阻抗继电器的动作方程和动作特性
合集下载
继电保护(距离保护)
对于相间短路,故障环路为相—相故障环路,取测量电 压为保护安装处两故障相的电压差,测量电流为两故障相的 电流差,称为相间距离保护接线方式,能够准确反应两相短 路、三相短路和两相接地短路情况下的故障距离。
LINYI UNIVERSITY
LINYI UNIVERSITY
LINYI UNIVERSITY
UB = z1 l k B 、 C 相 测 量 I B + K3I 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
增大,短路阻抗比正常时测量到的阻抗大大降低。
LINYI UNIVERSITY
二、测量阻抗及其与故障距离的关系
Um Zm = = z1 l k Im Z set = z1 l set
♣ 距离保护反应的信息量测量阻抗在故障前后变化比电流变 化大,因而比反应单一物理量的电流保护灵敏度高。 ♣ 距离保护的实质是用整定阻抗 Zset 与被保护线路的测量阻 抗 Zm 比较: 当短路点在保护范围以内时,Zm<Zset,保护动作; 当短路点在保护范围以外时,Zm>Zset时,保护不动作。 因此,距离保护又称低阻抗保护。
U kA = 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
阻抗继电器及其动作特性
功耗:阻抗继电器在工作过程中需要消耗一定的电能,要求功耗较低以提高设备的可 靠性。
PART THREE
阻抗继电器用于保护高压输电线路,防止短路和接地故障。 阻抗继电器能够区分线路故障是瞬时性还是永久性,有利于快速恢复供电。 阻抗继电器可用于高压电动机的纵差动保护,提高电机运行的可靠性。 阻抗继电器在电力系统中具有高灵敏度、高可靠性和低维护成本等优点。
相间短路保护:用于保护相间 短路故障
接地保护:用于保护单相接地 故障
方向保护:根据故障方向选择 保护方式
距离保护:根据故障距离选择 保护方式
安装环境:选择干燥、无尘、无剧烈震动的环境,确保继电器正常工作 安装步骤:按照产品手册逐步进行安装,遵循安全规范,确保人员安全 调试方法:根据实际情况调整阻抗继电器的参数,使其满足系统要求 调试注意事项:确保调试过程中遵守安全规定,避免发生意外事故
添加标题
阻抗继电器的灵敏度校验:根据系统最大运行方式 和最小运行方式下的短路故障,进行阻抗继电器的 灵敏度校验,确保其能够正确动作。
添加标题
阻抗继电器的性能参数选择:根据被保护设备的特 性、系统短路故障的特性等因素,选择合适的阻抗 继电器性能参数。
添加标题
阻抗继电器的级差配合:考虑不同阻抗继电器之间 的级差配合,避免出现越级跳闸等异常情况。
注意事项:在处理 故障时,应先切断 电源,确保安全
汇报人:XX
PART FIVE
定期检查:确保继电器外观无破损,各部件正常工作 清洁保养:保持继电器表面清洁,避免灰尘和污垢影响性能 温湿度控制:确保工作环境的温度和湿度在规定范围内,避免过热或过湿 测试功能:定期对继电器进行测试,确保其正常工作
阻抗继电器需要定 期进行外观检查, 确保无损坏和异常 情况
PART THREE
阻抗继电器用于保护高压输电线路,防止短路和接地故障。 阻抗继电器能够区分线路故障是瞬时性还是永久性,有利于快速恢复供电。 阻抗继电器可用于高压电动机的纵差动保护,提高电机运行的可靠性。 阻抗继电器在电力系统中具有高灵敏度、高可靠性和低维护成本等优点。
相间短路保护:用于保护相间 短路故障
接地保护:用于保护单相接地 故障
方向保护:根据故障方向选择 保护方式
距离保护:根据故障距离选择 保护方式
安装环境:选择干燥、无尘、无剧烈震动的环境,确保继电器正常工作 安装步骤:按照产品手册逐步进行安装,遵循安全规范,确保人员安全 调试方法:根据实际情况调整阻抗继电器的参数,使其满足系统要求 调试注意事项:确保调试过程中遵守安全规定,避免发生意外事故
添加标题
阻抗继电器的灵敏度校验:根据系统最大运行方式 和最小运行方式下的短路故障,进行阻抗继电器的 灵敏度校验,确保其能够正确动作。
添加标题
阻抗继电器的性能参数选择:根据被保护设备的特 性、系统短路故障的特性等因素,选择合适的阻抗 继电器性能参数。
添加标题
阻抗继电器的级差配合:考虑不同阻抗继电器之间 的级差配合,避免出现越级跳闸等异常情况。
注意事项:在处理 故障时,应先切断 电源,确保安全
汇报人:XX
PART FIVE
定期检查:确保继电器外观无破损,各部件正常工作 清洁保养:保持继电器表面清洁,避免灰尘和污垢影响性能 温湿度控制:确保工作环境的温度和湿度在规定范围内,避免过热或过湿 测试功能:定期对继电器进行测试,确保其正常工作
阻抗继电器需要定 期进行外观检查, 确保无损坏和异常 情况
阻抗继电器的动作特效和动作方程探讨
全阻抗继电器的特眭是以保护安装点为中心 ,以整定阻抗力为 方 向阻抗继电器的优点在于它具有明确的方向性 , 不会误动。但 半径所作 的—个圆。当测量阻抗 z , 位于圆内时继电器动作, 即圆内为 它也存在着以下每 屯 : 1 ) 躲开过渡电阻的能力差 , 过渡电阻稍大一点 , 动作区 , 圆外为不动作区。 当测量阻抗正好位于圆周上时 , 继 电器刚好 方 向阻抗继电器便不起作用 ; 2 ) 虽然理论上过原点 , 但实际上 由于电 动作, 此时的阻抗就是继电器的起动阻抗 z 。由于这种特 『 生 - 是以原点 为圆心而作 的圆, 因此不论加人继 电器电压 、 电流之间的角度为多大, 继 电器的起动阻抗在数值 匕 均等于整定阻抗 , 即I Z I = I Z I , 而具有这 种动作特性的继电器称为全阻抗继电器 , 它没有方向性。 这种继 电器 以及其它特 f 生的继 电器,都可以采用两个电压幅值 比较或两个电压相位比较的方式构成。
路 寸 有 门坎值, 低于门坎值电路就不动作 , 则出口附近有死区; 3 ) 采 用比 相式时, 当在保护安装出口 处短路时, 其中n大小为零 , 无法 比 较 相角 , 所以方向阻抗继电器有一定的死区, 即越接近出 口处短路 , 越该
动作时它反而不动作。
1 . 3 偏移特性的阻抗继电器 偏移特性阻抗继电器 的特性是 当正方 向的整定阻抗为 Z z d时 , 1 ) 幅值 比较方式。比幅式全阻抗继电器的动作特 陛如 图 l ( a ) 所 同时向偏移—个 a Z , 这种继电器的动作特性介于方向阻抗继电器和 示, 当测量 阻抗 z 位于圆内, 继电器能够起动 , 其起动条件可用阻抗 全 阻继 电器 之 间 。 的幅值表示。 2 ) 相位比较方式。比相式全阻抗继电器的动作特性如图 l 4 具有记 } 2 黹 性的方向鞋 渤 继 电器 1 ( b ) 所示 , 当测量阻抗 Z J 位于圆周上时 , 向量 ( z 一 Z J ) 超前于( z z J ) 具有记 } 乙 特性的方向阻抗继 电器 的静态特性为方 向阻抗继 电 的角度 0= 9 o 。;而当 z J 位 于圆内时 , 0<9 0 o; Z j 位 于圆内外时,
阻抗继电器及其动作特性
Z set 1
Zse1t Zm
Zm
ZmZse2t
Z set 1
Zse1t Zm
Zm
ZmZse2t
当Zm的阻抗角和Zset1的阻抗角相等时,阻抗继电器最灵敏,所以Zset1的 阻抗角也称为最灵敏角,一般取为被保护线路的阻抗角。
偏移特性的阻抗继电器在反方向 故障时有一定的动作区,因此通常 用作距离保护的后备段(III段)。
Z set 1
特性圆偏转后,直径变大, 此时要特别防止故障区外 的误动作。
Z set 2
0
2.苹果形特性和橄榄形特性
在前述的相位比较方程中,若动作的范围不等于180°,对应的特性
就不是一个圆。以方向圆特性为例,若动作边界变为 [,,即]相位比
较方程变为:
argZse1tZm
Zm
则动作区域的形状就会发生变化。
过负荷时
正常负荷时
R
苹果形特性
橄榄形特性的优点和缺点
Z set 1
优点:有较高的耐过负荷的能力 缺点:耐过渡电阻的能力差
3.直线特性的阻抗元件 (1)电抗特性 (2)电阻特性 (3)方向特性
实用文档
(1)电抗特性
动作方程: ①绝对值比较原理
ZmZmj2Xset
②相位比较原理
90arZ gmjXse t 9区域的概念 ——阻抗继电器的动作特性和动作方程 ——绝对值比较和相位比较的相互转换
实用文档
3.2.1 阻抗继电器动作区域的概念
发生短路
j 测量故障环
路上的Zm
Zm与整定
Z
Z 阻较抗Zset比k
set
2
Z set
Z k1
区内故障时动作
确定故障区 段
阻抗继电器
实际上由于互感器的误差,直线 形动作特性不能采用的,必须扩 大保护区。 4.2.1 圆特性阻抗继电器
1、全阻抗继电器
jX
Z set
Zm
R
动作方程:
Z m Z set
圆的半径为整定阻抗; 全阻抗 继电器 的特点
圆内为动作区;
动作不具有方向性。
动作方程两边同乘以测量电流,则方程为
I Z U m m set
小 结
2)整定阻抗:一般取保护安装点到保 护范围末端线路的阻抗; 3)动作阻抗:使阻抗继电器动作 的最大测量阻抗。
4.2.2多边形阻抗继电器 多边型阻抗继电器反应故障点过渡电阻能 力强、躲过负荷能力好,因此在微机保护中 应用的相对广泛。
α
1、四边 形阻抗 继电器
α3 α2
动作方程:
X set 2 X m X set1
Zm 0.5(1 )Zset 0.5(1 )Zset
当 1时 ,方程为;
Z m Z set
当 0时 ,方程为:
Z m 0.5Z set 0.5Z set
偏移特性阻抗继电器比相形式动作方程:
jX
Z set
Zm
C
R
D
Z set
Z Z C set m
2、方向阻抗继电器
jX
z set
Z m 0.5Z set
Zm
R
1 1 动作方程: zm 2 Z set 2 Z set
方向阻抗继电器以电压形式表示的动作 方程为:
1 1 K uvU m K ur I m K ur I m 2 2
Z m 0.5Z set 0.5Z set
电力系统继电保护 —— 距离保护的基本原理、阻抗继电器及其动作特性
由于互感器误差、故障点过渡电阻等因素,继电 器实际测量到的Zm一般并不严格地落在与Zset相 同的直线上,而是落在该直线附近的一个区域中 。
二、阻抗继电器的动作特性和动作方程
动作特性:阻抗继电器在阻抗复平面动作 区域的形状。用复数的数学方程来描述, 称为动作方程。
二、阻抗继电器的动作特性和动作方程
Zm
m
Rm
jX m
金属性短路时:Um降低,Im增大,Zm变为短路点与保
护安装处之间的线路阻抗Zk=z1Lk=(r1+jx1)Lk。短路阻抗的 阻抗角就等于输电线路的阻抗角,数值较大(220kV以上不
低于75°)
二、测量阻抗及其与故障距离的关系
整定阻抗: Zset z1Lset
三、三相系统中测量电压和测量电流的选取
三、三相系统中测量电压和测量电流的选取
三相短路
三相对称性短路时,故障点处的各相电压相等,且在三相 系统对称 时均为0,此时,任何一相的电压、电流或任何 两相相间的电压、电流均可作为距离保护的测量电压和测 量电流,用来进行故障判断。
三、三相系统中测量电压和测量电流的选取
故障环路的概念及测量电压、电流的选取
零序电流补偿系数单相接地短路以a相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路1以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路2以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相不接地短路以ab两相短路为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取三相短路三相对称性短路时故障点处的各相电压相等且在三相系统对称时均为0此时任何一相的电压电流或任何两相相间的电压电流均可作为距离保护的测量电压和测量电流用来进行故障判断
二、阻抗继电器的动作特性和动作方程
动作特性:阻抗继电器在阻抗复平面动作 区域的形状。用复数的数学方程来描述, 称为动作方程。
二、阻抗继电器的动作特性和动作方程
Zm
m
Rm
jX m
金属性短路时:Um降低,Im增大,Zm变为短路点与保
护安装处之间的线路阻抗Zk=z1Lk=(r1+jx1)Lk。短路阻抗的 阻抗角就等于输电线路的阻抗角,数值较大(220kV以上不
低于75°)
二、测量阻抗及其与故障距离的关系
整定阻抗: Zset z1Lset
三、三相系统中测量电压和测量电流的选取
三、三相系统中测量电压和测量电流的选取
三相短路
三相对称性短路时,故障点处的各相电压相等,且在三相 系统对称 时均为0,此时,任何一相的电压、电流或任何 两相相间的电压、电流均可作为距离保护的测量电压和测 量电流,用来进行故障判断。
三、三相系统中测量电压和测量电流的选取
故障环路的概念及测量电压、电流的选取
零序电流补偿系数单相接地短路以a相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路1以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路2以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相不接地短路以ab两相短路为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取三相短路三相对称性短路时故障点处的各相电压相等且在三相系统对称时均为0此时任何一相的电压电流或任何两相相间的电压电流均可作为距离保护的测量电压和测量电流用来进行故障判断
阻抗继电器及其动作特性共20页文档
3.2.1 阻抗继电器动作区域的概念
– Zm=Rm+jXm – 阻抗复平面上,Zm
➢ 在动作区域内,区内故障 ➢ 在动作区域外,区外故障 ➢ 区域边界,临界动作
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
– 动作区域的形状,称为动作特性。
➢ 动作区域为圆形,称为圆特性 ➢ 动作区域为四边形,称为四边形特性
– 动作特性用复数的数学方程描述,称为动作方程。 – 圆特性阻抗继电器
➢ 偏移圆特性 ➢ 方向圆特性 ➢ 全阻抗圆特性 ➢ 上抛圆特性
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
偏移圆特性
两个整定阻抗Zset1、Zset2
圆心
1 2 (Zset1 Zset2 )
半径
1 2
(Z set1
方向圆特性
令
Z set2
0 , Z set1
Z
,
set
动作方程
Zm
1 2
Z set
1 2
Z
set
9 0 arg Z set Z m 9 0 Zm
一般用于主保护段
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
全阻抗圆特性
令
Z set2
Z set , Z set1
Z
se
,
t
动作方程
Z m Z m 2 R set 9 0 arg Z m R set 9 0
R set 2.准 电 阻 特 性 - 动 作 方 程 9 0 arg Z m R set 9 0
R set
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
直线特性-方向特性
– Zm=Rm+jXm – 阻抗复平面上,Zm
➢ 在动作区域内,区内故障 ➢ 在动作区域外,区外故障 ➢ 区域边界,临界动作
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
– 动作区域的形状,称为动作特性。
➢ 动作区域为圆形,称为圆特性 ➢ 动作区域为四边形,称为四边形特性
– 动作特性用复数的数学方程描述,称为动作方程。 – 圆特性阻抗继电器
➢ 偏移圆特性 ➢ 方向圆特性 ➢ 全阻抗圆特性 ➢ 上抛圆特性
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
偏移圆特性
两个整定阻抗Zset1、Zset2
圆心
1 2 (Zset1 Zset2 )
半径
1 2
(Z set1
方向圆特性
令
Z set2
0 , Z set1
Z
,
set
动作方程
Zm
1 2
Z set
1 2
Z
set
9 0 arg Z set Z m 9 0 Zm
一般用于主保护段
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
全阻抗圆特性
令
Z set2
Z set , Z set1
Z
se
,
t
动作方程
Z m Z m 2 R set 9 0 arg Z m R set 9 0
R set 2.准 电 阻 特 性 - 动 作 方 程 9 0 arg Z m R set 9 0
R set
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
直线特性-方向特性
3.2阻抗继电器及其动作特性
直线特性的阻抗元件
jX
jX
R
O
O
R
电抗特性
电阻特性
直线特性的阻抗元件
jX
+j 动
作 区
R
r
sen
o
+1
方向特性
阻抗继电器动作特性的选择
方向性的要求 耐受过渡电阻能力:耐受过渡电阻的能力一般与 动作特性沿R轴正向的面积有关,面积越大,耐受 过渡电阻能力越强 对躲负荷能力:躲负荷能力一般与动作特性沿R轴 正向的面积有关,面积越大,躲负荷能力越弱 受系统振荡影响:一般而言,动作区域越大,受 振荡影响越严重
jX
圆心:
1 2
( Z set1
Z set
2
)
半径:
1 2
(Zset1
Zset2 )
Zset1 绝对值比较原理:
Zm
1 2
(Zset1
Zset
2
)
1 2
(Zset1
Zset
2
)
相位比较动作方程:
O
R
90 arg Zset1 Zm 90 Zm Zset 2
Z set 2
最灵敏角—— Zset1 的阻抗角,
相位:90 o arg Z C 90 o
ZD
或者: Z A ZC ZD ZD ZA ZB
ZB ZB
ZD ZA
ZC
ZB
ZA
ZD
ZC
ZB
ZC
ZD ZA
ZA ZD
ZC
R
90 arg Zset Zm 90
Zset Zm
O
阻抗继电器的构成原理
执行元件——极化继电器KP动作。可见,执
行元件的动作方程为 KUU≤ m 即K Im
U
≤
m
K K U
Im
比较上两式,全阻抗继电器的整定阻抗
ZS
K KU
采用整定变压器TS与电抗变压器LT配合,借
改变它们的绕组匝数来改变K 和 ,KU 可使继
电器的整定阻抗有较大的调节范围。
(2)相位比较方式。按绝对值比较方式构成的
继电器的动作特性。因为这三种动作特
性的阻抗继电器均包括了
Z
S
2
的0.8保5Z护BC 范
围,因而保证了保护2正方向距离I段的保
护范围要求。阻抗继电器的动作特性并不
一定非扩展成圆形不可,只是由于圆特性
的阻抗继电器的接线实现起来比较简单,
且便于制造和调试,所以应用广泛。
(二)圆特性阻抗继电器的特性方程及实现方 法
动作条件又可用阻抗向量 与ZS Z之m 间Z的S Zm
夹角 表示为
900 900
可得将I j到阻比抗较向相量位的Z和zd两 Z个j 电同Z压乘zd 以Z电j 流 ,即
U ImZS Um U ImZS Um
显然,电压 与U 间的U 相位差就是阻抗向
量 与ZS Z的m 夹Z角S Z,m 故继电器的动作条
图8 相位比较式全阻抗继电器的电压形成回路
2.方向阻抗继电器
全阻抗继电器无方向性,不能判别短路故 障的方向,若采用它作测量元件,需另加 一个方向元件—功率方向继电器与之配合。 能否找到一种阻抗继电器既能测量短路点 的远近,又能判别短路的方向呢?方向阻抗 继电器就解决了这个问题。
方向阻抗继电器的圆特性如图9所示,圆 内为动作区。当保护正方向发生故障时, 测量阻抗 位于Zm第一象限,只要 落在圆Z j 内, 继电器就动作。而保护反方向短路时, 位 于第ⅢZ象m 限,不可能落在圆内,继电器不 可能动作。方向阻抗继电器的整定阻抗一 经确定,其特性圆便确定。而方向阻抗继 电器的动作阻抗 是与测量Zdz阻j 抗角 有关的。
阻抗继电器及其动作特性
方向圆特性在整定
阻抗的相反方向, 动作阻抗降为0。 反向故障时不会动 作,阻抗元件本身 具有方向性
方向圆特性的阻抗元
件一般用于距离保护 的主保护段(I 段II段) 中。
全阻抗圆特性各个
方向上的动作阻抗 都相同,及阻抗元 件本身不具有方向 性
全阻抗圆特性的元
件可以应用于单侧 电源的系统中;当 应用于多侧电源的 系统时应与方向元 件配合。
当测量阻抗Zm的阻抗角与正向整定阻抗Zset1的阻抗角 相等时,此时继电器最为灵敏 (Zset1的阻抗角也称为最灵敏角,一般最灵敏角取为被 保护线路的阻抗角):
(2)方向圆特性
令Z set 2 0, Z set1 Z set, 动作方程 1 1 Z m Z set Z set 2 2 Z set Z m 90 arg 90 Zm
(4)上抛圆与下抛圆特性
Zset2和Zset1都在第一象限
上抛圆特性与另一方向
圆特性组合成8字型特性
下抛圆特性的阻抗元件
可用在发电机的失磁保 护中
(5)特性圆的偏转 相位比较动作方程:
Z set Z m 90 arg 90 Z set+Z m
若α≠0°上式中的特性仍是一个 圆,但Zset1、Zset2的末端连线 不在是圆的直径,而变成了它的 一个弦,该弦对应右侧圆弧上的 圆周角变为90°+α,左侧圆弧上 的圆周角变为-90°+α
1.电抗特性-动作方程 Z m Z m j 2 X set Z m jX set 90 arg 90 jX set 2.准电抗特性-动作方程 Z jX set 90 arg m 90 jX set
(相位比较动作方程) 实际应用的电抗特性一般为图3.12中的 直线2,与直线1的夹角为α
阻抗继电器的动作方程和动作特性
360
90
arg
Um ImZ Ime j90
set
270
实用电抗特性
经过Zset端点的直线,与R轴的夹角θ
180 arg Zm Zset 360
R
90
arg
Um Ime j
Im Z set
(90 )
270
• 1.θ>0°,直线1。 • 该直线沿R轴+方向向上。
极化电压工作电压270arg90270arg90以zset和坐标原点连线为直径的圆以zset和za两点连线为直径的圆270arg90270arg90270arg90270arg90270arg90圆向r方向偏移越大偏移越多
阻抗继电器 动作特性、动作方程
幅值判据、相位判据、幅值与相位关系
幅值比较式:A B 相位比较式:1 arg CD 2
jX
0
arg
Um
Im Rset jIm X
180
0
arg
Um Ime j
Im Rset
(90 )
180
• 1. θ>0°,直线2,向左倾斜
• 2. θ=0°,平行于+jx轴
• 3. θ<0°,直线3,向右倾斜。 • 躲负荷阻抗。负荷限制继电器。功率因数
Zm
90
arg Um
ImZset Um
270
90
ar
g
Um ImZ Ume j
set
270
• 1)圆1 • θ >0°,圆的直径在Zset的右侧。 • 圆向+R方向偏移, θ越大,偏移越多。抗过渡电
继电保护新原理与新技术-距离保护基础知识篇
• 前面的母线残压计算的一般公式,适用于任何 故障类型中对任何一相或相间电压的计算。也 适用于非全相中运行相又发生故障时对母线电 压的计算。 • 注意:当发生短路时输电线路上的相压降不等 于 I Z1 。只有发生的是不接地短路故障时才 是正确的。
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 输电线路上的短路往往都是经过过渡电阻的。 过渡电阻的存在将使测量阻抗在幅值和相位上 都发生变化,对阻抗继电器的动作行为产生影 响。 • 相间阻抗继电器的接线: • 接地阻抗继电器的接线:
0
直线型阻抗继电器
• 比相式动作方程:
Z J Z zd 180 arg 3600 R
0
折线型阻抗继电器
• 比相式动作方程:
Z J Z zd 180 arg 3600 R
0
折线型阻抗继电器
• 比相式动作方程:
Z J Z zd 0 arg 1800 R
0
比相式与比幅式动作方程之间的 互换关系
• 幅值比较动作方程与相位比较动作方程 是有一定的互换关系的。利用它们的互 换关系式,可把幅值比较动作方程式转 换成相位比较动作方程式。然后按前面 的方法即可方便地画出它的动作特性。 • 两种动作方程的互换关系是从平行四边 形法则推导过来的。
比相式与比幅式动作方程之间的 互换关系
方向阻抗继电器
• 比相式动作方程:
Z J Z zd 90 arg 2700 ZJ
0
偏移特性阻抗继电器
• 比相式动作方程:
ZJ ZA 90 arg 2700 ZJ ZB
0
以Zzd为弦的圆特性
• 比相式动作方程:
Z J Z zd 0 90 arg 270 ZJ
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 输电线路上的短路往往都是经过过渡电阻的。 过渡电阻的存在将使测量阻抗在幅值和相位上 都发生变化,对阻抗继电器的动作行为产生影 响。 • 相间阻抗继电器的接线: • 接地阻抗继电器的接线:
0
直线型阻抗继电器
• 比相式动作方程:
Z J Z zd 180 arg 3600 R
0
折线型阻抗继电器
• 比相式动作方程:
Z J Z zd 180 arg 3600 R
0
折线型阻抗继电器
• 比相式动作方程:
Z J Z zd 0 arg 1800 R
0
比相式与比幅式动作方程之间的 互换关系
• 幅值比较动作方程与相位比较动作方程 是有一定的互换关系的。利用它们的互 换关系式,可把幅值比较动作方程式转 换成相位比较动作方程式。然后按前面 的方法即可方便地画出它的动作特性。 • 两种动作方程的互换关系是从平行四边 形法则推导过来的。
比相式与比幅式动作方程之间的 互换关系
方向阻抗继电器
• 比相式动作方程:
Z J Z zd 90 arg 2700 ZJ
0
偏移特性阻抗继电器
• 比相式动作方程:
ZJ ZA 90 arg 2700 ZJ ZB
0
以Zzd为弦的圆特性
• 比相式动作方程:
Z J Z zd 0 90 arg 270 ZJ
阻抗继电器及其动作特性
➢ 动作区域为圆形,称为圆特征 ➢ 动作区域为四边形,称为四边形特征
– 动作特征用复数旳数学方程描述,称为动作方程。 – 圆特征阻抗继电器
➢ 偏移圆特征 ➢ 方向圆特征 ➢ 全阻抗圆特征 ➢ 上抛圆特征
3.2.2 阻抗继电器旳动作特征和动作方程
偏移圆特征
两个整定阻抗Zset1、Zset2
圆心
1 2 (Zset1 Zset 2 )
半径
1 2
( Z set1
Z set
2
)
动作区:圆内
非动作区:圆外
临界动作:圆周上
绝对值比较动作方程
1
1
Zm 2 (Zset1 Zset 2 ) 2 (Zset1 Zset 2 )
3.2.2 阻抗继电器旳动作特征和动作方程
相位比较动作方程
90 arg Zset1 Zm 90 Zm Zset 2
,
set
动作方程
Zm Zset
90 arg
Zset Zm Z set+Z m
Байду номын сангаас0
– 可用于单侧电源系统中
– 用于多侧电源系统时,应与 方向元件相配合
3.2.2 阻抗继电器旳动作特征和动作方程
上抛圆特征
Zset2和Zset1都在第一象限 – 一般用于发电机旳失磁保护
3.2.2 阻抗继电器旳动作特征和动作方程
3.2.3 绝对值比较与相位比较之间旳相互转换
绝对值比较 ZB ZA 相位比较 90 arg ZC 90
ZD
ZA ZC ZD
ZB ZC ZD
ZC
1 2
(ZA
ZB )
1 ZD 2 (ZA ZB )
特征圆旳偏移
90
– 动作特征用复数旳数学方程描述,称为动作方程。 – 圆特征阻抗继电器
➢ 偏移圆特征 ➢ 方向圆特征 ➢ 全阻抗圆特征 ➢ 上抛圆特征
3.2.2 阻抗继电器旳动作特征和动作方程
偏移圆特征
两个整定阻抗Zset1、Zset2
圆心
1 2 (Zset1 Zset 2 )
半径
1 2
( Z set1
Z set
2
)
动作区:圆内
非动作区:圆外
临界动作:圆周上
绝对值比较动作方程
1
1
Zm 2 (Zset1 Zset 2 ) 2 (Zset1 Zset 2 )
3.2.2 阻抗继电器旳动作特征和动作方程
相位比较动作方程
90 arg Zset1 Zm 90 Zm Zset 2
,
set
动作方程
Zm Zset
90 arg
Zset Zm Z set+Z m
Байду номын сангаас0
– 可用于单侧电源系统中
– 用于多侧电源系统时,应与 方向元件相配合
3.2.2 阻抗继电器旳动作特征和动作方程
上抛圆特征
Zset2和Zset1都在第一象限 – 一般用于发电机旳失磁保护
3.2.2 阻抗继电器旳动作特征和动作方程
3.2.3 绝对值比较与相位比较之间旳相互转换
绝对值比较 ZB ZA 相位比较 90 arg ZC 90
ZD
ZA ZC ZD
ZB ZC ZD
ZC
1 2
(ZA
ZB )
1 ZD 2 (ZA ZB )
特征圆旳偏移
90
《电力系统继电保护》第3章电网的距离保护-第1234节学习资料
Z set 1
ZOP1
保护范围最长
Z0
ZOP2
方向性:能够消除方向阻抗元件在正 向出口处的保护死区,但同时反方向
Z set 2
《电力系统继电保护》第3章电 网的距离保护-第1234节
K3M 1
K1
Lset K 2
2N
Zm UI mm Zmm
jX
Z k2
区内: Zm Zset 区外: Zm Zset
Z Set
Z k1
ZL
反方向:m(0,90) Z k3
R
依据测量阻抗在不同情况下幅值和相位的“差异”, 区分系统是否发生故障、故障发生的范围。
k 3 M 1 Ik
k1
k 2 2N
Lset
测量故障环路的测量阻抗Zm,与整定阻抗Zset比较, 确定故障所处的区段,决定保护是否应该动作。
由于互感器误差、故障点
jX
过渡电阻,Zm落在 Zset 附
Z k2
近的一个区域中。
Z Set
圆形
动作区域
四边形 苹果形
Z k1
ZL
橄榄形等
Z k3
R
k 3 M 1 Ik
=0
U A U k A (I A K 3 I 0 )z 1 lk
ZmU I m mI AU K A3I 0 z1lk
Zm lk 一个接地阻抗元件动作
3) 两相接地短路(AB)
M 1 Ik
K (1,1)
2N
U
U U k (I K 3 I 0)z1 lk
=0
U A U k A (I A K 3 I 0 )z 1 lk
M 1 Ik
K (3)
2N
U
=0
U A U k A (I A K 3 I 0 )z 1 lk
ZOP1
保护范围最长
Z0
ZOP2
方向性:能够消除方向阻抗元件在正 向出口处的保护死区,但同时反方向
Z set 2
《电力系统继电保护》第3章电 网的距离保护-第1234节
K3M 1
K1
Lset K 2
2N
Zm UI mm Zmm
jX
Z k2
区内: Zm Zset 区外: Zm Zset
Z Set
Z k1
ZL
反方向:m(0,90) Z k3
R
依据测量阻抗在不同情况下幅值和相位的“差异”, 区分系统是否发生故障、故障发生的范围。
k 3 M 1 Ik
k1
k 2 2N
Lset
测量故障环路的测量阻抗Zm,与整定阻抗Zset比较, 确定故障所处的区段,决定保护是否应该动作。
由于互感器误差、故障点
jX
过渡电阻,Zm落在 Zset 附
Z k2
近的一个区域中。
Z Set
圆形
动作区域
四边形 苹果形
Z k1
ZL
橄榄形等
Z k3
R
k 3 M 1 Ik
=0
U A U k A (I A K 3 I 0 )z 1 lk
ZmU I m mI AU K A3I 0 z1lk
Zm lk 一个接地阻抗元件动作
3) 两相接地短路(AB)
M 1 Ik
K (1,1)
2N
U
U U k (I K 3 I 0)z1 lk
=0
U A U k A (I A K 3 I 0 )z 1 lk
M 1 Ik
K (3)
2N
U
=0
U A U k A (I A K 3 I 0 )z 1 lk
阻抗继电器及其动作特性
3.2.2 阻抗继电器的动作特性和动作方程
苹果形和橄榄形特性
Z set Z m arg Zm
β ≥90˚,苹果形 β < 90˚,橄榄形
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
直线特性-电抗特性
1.电抗特性-动作方程 Z m Z m j 2 X set Z m jX set 90 arg 90 jX set 2.准电抗特性-动作方程 Z m jX set 90 arg 90 jX set
Zop=Zset2 – 若Zset2=-ρZset1,ρ:偏移率 – 常用于距离保护的后备段
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
方向圆特性
令Z set 2 0, Z set1 Z set, 动作方程 1 1 Z m Z set Z set 2 2 Z set Z m 90 arg 90 Zm
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
直线特性-电阻特性
1.电阻特性-动作方程 Z m Z m 2R set 90 arg Z m Rset 90 Rset
2.准电阻特性-动作方程 Z Rset 90 arg m 90 Rset
综合可得
ˆ X mtg 2 Rm Rset X m ctg 3 ˆ tg Rmtg1 X m X set Rm 4
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
ˆ X mtg 2 Rm Rset X m ctg 3 ˆ tg Rmtg1 X m X set Rm tg 2 0.249 , 4 1 ctg 3 1, tg 4 0.1245 8 1 ˆ X m Rm Rset X m 4 1 1 ˆ Rm X m X set Rm 4 8
继电保护新原理与新技术-距离保护基础知识篇
• 当过渡电阻呈纯电阻或电感性质时,可 能造成区内故障时继电器拒动; • 当过渡电阻呈电容性质时,可能造成区 外故障时继电器误动(超越)。
谢谢!
方向阻抗继电器
• 比相式动作方程:
Z Z 0 J zd 90 arg 270 Z J
0
偏移特性阻抗继电器
• 比相式动作方程:
Z Z 0 J A 90 arg 270 Z Z J B
0
以Zzd为弦的圆特性
• 比相式动作方程:
Z Z 0 J zd 90 arg 270 Z J
• 式中:
Z R e R a g g IM IM
•
I
I
j
为
I 超前 I M 的角度。
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
cos jsin ,因而 Z a 可能呈 • 由于 e 现不同的性质,从而导致测量阻抗发生变化。
j
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 如图,在F点经过渡电阻短路:
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 以单相接地短路为例,阻抗继电器的测量阻抗为:
IZ I R I U K g M M Z Z R Z Z J K g K a I I I M M M
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
短路时母线残压计算的一般公式
U Uk I1Z1 I 2Z2 I0 Z0 Z0 Z1 Uk (I 1I 2 I0 )Z1 3I0 Z1 3Z1 Uk I Z1 K3I0Z1 Uk (I K3I0 )Z1
短路时母线残压计算的一般公式
继电保护新原理与新技术 距离保护基础知识
谢谢!
方向阻抗继电器
• 比相式动作方程:
Z Z 0 J zd 90 arg 270 Z J
0
偏移特性阻抗继电器
• 比相式动作方程:
Z Z 0 J A 90 arg 270 Z Z J B
0
以Zzd为弦的圆特性
• 比相式动作方程:
Z Z 0 J zd 90 arg 270 Z J
• 式中:
Z R e R a g g IM IM
•
I
I
j
为
I 超前 I M 的角度。
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
cos jsin ,因而 Z a 可能呈 • 由于 e 现不同的性质,从而导致测量阻抗发生变化。
j
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 如图,在F点经过渡电阻短路:
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
• 以单相接地短路为例,阻抗继电器的测量阻抗为:
IZ I R I U K g M M Z Z R Z Z J K g K a I I I M M M
过渡电阻产生的附加阻抗及对阻 抗继电器的影响
短路时母线残压计算的一般公式
U Uk I1Z1 I 2Z2 I0 Z0 Z0 Z1 Uk (I 1I 2 I0 )Z1 3I0 Z1 3Z1 Uk I Z1 K3I0Z1 Uk (I K3I0 )Z1
短路时母线残压计算的一般公式
继电保护新原理与新技术 距离保护基础知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
set
270
• 1)圆1 • θ >0°,圆的直径在Zset的右侧。 • 圆向+R方向偏移, θ越大,偏移越多。抗过渡电
阻能力越强,在短线路上用。
• 2)圆2 • θ<0°,圆的直径在Zset的左侧。 • 圆向-R方向偏移。
• 3)θ= 0°,弦变成直径。
(四)圆特性组合2
90 arg Zm Zset 270
90
arg Um
ImZ set Um
270
工作电压Uop Um ImZset
极化电压Um ImZm
(二)偏移特性圆
以(+Zset)和(-Za)两点连线为直径的圆
90 arg Zm Zset 270 Zm ZA
90
arg
Um Um
Zm
以(+Zset)和坐标原点连线为长轴的透镜。
θ分别为正、负时两个阻抗继电器的逻辑“与”。 发动机失步保护
以(+Zset)和坐标原点连线为中心轴的苹果。
θ分别为正、负时两个阻抗继电器的逻辑“或”。 发动机失磁保护
二、直线特性
(一)电抗特性
经过Zset的端点平行于R轴的直线
1.区内经阻容性或纯阻性过渡电阻短路时,保护过渡电阻 能力无穷大。区外经阻容性过渡电阻短路时,保护误动。 2.没有方向性。(另加判据纠正)
Im Z set ImZ A
270
(三)圆特性组合1
以(+Zset)和坐标原点连线为弦的圆
90 arg Zm Zset 270
Zm
90
arg Um
ImZset Um
270
90
ar
g
Um ImZ Ume j
阻抗继电器 动作特性、动作方程
幅值判据、相位判据、幅值与相位关系
幅值比较式:A B 相位比较式:1 arg CD 2
C B A D B A
一、圆特性
(一)方向阻抗圆
以(+Zset)和坐标原点连线为直径的圆
90 arg Zm Zset 270 Zm
(二)电阻特性
经过Rset端点的直线,与+jX轴的夹角θ
0 arg Zm Rset 180
jX
0
arg
Um
Im Rset jIm X
180
0
arg
Um Ime j
Im Rset
(90 )
180
• 1. θ>0°,直线2,向左倾斜
R
90
arg
Um Ime j
Im Z set
(90 )
270
• 1.θ>0°,直线1。 • 该直线沿R轴+方向向上。
• 2. θ=0°,该直线平行于R轴。
• 3. θ<0°,直线2。 • 该直线沿R轴+方向向下。
• 减少区外经过渡电阻短路,而过渡电阻的附加阻 抗呈阻容性引起阻抗继电器超越动作。
• 2. θ=0°,平行于+jx轴
• 3. θ<0°,直线3,向右倾斜。 • 躲负荷阻抗。负荷限制继电器。功率因数
角
90 arg Zm Rset 270
R
90
arg Um
Im Rset Im
Um
Im Rset Ime j
270
三、四边形特性
1.电抗线。避免区外阻容性附加阻抗引起的超越。 2.电阻线。躲事故过负荷时最小负荷阻抗。 3.方向线。正方向出口经阻容性阻抗短路时无死区。
Rmtg15 X m X set Rmtg
X mtg15 Rm Rset X mctg60
180 arg Zm Zset 360 R
180
arg Um
ImZset Im R
360
90
arg
Um ImZ Ime j90
set
270
实用电抗特性
经过Zset端点的直线,与R轴的夹角θ
180 arg Zm Zset 360