习题[1]](https://img.taocdn.com/s3/m/34c8cc4faaea998fcc220e84.png)
《现代控制理论》复习题1一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。
( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( √ )4. 对系统Ax x= ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
( √ )5. 根据线性二次型最优控制问题设计的最优控制系统一定是渐近稳定的。
二、(15分)考虑由下式确定的系统: 233)(2+++=s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
解: 能控标准形为[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212113103210x x y u x x x x能观测标准形为[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212110133120x x y u x x x x对角标准形为[]⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212112112001x x y u x x x x三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。
对系统x x ⎥⎦⎤⎢⎣⎡--=3210求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵A 可以对角化。
矩阵A 对应于特征值2,121-=-=λλ的特征向量是 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=21,1121νν取变换矩阵 []⎥⎦⎤⎢⎣⎡--==-1112121ννT , 则 ⎥⎦⎤⎢⎣⎡--=-21111T 因此, ⎥⎦⎤⎢⎣⎡--==-20011TAT D从而,⎥⎦⎤⎢⎣⎡+-+---=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-------------t t tt t t t t t t t t Ate e ee e e e e e e T e e T e22222212222111200211100解法2。
现代控制理论复习题库
![现代控制理论复习题库](https://img.taocdn.com/s3/m/40d3c88c50e2524de4187e26.png)
现代控制理论复习题库一、填空题1. 对任意传递函数00()mnjj j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。
2. 系统的状态方程为齐次微分方程=x Ax ,若初始时刻为0,x (0)=x 0则其解为___)()(0x x e t x t A =________。
其中, ___t e A __称为系统状态转移矩阵。
3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___整个状态空间中只有一个平衡状态______________。
4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是___完全能控_______的。
5. 能控性与能观性的概念是由__卡尔曼kalman ________提出的,基于能量的稳定性理论是由___lyapunov_______构建的6. 线性定常连续系统=+x Ax Bu ,系统矩阵是_____A______,控制矩阵是_____B_____。
7. 系统状态的可观测性表征的是状态可由 输出反映初始状态 完全反映的能力。
8. 线性系统的状态观测器有两个输入,即_________和__________。
9. 状态空间描述包括两部分,一部分是_状态_方程_______,另一部分是____输出方程______。
10. 系统状态的可控性表征的是状态可由 任意初始状态到零状态 完全控制的能力。
11. 由系统的输入-输出的动态关系建立系统的____传递函数___________,这样的问题叫实现问题。
12.某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?___不存在_______。
13. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为___分离___原理。
14. 对线性定常系统基于观测器构成的状态反馈系统和状态直接反馈系统,它们的传递函数矩阵是否相同?__不相同___。
现代控制理论考试试题
![现代控制理论考试试题](https://img.taocdn.com/s3/m/9f8ce10ce418964bcf84b9d528ea81c758f52ee1.png)
现代控制理论考试试题现代控制理论考试试题一、简答题1. 什么是反馈控制系统?请简要解释其原理和作用。
反馈控制系统是一种通过测量输出信号并与期望信号进行比较,然后根据比较结果对输入信号进行调整的控制系统。
其原理是通过不断调整输入信号以使输出信号接近期望信号,从而实现对系统的控制。
反馈控制系统的作用是使系统能够自动调整,以适应外部环境的变化和内部扰动,从而提高系统的稳定性和性能。
2. 请简述PID控制器的工作原理和常见应用。
PID控制器是一种基于比例、积分和微分三个控制量的控制器。
其工作原理是根据当前的误差(偏差)信号,分别计算比例项、积分项和微分项,并将它们相加得到最终的控制量。
比例项用于根据当前误差的大小进行调整,积分项用于对累积误差进行调整,微分项用于对误差变化率进行调整。
PID控制器常见应用于工业过程控制、机器人控制、飞行器控制等领域。
3. 请解释什么是系统稳定性?如何判断一个控制系统的稳定性?系统稳定性是指系统在一定的工作条件下,输出信号始终趋于有限的范围内,不会出现无限增长或震荡的现象。
判断一个控制系统的稳定性可以通过判断系统的极点位置。
如果系统的所有极点的实部都小于零,则系统是稳定的;如果存在至少一个极点的实部大于零,则系统是不稳定的。
二、计算题1. 对于一个开环传递函数为G(s)=1/(s^2+2s+1)的系统,请计算其闭环传递函数和稳定裕度。
闭环传递函数可以通过将开环传递函数除以1加上开环传递函数得到,即H(s)=G(s)/(1+G(s))。
代入G(s)的表达式可得H(s)=1/(s^2+3s+2)。
稳定裕度是指系统的相角裕度和增益裕度。
相角裕度可以通过计算闭环传递函数在频率为零时的相位角来得到,即相角裕度=180°+arctan(0)=180°。
增益裕度可以通过计算闭环传递函数在频率为无穷大时的幅值来得到,即增益裕度=1。
2. 对于一个控制系统的状态空间表达式为dx/dt=Ax+Bu,y=Cx+Du,其中A、B、C、D分别为系统的矩阵参数,请计算该系统的传递函数。
现代控制理论试题(详细答案)
![现代控制理论试题(详细答案)](https://img.taocdn.com/s3/m/1fde32da3b3567ec112d8a1e.png)
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
现代控制理论复习题
![现代控制理论复习题](https://img.taocdn.com/s3/m/e07936b7f90f76c661371af5.png)
现代控制理论复习题一 判断题 (10分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
(×)对一个系统,只能选取一组状态变量;(√)由一个状态空间模型可以确定惟一一个传递函数。
(×) 一个传递函数只能有唯一的状态空间表达式。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)若一个对象的连续状态空间模型是能观测的,则其离散化状态空间模型也一定是能观测的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; (√)状态反馈不改变系统的能控性。
(√)线性定常系统的最小实现不是惟一的,但最小实现的维数是惟一的。
(×)一个系统的传递函数若有零极点对消现象,则其状态空间表达式必定是既能控又能观测的。
(√)由一个状态空间模型可以确定惟一一个传递函数。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; 二 填空题(共10分,每空一分)1、同一系统,由于系统状态变量的选择不唯一,故建立的系统状态表达式 不唯一;但同一系统的传递函数阵却是 唯一 的,但 状态变量 个数等于系统中独立储能元件的个数。
现代控制理论试卷及答案-总结
![现代控制理论试卷及答案-总结](https://img.taocdn.com/s3/m/99a29037e97101f69e3143323968011ca200f746.png)
、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。
现代控制理论考试试题
![现代控制理论考试试题](https://img.taocdn.com/s3/m/f0f454cc82d049649b6648d7c1c708a1294a0a7f.png)
现代控制理论考试试题(正文开始)一、选择题1.控制系统的目标是()。
A. 提高系统的可靠性B. 提高系统的速度C. 提高系统的稳定性D. 提高系统的精度2.在控制系统中,遥感技术主要用于()。
A. 信号传输B. 参数估计C. 故障检测D. 软件设计3.传感器的作用是()。
A. 测量和检测B. 控制和调节C. 存储和处理D. 传输和接收4.反馈控制系统的特点是()。
A. 没有可靠性要求B. 没有精度要求C. 具有稳定性要求D. 具有高速响应要求5.频率响应函数是指()。
A. 系统的输出响应B. 系统的传输函数C. 系统的幅度特性D. 系统的无穷小响应二、简答题1.请解释什么是控制系统的稳定性,并给出判断系统稳定性的方法。
控制系统的稳定性是指系统在一定刺激下,输出保持有界或有限的范围内,不发生持续增长或不发散的性质。
判断系统稳定性的方法有两种:一种是通过系统的特征方程判断,如果特征方程的所有根的实部都小于零,则系统稳定;另一种是通过系统的频率响应函数判断,如果系统的幅频特性在一定频率范围内有界,则系统稳定。
2.什么是控制系统的鲁棒性?鲁棒性的提高可以通过哪些方法实现?控制系统的鲁棒性是指系统对于参数变化、扰动和不确定性的抵抗能力。
在实际应用中,由于系统中存在参数误差、外部扰动等因素,控制系统往往无法精确满足设计的要求,此时需要考虑鲁棒性。
提高鲁棒性的方法包括:采用更加鲁棒的控制器设计方法,如H∞控制、μ合成控制等;通过系统自适应、鲁棒估计等方法,对系统的参数变化进行实时估计和校正;对系统的扰动进行补偿等。
三、分析题考虑一个反馈控制系统,其开环传递函数为G(s),闭环传递函数为T(s),控制器的传递函数为C(s)。
1.给出控制系统的传递函数表达式。
控制系统的传递函数表达式为T(s) = G(s) / (1 + G(s)C(s))。
2.当G(s) = (s+1) / (s^2+3s+2),C(s) = K,求控制系统的闭环传递函数表达式。
现代控制理论复习资料
![现代控制理论复习资料](https://img.taocdn.com/s3/m/cba781a86f1aff00bfd51e2c.png)
一卷一、选择题:1.非奇异状态变换不改变系统的:A.极点B.控制矩阵C.系统矩阵D.输出矩阵 2.两个系统()()12,W s W s 并联后,系统的传递函数为: A.()()()()1121W s W s I W s -+ B.()()12W s W s C.()()21W s W s D.()()12W s W s ± 3.()0,t t Φ为线性时变系统的状态转移矩阵,则:A.()()00,t t t t Φ=Φ-B.()()()211020,,,t t t t t t ΦΦ=ΦC.()()()211020,,t t t t t t ΦΦ=Φ-D.()()()211021,,,t t t t t t ΦΦ=Φ 4.线性系统,x Ax Bu y Cx =+=的完全能观性:A.与u 有关B.与B 有关C.与B 和u 都无关D.与B 和u 都有关5.()()1W s C sI A b -=-,一个单输入单输出系统(),,A B C 完全能控能观的充分必要条件是:A.()()1W s C sI A b -=-的分子分母不能相消B.()W s 只有稳定的零极点相消C.()W s 只有不稳定的零极点相消D.与()W s 零极点相消没关系 6.若系统x Ax =是渐近稳定的,则: A.存在()0V x >使()0V x >B.不一定存在二次型Lyapunov 函数C.一定存在二次型Lyapunov 函数()V x 使()V x 正定,()V x 负定D.存在()0V x < 使 ()0V x <7.若传递函数()W s 的分母的根都在左半复平面,则: A.()W s 的所有实现都是稳定的系统 B.最小实现可能是稳定的也可能是不稳定的系统 C.()W s 的所有实现都是不稳定的系统 D.()W s 的实现不一定是稳定的系统 8.若使系统的闭环极点能任意配置,则:A.(),,A b c 完全能控B.(),,A b c 完全能观C.(),,A b c 反馈能镇定D.(),,A b c 必须同时能控能观 9.被控系统(),,A B C 的状态反馈:A.不改变极点B.不改变零点C.极点和零点都改变D.极点和零点都不改变 10.若()1111,,A B C ∑=与()2222,,A B C ∑=互为对偶的,则:A.若1∑能观,则2∑能观B.若1∑能控,则2∑能控C.1∑与2∑的特征根相同D.1∑与2∑的传递函数矩阵相同二、计算题 1.已知系统[]001110310130102x x uy x-⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=- 判断系统是否是完全能控的,若不完全能控,将系统进行能控性结构分解,并判断这个系统是否可反馈镇定.2.已知系统[]10100111x x u y x⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=- ① 设计状态观测器使其极点为-3,-2.② 取反馈控制律为()[]12ˆcos 11ˆxu t x ⎡⎤=-⎢⎥⎣⎦,求整个闭环系统方程.三、证明题1.对线性时不变系统,n x Ax Bu x R =+∈,若1,,...n M b Ab A b -⎡⎤=⎣⎦且rankM n =试证明系统是完全能控的.2.试证明系统 31211221x x x x x x x ⎧=-+⎨=--⎩的平衡点()0,0是渐近稳定的.一卷答案一、选择题:1.A,2.D,3.B,4.C,5.A,6.C,7.D,8.A,9.B, 10.C.二.计算题 1. 解:1)2101113012M bAbA b -⎡⎤⎢⎥⎡⎤==-⎣⎦⎢⎥⎢⎥-⎣⎦,()23rank M =< 系统是不完全能控的。
现代控制理论试卷及答案
![现代控制理论试卷及答案](https://img.taocdn.com/s3/m/abe76691a48da0116c175f0e7cd184254a351b45.png)
现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。
(2)用独立变量描述的系统状态向量的维数不是唯一的。
(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。
(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。
(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。
(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。
(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。
(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。
(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。
对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。
二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。
(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。
试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。
(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。
(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。
《现代控制理论》复习题
![《现代控制理论》复习题](https://img.taocdn.com/s3/m/7f1ad3a4bd64783e08122b40.png)
《现代控制理论》复习题一、填空题1.动态系统的状态是一个可以确定该系统 的信息集合。
这些信息对于确定系统 的行为是充分且必要的。
2.以所选择的一组状态变量为坐标轴而构成的正交 空间,称之为 。
3. 定义: 线性定常系统的状态方程为()()()x t Ax t Bu t =+&,给定系统一个初始状态00()x t x =,如果在10t t >的有限时间区间10[,]t t 内,存在容许控制()u t ,使1()0x t =,则称系统状态在0t时刻是的;如果系统对任意一个初始状态都 , 称系统是状态完全 的。
4.系统的状态方程和输出方程联立,写为⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x &,称为系统的 ,或称为系统动态方程,或称系统方程。
5.当系统用状态方程Bu Ax x+=&表示时,系统的特征多项式为 。
6.设有如下两个线性定常系统7002()05000019I x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&则系统(I ),(II )70001()0504000175II x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&的能控性为,系统(I ) ,系统(II ) 。
7.非线性系统()xf x =&在平衡状态e x 处一次近似的线性化方程为x Ax =&,若A 的所有特征值 ,那么非线性系统()x f x =&在平衡状态e x 处是一致渐近稳定的。
8.状态反馈可以改善系统性能,但有时不便于检测。
解决这个问题的方法是: 一个系统,用这个系统的状态来实现状态反馈。
9.线性定常系统齐次状态方程解)()(0)(0t x e t x t t A -=是在没有输入向量作用下,由系统初始状态0)(x t x =激励下产生的状态响应,因而称为 运动。
10.系统方程()()()()()x t Ax t bu ty t cx t=+⎧⎨=⎩&为传递函数()G s的一个最小实现的充分必要条件是系统。
现代控制理论章节习题含答案(大学期末复习资料)
![现代控制理论章节习题含答案(大学期末复习资料)](https://img.taocdn.com/s3/m/14af321bf02d2af90242a8956bec0975f465a436.png)
《现代控制理论》第一章习题解答1.1线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:x = AxBu+y CxDu= +线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A,B,C和中的各分量均为常数,而对线性时变系统,其系数矩阵D A,B,C和D中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答: 传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于n 阶传递函数G s( )= b s n−s1nn+−1a s+n−b s1n−n2−1n+−2 + +as a+1 bs b+1 +0 0+d ,分别有⎧⎡0 1 0 0 ⎤⎡⎤0⎪⎢0 0 1 0 ⎥⎥⎢⎥⎢⎥0⎪⎢⎪⎪x =⎢ ⎥x+⎢⎥ u ⑴能控标准型:⎨⎢0 0 0 1 ⎥⎥⎢⎥⎢⎥0⎪⎢⎪⎣⎢−a0 −a1 −a2 −a n−1⎥⎦⎢⎥⎣⎦1⎪⎪⎩y=[b0 b1 b n−2 b n−1]x du+⎧⎡0 0 0 −a0 ⎤⎡b0 ⎤⎪⎪⎢⎢1 0 0 −a1 ⎥⎥⎢⎢b1 ⎥⎥⎪⎪x =⎢0 1 0 −a2 ⎥⎥x+⎢⎢ ⎥⎥u⑵能观标准型:⎨⎢b n−2⎥⎪⎢ ⎥⎢⎪⎣⎢0 0 1 −a n−1⎦⎥⎢⎣b n−1⎥⎦⎪⎪⎩y=[0 0 0 1]x du+⎧⎡p1⎪⎢0⎪x =⎢⎢ 0 p20 0 ⎤⎡1⎤0 ⎥⎢1⎥⎥x+⎢⎥u ⎥⎢ ⎥⎪⑶对角线标准型:⎨⎪⎢⎣0⎪p n⎥⎦⎢⎣1⎥⎦⎪⎩y=[c1 c2 c x du n] + 式中的pp1, 2,, p n和c c1, 2,, c n可由下式给出,G s( )= b s n−s1nn−1a s+n−b s1n−n2−1n+−2 + +as a+1 bs b+1 +0 0 + =d s p−c1 1 + s p−c2 2 + + s p−c n n +d+能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1 外,其余全为0。
现代控制理论基础试题
![现代控制理论基础试题](https://img.taocdn.com/s3/m/7e72d2bdf71fb7360b4c2e3f5727a5e9856a27af.png)
现代控制理论基础试题一、选择题:1. 什么是现代控制理论的核心概念?A. 反馈原理B. 开环控制C. 传感器D. 控制算法2. 当系统的输出信号与期望的参考信号之间存在差异时,现代控制理论会采取以下哪种策略进行调节?A. 开环控制B. 闭环控制C. 反馈控制D. 前馈控制3. 现代控制系统通常包括哪些基本组成部分?A. 传感器、执行器、控制器B. 输入信号、输出信号、执行器C. 控制器、执行器、参考信号D. 反馈信号、执行器、控制器4. 现代控制理论的主要目标是什么?A. 降低系统效应B. 提高系统稳定性C. 增加系统响应速度D. 最小化系统误差5. 在现代控制系统中,传感器的作用是什么?A. 通过收集系统的反馈信息B. 将输入信号转化为输出信号C. 控制执行器的动作D. 校准控制器的参数二、填空题:6. 现代控制理论中,PID控制器中的比例、积分和微分项分别代表什么?比例项:_______积分项:_______微分项:_______7. 现代控制理论中,系统的稳定性通常通过计算系统的_________来判断。
8. 现代控制理论中,增益裕度是衡量系统稳定性的一个指标,它表示系统输出响应对增益变化的___________。
三、简答题:9. 请简述开环控制和闭环控制的区别。
10. 现代控制系统常用的传感器有哪些?请简要介绍一个传感器的工作原理。
四、分析题:11. 现代控制系统中的反馈环节起到了重要的作用,请你用一个简单的图示来说明反馈控制系统的基本结构。
12. 现代控制理论中,经典PID控制器在某些系统中可能存在不足之处。
请你简要分析当系统存在非线性或时变特性时,经典PID控制器可能出现的问题,并提出解决方案。
结束语:通过本试题,我们回顾了现代控制理论的核心概念、基本组成部分以及控制策略。
掌握现代控制理论对于工程实践具有重要的意义,它可以帮助我们设计和优化各种控制系统,提高系统的性能和稳定性。
希望通过这些试题的训练,您能够对现代控制理论有更深入的理解,并能够在实际应用中灵活运用。
现代控制理论基础复习资料_普通用卷
![现代控制理论基础复习资料_普通用卷](https://img.taocdn.com/s3/m/8b42fee5d4bbfd0a79563c1ec5da50e2524dd1fb.png)
现代控制理论基础课程一单选题 (共30题,总分值30分 )1. 已知,则该系统是()(1 分)A. 能控不能观的B. 能控能观的C. 不能控能观的D. 不能控不能观的2. 下面关于线性连续定常系统的最小实现说法中( )是不正确的。
(1 分)A. 最小实现的维数是唯一的。
B. 最小实现的方式是不唯的,有无数个。
C. 最小实现的系统是能观且能控的。
D. 最小实现的系统是稳定的。
3. 下面关于连续线性时不变系统的能控性与能观性说法正确的是()(1 分)A. 能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B. 能控性是指存在受限控制使系统由任意初态转移到零状态的能力。
C. 能观性表征的是状态反映输出的能力。
D. 对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
4. 下面关于线性非奇异变换说法错误的是()(1 分)A. 非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。
B. 对于线性定常系统,线性非奇异变换不改变系统的特征值。
C. 对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D. 对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5. 线性定常系统的状态转移矩阵,其逆是()(1 分)A.B.C.D.6. 下面关于系统Lyapunov稳定性说法正确的是()(1 分)A. 系统Lyapunov稳定性是针对平衡点的,只要一个平衡点稳定,其他平衡点也稳定。
B. 通过克拉索夫斯基法一定可以构造出稳定系统的Lyapunov函数。
C. Lyapunov第二法只可以判定一般系统的稳定性,判定线性系统稳定性,只可以采用Lyapunov方程。
D. 线性系统Lyapunov局部稳定等价于全局稳定性。
7. 线性SISO定常系统,输出渐近稳定的充要条件是()(1 分)A. 其不可简约的传递函数的全部极点位于s的左半平面。
B. 矩阵A的特征值均具有负实部。
C. 其不可简约的传递函数的全部极点位于s的右半平面。
《现代控制理论》期末复习试题4套含答案(大学期末复习试题)
![《现代控制理论》期末复习试题4套含答案(大学期末复习试题)](https://img.taocdn.com/s3/m/d975b97a783e0912a2162a7f.png)
第 1 页 共 1 页西 安 科 技 大 学2004—2005 学 年 第2 学 期 期 末 考 试 试 题(卷)电控 院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 2 页 共 1 页现代控制理论A 卷答案 1. 解:系统的特征多项式为2221()21(1)1s f s s s s s+-==++=+其特征根为-1(二重),从定理知系统是渐近稳定的。
2 解:Bode 图略解得:开环截止频率:)/(1.2s rad c =ω; 相角裕量:)(40rad r ≈3 解:1)系统的传递函数阵为:2231231))((1))()((1][)(du a s a s a s a s a s Du B A sI C s G +⎥⎦⎤⎢⎣⎡-----=+-=-第 3 页 共 1 页2)系统的状态结构图,现以图中标记的321,,x x x 为u 2u 14解:1)列写电枢电压u 为输入,以电流i 和旋转速度n 为输出的状态空间表达式。
由于ω.πωn 559260==,可得dtdn J dt d J55.9=ω, 22)2(Dg G mR J ==式中, m 为一个旋转体上的一个质点的质量,质量m 为该质量的重量G 和重力加速度g 之比,R 和D 分别为旋转体的半径和直径,综合上两式可推得dtdn GD dt dn D G dt d J 37548.955.922=⨯⨯⨯=ω 2)从而可得到电机电枢回路电压平衡和电机运动平衡的一组微分方程式第 4 页 共 1 页⎪⎪⎩⎪⎪⎨⎧=+=++i C n K dtdn GD u n C Ri dtdiL m b e 3752式中,摩擦系数55.9/B K b =。
选择状态变量n x i x ==21,,则系统得状态空间表达式为u L x x GD K GD C L C L R x x b me ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡01375375212221 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=211001x x y5 略西 安 科 技 大 学2004—2005学 年 第 2 学 期 2 期 末 考 试 试 题(卷)院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 6 页 共 1 页现代控制理论B 卷答案:2 解:所给系统为能控标准形,特征多项式为32()det()1f s sI A s s =-=-+ 所希望的闭环系统特征多项式32()(1)(1)(1)342d f s s s j s j s s s =++-++=+++ 从而可得321134,044,121k k k =--=-=-=-=-=-故反馈增益阵k 为[][]123144k k k k ==--- 所求的状态反馈为[]144u kx v x v =+=---+该闭环系统状态方程为()v x v x bk A x +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=++=342100010对应的结构图如题.2图所示。
现代控制理论试习题(详细答案
![现代控制理论试习题(详细答案](https://img.taocdn.com/s3/m/87c6a652caaedd3383c4d375.png)
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 12。
…..233118x x x x y x ==--=010080x ⎡⎢=⎢⎢-⎣分) 00⎣(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分)2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎤⎡⎤⎡110C 1分)0140x ⎡⎤=⎢⎥⎣⎦ ()⎥⎦⎢⎢⎢⎣-=-8181881C U ……..…………..…….…….(1分) 11188P ⎡⎤=-⎢⎥⎣⎦……..………….…..…….…….(1分) ⎦⎤⎢⎣⎡=43412P ……..………….…...…….…….(1分)1314881148P -⎡⎤-⎢⎥=⎢⎥--⎢⎥⎣⎦..………….…...…….…….(1分) 101105C A PAP -⎡⎤==⎢⎥-⎣⎦………….…...…….…….(1分) ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==1011 43418181Pb b C ……….…...…….…….(1分)1分) 解(3分) 3分)2分)(81分)11121112221222420261p p p p p ⎪-+=⎨⎪-=-⎩………...……....…….…….(1分) 112212743858p p p ⎧=⎪⎪=⎨⎪=⎪⎩………...…………....…….…….(1分)1112122275485388p p P p p ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦...…………....…….…….(1分) 111211122275717480 det det 05346488p p P p p ⎡⎤⎡⎤⎢⎥=>==>⎢⎥⎢⎥⎣⎦⎣⎦………...(1分) P 正定,因此系统在原点处是大范围渐近稳定的.………(1分)八、给定系统的状态空间表达式为1010x --⎡⎢=-⎢⎢⎣2322213332223321(21)3313332(3)(26)64E E E E E E E E E E E λλλλλλλλλλ=+++++++++++++=+++++++++ -- 2分 又因为 *32()331f λλλλ=+++ ------- 1分列方程32123264126333E E E E E E +++=++=+= ----- 2分1232,0,3E k E =-==- ----------- 1分观测器为10312ˆˆ0110010113x x u y ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦------- 1分 方法 2λ⋅分 分分分10ˆ0110x -⎡⎢=-⎢⎢⎣九 分) 1200A tAt A t e e e ⎛⎫= ⎪⎝⎭1A t t e e =…………………………..……….(1分) 11210()12s sI A s ---⎛⎫-= ⎪--⎝⎭101111212s s s s ⎛⎫ ⎪-= ⎪ ⎪- ⎪---⎝⎭………..……….(1分)(){}2112220t A t t t t e e L sI A e ee --⎛⎫=-= ⎪-⎝⎭……….…(1分)()112200000t At tt tt e e L sI A e e e e --⎛⎫ ⎪⎡⎤=-= ⎪⎣⎦ ⎪-⎝⎭……….……….(2分) 222001000001t t tt t t t e e e e e e e ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭……………..……….(2分)一、(( × ( × ( √ ( √二、(的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
现代控制理论试题(详细答案)
![现代控制理论试题(详细答案)](https://img.taocdn.com/s3/m/14a7965ffc4ffe473268ab09.png)
现代控制理论试题B 卷及答案2 1cvcvx ,一、 1 系统 x2xu, y 0 1 x 能控的状态变量个数是 0 1能观测的状态变量个数是cvcvx 。
2 试从高阶微分方程 y3y 8 y 5u 求得系统的状态方程和输出方程(4 分/ 个)解 1 . 能控的状态变量个数是 2,能观测的状态变量个数是 1。
状态变量个数是 2。
⋯ .. (4 分)2.选取状态变量 x 1y , x 2y , x 3y ,可得⋯ .. ⋯ . ⋯⋯ .(1 分)x 1 x 2x 2 x 3⋯.. ⋯. ⋯⋯ . (1 分)x 3 8x 1 3x 35uy x 1写成 0 1 0 0x0 0 1 x 0 u ⋯.. ⋯. ⋯⋯ . (1 分)8 035y 1 0 0 x ⋯.. ⋯. ⋯⋯ . (1 分)二、 1 给出线性定常系统 x( k 1) Ax( k) Bu( k), y(k) Cx (k) 能控的定义。
(3 分)2 1 0 2 已知系统 x0 2 0 x, y 0 1 1 x ,判定该系统是否完0 03全能观? (5 分)解 1 .答:若存在控制向量序列 u (k ), u(k 1), , u(k N 1) ,时系统从第k 步的状态 x(k) 开始,在第 N 步达到零状态,即 x( N ) 0 ,其中 N 是大于0 的有限数,那么就称此系统在第k 步上是能控的。
若对每一个 k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
⋯ .. ⋯. ⋯⋯ . (3 分)2.2 1 0CA 0110 2 0 0 2 3⋯⋯⋯.. ⋯⋯⋯.0 0 3(1 分)2 1 0CA20230 2 0 0 4 9 ⋯⋯.. ⋯⋯⋯.(1分)0 0 3C 0 1 1U O CA 0 2 3 ⋯⋯⋯⋯⋯⋯ .. ⋯⋯⋯ . (1 分)CA20 4 9rankU O 2 n ,所以该系统不完全能观⋯⋯ .. ⋯. ⋯⋯ .(2 分)三、已知系统 1、 2 的传递函数分别为g1 (s)s2 1 ,g2s 1 3s 2( s)3s 2 s2s2求两系统串联后系统的最小实现。
现代控制理论期末考试复习题
![现代控制理论期末考试复习题](https://img.taocdn.com/s3/m/e1fdcf48a88271fe910ef12d2af90242a995ab49.png)
现代控制理论期末考试复习题uy现代控制理论复习题1.自然界存在两类系统:静态系统和动态系统。
2.系统的数学描述可分为外部描述和内部描述两种类型。
3.线性定常连续系统在输入为零时,由初始状态引起的运动称为自由运动。
4.稳定性、能控性、能观测性均是系统的重要结构性质。
5.互为对偶系统的特征方程和特征值相同。
6.任何状态不完全能控的线性定常连续系统,总可以分解成完全能控子系统和完全不能控子系统两部分。
7.任何状态不完全能观的线性定常连续系统,总可以分解成完全能观测子系统和完全不能观测子系统两部分。
8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解成能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。
9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有零极点对消。
10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。
11.经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题。
12.状态反馈和输出反馈是控制系统设计中两种主要的反馈策略。
13.综合问题的性能指标可分为优化型和非优化型性能指标。
14.状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性实对称矩阵P为正定的充要条件是P的各阶顺序主子式均大于零。
15.静态系统:对于任意时刻t,系统的输出唯一地却绝育同一时刻的输入,这类系统称为静态系统。
16.动态系统:对于任意时刻t,系统的输出不仅和t有关,而且与t时刻以前的累积有关,这类系统称为动态系统。
17.状态;状态方程:状态:系统运动信息的合集。
状态方程:系统的状态变量与输入之间的关系用一组一阶微分方程来描述的数学模型称之为状态方程。
18.状态变量:指能完全表征系统运动状态的最小一组变量。
状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。
现代控制理论期末试题及答案
![现代控制理论期末试题及答案](https://img.taocdn.com/s3/m/b773fc9632d4b14e852458fb770bf78a64293a6e.png)
现代控制理论期末试题及答案一、选择题1. 以下哪项不是现代控制理论的基本特征?A. 多变量控制B. 非线性控制C. 自适应控制D. 单变量控制答案:D. 单变量控制2. PID控制器中,P代表的是什么?A. 比例B. 积分C. 微分D. 参数答案:A. 比例3. 动态系统的状态方程通常是以什么形式表示的?A. 微分方程B. 代数方程C. 积分方程D. 线性方程答案:A. 微分方程4. 控制系统的稳定性可以通过什么分析方法来判断?A. 傅里叶变换B. 拉普拉斯变换C. 巴特沃斯准则D. 极点分布答案:C. 巴特沃斯准则5. 控制系统的性能可以通过什么指标来评估?A. 驰豫时间B. 超调量C. 峰值时间D. 准确度答案:A. 驰豫时间二、问答题1. 说明PID控制器的原理和作用。
答:PID控制器是一种常用的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)组成。
比例环节根据控制误差的大小来产生控制量,积分环节用于累积控制误差并增加控制量,微分环节用于预测控制误差的变化趋势并调整控制量。
PID控制器的作用是通过调整上述三个环节的权重和参数,使得控制系统能够尽可能快速地响应控制信号,并且保持控制精度和稳定性。
2. 什么是状态空间法?简要描述其主要思想。
答:状态空间法是用于描述动态系统的一种方法。
其主要思想是将系统的状态表示为一组变量的集合,通过对这些变量的微分方程建模来描述系统的动态行为。
状态空间模型包括状态方程和输出方程,其中状态方程描述了系统状态的变化规律,输出方程描述了系统输出与状态之间的关系。
通过求解状态方程和输出方程,可以得到系统的状态响应和输出响应,进而对系统进行分析和设计。
三、计算题1. 给定一个具有状态方程和输出方程如下的系统,求解其状态和输出的完整响应。
状态方程:\[\dot{x} = Ax + Bu\]\[y = Cx + Du\]其中,矩阵A为\[A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}\]矩阵B为\[B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\]矩阵C为\[C = \begin{bmatrix} 1 & -1 \end{bmatrix}\]矩阵D为\[D = \begin{bmatrix} 0 \end{bmatrix}\]初值条件为:\[x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\]输入信号为:\[u(t) = 2 \sin(t)\]答:首先,根据给定的状态方程和初值条件,可以求解出系统的状态响应。
现代控制理论考试题
![现代控制理论考试题](https://img.taocdn.com/s3/m/e8ec823df56527d3240c844769eae009581ba218.png)
现代控制理论考试题
1. 简答题(共10小题,每题2分)
1.1 什么是控制理论?
1.2 简述闭环控制系统的基本原理。
1.3 PID控制器中的P、I、D分别代表什么意义?
1.4 什么是系统的稳定性?如何判断一个系统是否稳定?
1.5 什么是系统的可控性和可观测性?
1.6 什么是反馈控制系统?
1.7 请简述Laplace变换的定义和性质。
1.8 什么是传递函数?如何从系统的微分方程中获得传递函数?
1.9 什么是状态空间表示?与传递函数表示有何区别?
1.10 请简述根轨迹法在控制系统设计中的应用。
2. 计算题(共3小题,每题15分)
2.1 给定一个控制系统的传递函数为$G(s)=\frac{10}{s^2+2s}$,请计算系统的阶跃响应。
2.2 如果一个系统的传递函数为$G(s)=\frac{K}{s(s+1)(s+2)}$,试设计一个PID控制器使得系统的阶跃响应的超调量小于5%。
2.3 将以下微分方程转化为状态空间表示:
$$\frac{d^2y}{dt^2}+3\frac{dy}{dt}+2y=u$$
3. 应用题(共2小题,每题20分)
3.1 设计一个控制系统,使得给定系统的开环传递函数为
$G(s)=\frac{K}{s(s+2)}$,并满足以下要求:
- 峰值超调小于10%
- 上升时间小于1秒
- 稳态误差小于0.1
3.2 你了解的现代控制理论中的一种方法(例如状态反馈、最优控制、自适应控制、鲁棒控制等)在工业自动化中的应用。
4. 论述题(共1题,40分)
4.1 以你的理解,简要论述现代控制理论对工业自动化的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代控制理论》复习题1二、(15分)考虑由下式确定的系统: 233)(2+++=s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
解: 能控标准形为能观测标准形为对角标准形为三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。
对系统求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵A 可以对角化。
矩阵A 对应于特征值2,121-=-=λλ的特征向量是 取变换矩阵 []⎥⎦⎤⎢⎣⎡--==-1112121ννT , 则 ⎥⎦⎤⎢⎣⎡--=-21111T 因此, ⎥⎦⎤⎢⎣⎡--==-20011TAT D 从而,解法2。
拉普拉斯方法由于故 ⎥⎦⎤⎢⎣⎡+-+---=-==Φ----------t t t t t t tt At e e e e e e e e A sI L e t 2222112222])[()( 解法3。
凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a eAt )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=--解以上线性方程组,可得 t t t t e e t a ee t a 2120)(2)(-----=-= 因此, ⎥⎦⎤⎢⎣⎡+-+---=+==Φ--------t t t t t t tt At e e e e e e e e A t a I t a e t 2222102222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=, ,是完全能观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设计方法。
解 观测器设计的框图:观测器方程:其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。
观测器设计方法:由于 )](det[])(det[)](det[TT T T L C A I LC A I LC A I --=--=--λλλ因此,可以利用极点配置的方法来确定矩阵L ,使得T T T L C A -具有给定的观测器极点。
具体的方法有:直接法、变换法、爱克曼公式。
五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov 稳定性定理,并举一个二阶系统例子说明该定理的应用。
解 连续时间线性时不变系统的李雅普诺夫稳定性定理: 线性时不变系统Ax x= 在平衡点0=e x 处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,李雅普诺夫矩阵方程Q PA P A T -=+有惟一的对称正定解P 。
在具体问题分析中,可以选取Q = I 。
考虑二阶线性时不变系统: ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21211110x x xx 原点是系统的惟一平衡状态。
求解以下的李雅普诺夫矩阵方程 I PA P A T -=+其中的未知对称矩阵 ⎥⎦⎤⎢⎣⎡=22121211p p p p P 将矩阵A 和P 的表示式代入李雅普诺夫方程中,可得进一步可得联立方程组从上式解出11p 、12p 和22p ,从而可得矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=12/12/12/322121211p p p p P 根据塞尔维斯特方法,可得 045det 02321>==∆>=∆P 故矩阵P 是正定的。
因此,系统在原点处的平衡状态是大范围渐近稳定的。
六、(10分)已知被控系统的传递函数是试设计一个状态反馈控制律,使得闭环系统的极点为-1 ± j 。
解 系统的状态空间模型是将控制器 []x k k u 10-= 代入到所考虑系统的状态方程中,得到闭环系统状态方程该闭环系统的特征方程是 )2()3()det(012k k A I c ++++=-λλλ期望的闭环特征方程是 22)1)(1(2++=++-+λλλλj j通过 22)2()3(2012++=++++λλλλk k 可得 222301=+=+k k 从上式可解出 0101+-=k k因此,要设计的极点配置状态反馈控制器是 []⎥⎦⎤⎢⎣⎡=2110x x u 七、(10分)证明:等价的状态空间模型具有相同的能控性。
证明 对状态空间模型它的等价状态空间模型具有形式其中:T 是任意的非奇异变换矩阵。
利用以上的关系式,等价状态空间模型的能控性矩阵是 由于矩阵T 是非奇异的,故矩阵],[B A c Γ,和],[B A c Γ具有相同的秩,从而等价的状态空间模型具有相同的能控性。
八、(15分)在极点配置是控制系统设计中的一种有效方法,请问这种方法能改善控制系统的哪些性能?对系统性能是否也可能产生不利影响?如何解决?解: 极点配置可以改善系统的动态性能,如调节时间、峰值时间、振荡幅度。
极点配置也有一些负面的影响,特别的,可能使得一个开环无静差的系统通过极点配置后,其闭环系统产生稳态误差,从而使得系统的稳态性能变差。
改善的方法:针对阶跃输入的系统,通过引进一个积分器来消除跟踪误差,其结构图是 构建增广系统,通过极点配置方法来设计增广系统的状态反馈控制器,从而使得闭环系统不仅保持期望的动态性能,而且避免了稳态误差的出现。
《现代控制理论》复习题2二、(20分)已知系统的传递函数为(1) 采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(2) 采用并联分解方式,给出其状态空间模型,并画出对应的状态变量图。
答:(1)将G (s )写成以下形式:这相当于两个环节31+s 和552++s s 串连,它们的状态空间模型分别为: ⎩⎨⎧=+-=11113x y u x x 和⎩⎨⎧+-=+-=1212255u x y u x x由于11u y =,故可得给定传递函数的状态空间实现是:将其写成矩阵向量的形式,可得:对应的状态变量图为:串连分解所得状态空间实现的状态变量图(2)将G (s )写成以下形式:它可以看成是两个环节35.0+-s 和55.2+s 的并联,每一个环节的状态空间模型分别为: 和由此可得原传递函数的状态空间实现:进一步写成状态向量的形式,可得:对应的状态变量图为:并连分解所得状态空间实现的状态变量图三、(20分)试介绍求解线性定常系统状态转移矩阵的方法,并以一种方法和一个数值例子为例,求解线性定常系统的状态转移矩阵;答:求解状态转移矩阵的方法有:方法一 直接计算法:根据状态转移矩阵的定义来直接计算,只适合一些特殊矩阵A 。
方法二 通过线性变换计算状态转移矩阵,设法通过线性变换,将矩阵A 变换成对角矩阵或约当矩阵,进而利用方法得到要求的状态转移矩阵。
方法三 拉普拉斯变换法:])[(11---=A sI L e At 。
方法四 凯莱-哈密尔顿方法根据凯莱-哈密尔顿定理和,可导出At e 具有以下形式:其中的)(),(),(120t t t n -ααα 均是时间 t 的标量函数。
根据矩阵A 有n 个不同特征值和有重特征值的情况,可以分别确定这些系数。
举例:利用拉普拉斯变换法计算由状态矩阵所确定的自治系统的状态转移矩阵。
由于故四、(10分)解释状态能观性的含义,给出能观性的判别条件,并举例说明之。
答:状态能观性的含义:状态能观性反映了通过系统的输出对系统状态的识别能力,对一个零输入的系统,若它是能观的,则可以通过一段时间内的测量输出来估计之前某个时刻的系统状态。
状态能观的判别方法:对于n 阶系统1. 若其能观性矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Γ-1n o CA CA C 列满秩,则系统完全能观 2. 若系统的能观格拉姆矩阵非奇异,则系统完全能观。
举例:对于系统其能观性矩阵的秩为2,即是列满秩的,故系统是能观的。
五、(20分)对一个由状态空间模型描述的系统,试回答:(1) 能够通过状态反馈实现任意极点配置的条件是什么?(2) 简单叙述两种极点配置状态反馈控制器的设计方法;(3) 试通过数值例子说明极点配置状态反馈控制器的设计。
答:(1)能够通过状态反馈实现任意极点配置的条件:系统是能控的。
(2)极点配置状态反馈控制器的设计方法有直接法、变换法、爱克曼公式法。
① 直接法验证系统的能控性,若系统能控,则进行以下设计。
设状态反馈控制器u =−Kx ,相应的闭环矩阵是A −BK ,闭环系统的特征多项式为由期望极点n λλ,,1 可得期望的闭环特征多项式通过让以上两个特征多项式相等,可以列出一组以控制器参数为变量的线性方程组,由这组线性方程可以求出极点配置状态反馈的增益矩阵K 。
② 变换法验证系统的能控性,若系统能控,则进行以下设计。
将状态空间模型转化为能控标准型,相应的状态变换矩阵设期望的特征多项式为而能控标准型的特征多项式为所以,状态反馈控制器增益矩阵是(3) 采用直接法来说明极点配置状态反馈控制器的设计考虑以下系统设计一个状态反馈控制器,使闭环系统极点为2−和−3。
该状态空间模型的能控性矩阵为该能控性矩阵是行满秩的,所以系统能控。
设状态反馈控制器将其代入系统状态方程中,得到闭环系统状态方程其特征多项式为由期望的闭环极点− 2和−3,可得闭环特征多项式通过可得由此方程组得到因此,要设计的极点配置状态反馈控制器六、(20分)给定系统状态空间模型Ax x= (1) 试问如何判断该系统在李雅普诺夫意义下的稳定性?(2) 试通过一个例子说明您给出的方法;(3) 给出李雅普诺夫稳定性定理的物理解释。
答:(1)给定的系统状态空间模型Ax x = 是一个线性时不变系统,根据线性时不变系统稳定性的李雅普诺夫定理,该系统渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,矩阵方程Q PA P A T -=+有一个对称正定解矩阵P 。
因此,通过求解矩阵方程Q PA P A T -=+,若能得到一个对称正定解矩阵P ,则系统是稳定的;若得不到对称正定解矩阵P ,则系统是不稳定的。
一般的,可以选取Q = I 。
(2)举例:考虑由以下状态方程描述的二阶线性时不变系统:原点是该系统的惟一平衡状态。
求解李雅普诺夫方程:Q PA P A T -=+,其中的未知矩阵 将矩阵A 和P 的表示式代入李雅普诺夫方程中,可得为了计算简单,选取Q =2I ,则从以上矩阵方程可得:求解该线性方程组,可得:即判断可得矩阵P 是正定的。
因此该系统是渐近稳定的。
(3)李雅普诺夫稳定性定理的物理意义:针对一个动态系统和确定的平衡状态,通过分析该系统运动过程中能量的变化来判断系统的稳定性。
具体地说,就是构造一个反映系统运动过程中能量变化的虚拟能量函数,沿系统的运动轨迹,通过该能量函数关于时间导数的取值来判断系统能量在运动过程中是否减少,若该导数值都是小于零的,则表明系统能量随着时间的增长是减少的,直至消耗殆尽,表明在系统运动上,就是系统运动逐步趋向平缓,直至在平衡状态处稳定下来,这就是李雅普诺夫意义下的稳定性。