一元二次方程实际应用之利润问题
一元二次方程实际应用之利润问题
![一元二次方程实际应用之利润问题](https://img.taocdn.com/s3/m/f584692da517866fb84ae45c3b3567ec112ddc50.png)
年卡应降价x元, 则每件平均利润应是( 0.3-x)元,总
件数应是( 500+x÷0.1×100)
• 解:设每张贺年卡应降价x元
• 则 (0.3-x)(500+1000x) =120 • 解得: • 答:每张贺年卡应降价0.1元.
营销问题
• 例1 某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,尽快减少 库存,商场决定采取适当的降价措施。经调查发 现,如果每件衬衫降价1元,商场平均每天可多售 出2件。(1)若商场平均每天销售这种衬衫的盈 利要达到1200元,每件衬衫应降价多少元?(2) 每天衬衫降价多少元时,商场平均每天盈利最多?
解:设这种服装的成本为x元,依题意,得: 1.4x× 80% -x=15
解得: x =125 答:这种服装的成本为125元。
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出,这种 夹克每件的成本价是多少元?
解:设这种夹克的成本价为x元,依题意,得: (1+50%)x× 80%=60
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
解 : 设每件商品的售价应为x元, 根据题意, 得
整理得: x2 40x 7600 0.
解这个方程, 得 x1 20, x2 380.
答 : 应多种桃树20棵或380棵.
例7 (2010南京)某批发商以每件50元的价格 购进800件T恤.第一个月以单价80元销售, 售出了200件;第二个月如果单价不变,预计 仍可售出200件,批发商为增加销售量,决定 降价销售,根据市场调查,单价每降低1元, 可多售出10件,但最低单价应高于购进的价格; 第二个月结束后,批发商将对剩余的T恤一性 清仓,清仓时单价为40元.设第二个月单价降 低x元.
一元二次方程解利润问题
![一元二次方程解利润问题](https://img.taocdn.com/s3/m/f104d6e6f424ccbff121dd36a32d7375a417c60c.png)
一元二次方程解利润问题举例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润。
条件:如果每件降价4元,那么平均每天多售出8件。
求:要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?解:设每件童装应降价x元,则每件的利润为(40-x)元,平均每天多售出8×x/4=2x件,实际平均每天售出(2x+20)件,平均每天利润为(40-x)(2x+20)元;根据题意,可列方程:(40-x)(2x+20)=1200(40-x)(x+10)=60040x+400-x²-10x=600x²-30x+200=0(x-10)(x-20)=0x-10=0 或x-20=0x1=10 , x2=20答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或降价20元。
一元二次方程的应用:一、百分率变化问题增长率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b。
在解题过程需要注意总量和增长后达到的量的区别,需要注意“增长了”和“增长到”的区别。
二、传播问题“传播问题”的基本特征是:以相同速度逐轮传播。
解决此类问题的关键步骤是明确每轮传播中的传染源个数,以及这一轮被传染的总数。
需要注意的是疾病传播问题和某种植物分支的区别和联系,疾病传播问题中传染源将参与下一轮传播,而树分支则是树干不参与下一次分支。
三、互送礼物和单循环比赛问题n(n≥2) 个人之间互送礼物,礼物总数=n(n-1);n(n≥2)支球队进行单循环比赛,共需要进行1/2n(n-1)场比赛。
四、商品销售利润与定价问题用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润。
一元二次方程应用 利润问题
![一元二次方程应用 利润问题](https://img.taocdn.com/s3/m/6d6e0e216bec0975f465e2e4.png)
一元二次方程应用利润问题(1)姓名____________ 班级___________【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。
商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。
6月份该商品搞“减价促销”活动。
市场调查发现,售价每降低1元,每天销售量增加2件。
若某一天销售该商品共获利2590元,求该商品降价多少元?【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。
已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。
请解答以下问题:(1)填空:每天可售出书_______本(用含x的代数式表示)(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?一元二次方程--利润问题(2)姓名____________ 班级____________【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。
若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。
一元二次方程与利润问题
![一元二次方程与利润问题](https://img.taocdn.com/s3/m/e6df3d60a9956bec0975f46527d3240c8447a118.png)
一元二次方程的应用(利润问题)一、知识储备一、知识储备(1)利润=实际售价-成本;(2)总利润=单件利润×销售量.二、新授1. (1)某商品的进价是100元,售价是150元,则该商品的单件利润为50元.(2)某件商品的利润为5元/件,销售量为100件,则该商品总利润为500元.知识点1:直接给出单件(每斤)利润1、例:老板发现:如果每斤高档苹果盈利10元,每天可售出500斤;若每斤涨价1元,日销售量将减少20斤.若每天盈利6 000元,则每斤应涨价多少元?分析:设每斤涨价x元涨价后的单件利润涨价后的销售量涨价后的总利润列式:2、某商店热卖“好孩子”童装,平均每天可售20件,每件盈利40元.市场反馈每件童装每降价1元,平均每天就可多售出2件,要想每天在销售这种童装上盈利1 200元,同时又要使顾客得到实惠,那么每件童装应降价多少元?知识点2:间接给出单件利润或变化关系3、某商店经销一种商品,若按每件盈利2元销售,每天可售出200件,如果每件商品的售价涨价0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能使每天利润为640元?4.某商店将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,这种冰箱的售价每降低25元,平均每天就能多售出2台,商场要想在这种冰箱的销售中每天盈利4 800元,设每台冰箱降价x元,由题意列方程得课堂总结:(1)关系式:(售价-成本)×销售量=总利润;(2)一般都是设涨价(或降价)x元,然后间接求定价或进货量.三、过关检测A组1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就减少10个,要实现每月10 000元的销售利润目标,且售价不能低于60元/个.(1)求这种台灯的定价;(2)商场应进货多少个?B组2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,服装店希望一个月内销售该种T恤能获得利润3 360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?C组3.某单位组织职工到“万绿湖”观光旅游,下面是领队与旅行社就收费标准的一段对话:领队:“组团去‘万绿湖’旅行每人收费是多少?”旅行社:“如果人数不超过25人,人均费用为100元.”领队:“超过25人呢?”旅行社:“如果超过25人,每增加1人,人均费用降低2元,但人均旅行费用不得低于70元.”该单位组团旅游结束后,共支付2 700元,求该单位参加旅游的人数。
一元二次方程利润问题
![一元二次方程利润问题](https://img.taocdn.com/s3/m/b4c134b0bdeb19e8b8f67c1cfad6195f312be81c.png)
一元二次方程利润问题1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件衬衫应降价2元。
2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:30(y-x) = 210030(y-x+2x) = 2100解得:x=3,每件衬衫应降价3元。
3、商店要赚8000元利润,每卖出一个商品的利润为y-40元,每涨价1元销售量减少10个。
设售价为y元,则有:y-40)×500 = 8000y-40-x)×(500-10x) = 8000解得:x=2,售价为46元。
4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。
设降价后每件衣服的售价为y元,则有:20(y-x) = 160020(y-x+5x) = 1600解得:x=2,每件衣服应降价2元。
5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。
设售价为y元,则有:500(y-10) = 6000500-20x)(y-9+x) = 6000解得:x=1,每千克应涨价1元。
6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。
设售价为y元,则有:600(y-30) =600-10x)(y-x) =解得:x=1,售价为35元,应进货600个。
7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。
设降价后每件童装的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件童装应降价2元。
可多售出50千克。
如果经营户希望每天仍能获利400元,每千克应该降价多少元?8、某种服装每天能够销售20件,每件盈利44元。
如果每件降价1元,每天可以多售出5件。
13.解一元二次方程的实际应用——利润问题
![13.解一元二次方程的实际应用——利润问题](https://img.taocdn.com/s3/m/f10f7b1d87c24028915fc3b7.png)
采青 春 风
高考总分: 692分(含20分加分) 语文131分 数学145分 英语141分 文综255分 毕业学校:北京二中 报考高校: 北京大学光华管理学 院
北京市文科状元
来自北京二中,高考成绩672分,还有20 分加分。‚何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。‛ 班主任吴京梅说,何旋是个阳光女孩。 ‚她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。‛吴老师说,何旋考出好成绩的秘 诀是心态好。‚她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
设降价x元 单利润 原来
现在 40
日利润=单件利润×销售数量
件数
20
总利润
800
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
107.13.解一元二次方程的实际应用——利润问题
![107.13.解一元二次方程的实际应用——利润问题](https://img.taocdn.com/s3/m/3b96f85f19e8b8f67c1cb9c1.png)
无 月 亦 无 殇 。 谁
香 。 雪 入 窗 , 今
苍 茫 , 罂 粟 纷 纷
不 若 笑 醉 一 回 。
一ห้องสมุดไป่ตู้杯 ? 前 尘 旧 梦
繁 华 , 怎 敌 我 浊
古 韵 清
风
中 幽 舞
梦明
国 落 月
花, 间 。
开离留去不念倾一为夜 古
始,不别成,了丝何静 去,终下离双道天纠泪谧 ;陌是相相,是涯缠悄,
路缠思思抹相的,落佳
韵 风 味
离绵别,不思思谁,人
解:设降价x元,
则(40-x)(20+2x)=1200
解得x1=10,x2=20 答:衬衫的单价应降10元或20元.
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配 合国家“家电下乡”政策的实施,商场决定采取合适的降价措施.调查表明:这 种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中 每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少元?
XXX X
古 X
X X X
风 设
计 P P T 模 版
,陌 长芦 门殇 清, 宫半
古 韵 一
问胜 卿逝 ,一 忆江 解秋
古 韵 二
千三丝 落千三 何落千 处满落 ?地腰
古 韵 三
人是
难水
,间
不残
寒
烦,
唤花
,
丝风
,香
莫
三尘
人茫杯如惆一谁殇入,若一世
已然独流怅壶痴。窗罂笑杯繁
…… ……
……
去又醉年
设每台冰箱应降价x元
日利润=单台利润×日销售台数
单台利润
台数
日利润
初中数学九年级上册解一元二次方程的实际应用——利润问题
![初中数学九年级上册解一元二次方程的实际应用——利润问题](https://img.taocdn.com/s3/m/a175f4ee5022aaea998f0ff2.png)
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配 合国家“家电下乡”政策的实施,商场决定采取合适的降价措施.调查表明:这 种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中 每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少元?
在利润问题中,常有销售量随销售价格的变化而变化的问题,在这些 问题中总存在着数量关系:“日利润=单件利润×日销售数量”,这类问 题通常可以列一元二次方程求解.
具体办法为:①分析题意,弄清题目中的数量关系,②设合适的未知
量为未知数,用含未知数的代数式分别表示出“单件利润”、“销售数量 ”等,③根据上述数量关系和题意列出方程,④解上述方程,⑤检验方程
解一元二次方程的实际应用-----利润问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是
降价,降价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量
随之变化,根据该数量关系通常可以列一元二次方程解决有关利润的问题.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元?
设降价x元 单利润
原来 40
日利润总利润
800
现在
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200
一元二次方程与实际问题--利润问题
![一元二次方程与实际问题--利润问题](https://img.taocdn.com/s3/m/e771346f0b4c2e3f572763c2.png)
总利润为 (41-30)×(60-(41-40)) 元。
Байду номын сангаас
4、当售价为x元时,单利为 x-30 元,销量为 60-(x-40) 件,
总利润为 (x-30)×(60-(x-40))
元。
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每 个30元,每天可卖出100个.经市场调查反映,每 涨价2元,每天要少卖出20个.已知进价为每个20 元,当鼠标垫的售价为多少元/个时,这天的利润 为960元.
阿克苏市第四中学
归纳小结
知识点 列一元二次方程解应用题的一般步骤 (1)审:审题; (2)设:设未知数,设未知数的方法有直接设
和间接设; (3)列:根据题中的等量关系列方程; (4)解:解所列方程; (5)验:检验方程的根是否符合题意; (6)答:回答题目中要解决的问题.
阿克苏市第四中学
作业布置 练习题1、2、3
阿克苏市第四中学
谢谢!
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每个 30元,每天可卖出100个.经市场调查反映,每 涨 降 价2元,每天要 多少卖出20个.已知进价为每个20元 ,当鼠标垫的售价为多少元/个时,这天的利润为 960元.
阿克苏市第四中学
变式练习 变式1:某西瓜经营户以2元/千克的价格购进一批小 型西瓜,以3元/千克的价格出售,每天可售出200千 克.为了减少库存,该经营户决定降价销售.经调 查发现,这种小型西瓜每千克每降价0.1元,每天可 多售出40千克.另外,每天的房租等固定成本共24 元.该经营户要想每天盈利200元,应将每千克小型 西瓜的售价降低多少元. (只列方程)
一元二次方程与实际问题 -----利润问题
利润问题初中一元二次方程
![利润问题初中一元二次方程](https://img.taocdn.com/s3/m/f64b43a2710abb68a98271fe910ef12d2af9a9f9.png)
利润问题初中一元二次方程咱来唠唠初中一元二次方程里的利润问题哈。
比如说,你去卖小玩意儿,进价是每个x元,你一开始打算每个卖y元。
那每个小玩意儿的利润就是卖价减去进价,也就是(y - x)元。
假如你总共进了m个这种小玩意儿,那总利润就是单个利润乘以数量,也就是m(y - x)元。
不过呢,有时候这个卖价不是固定不变的。
比如说,你发现如果每个小玩意儿的卖价提高a元,那销售量就会减少b个。
这时候,设提高后的卖价为z元,那销售量就变成了m - (z - y)/(a)×b个。
总利润就变成了[z - x](m - (z - y)/(a)×b)元。
这时候呢,就经常会出现一元二次方程啦。
因为这个式子展开后,z的最高次是二次的。
比如说,你进了100个小玩偶,进价每个10元,原本卖15元。
发现每提价1元,就少卖5个。
设提价后的卖价是z元。
那销售量就是100 - (z - 15)/(1)×5个,总利润就是(z - 10)(100 - (z - 15)/(1)×5)元。
把这个式子展开:begin{align}(z - 10)(100 - 5(z - 15)) =(z - 10)(100 - 5z + 75) =(z - 10)(175 - 5z) =175z - 5z^2 - 1750 + 50z =- 5z^2 + 225z - 1750end{align}这就是个一元二次方程啦。
如果告诉你总利润是多少,就可以通过解这个一元二次方程来求出提价后的卖价z啦。
总之呢,利润问题里的一元二次方程就是这么个情况,你只要把进价、卖价、销售量之间的关系搞清楚,列方程就不是难事啦。
利润问题一元二次方程含答案
![利润问题一元二次方程含答案](https://img.taocdn.com/s3/m/b10cde307ed5360cba1aa8114431b90d6c8589be.png)
利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。
利润问题可以通过一元二次方程来进行求解。
下面我将详细介绍利润问题及如何用一元二次方程求解。
假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。
那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。
假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。
我们来计算该企业的总收入、总成本和总利润。
总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。
利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。
利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。
同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。
一元二次方程应用-销售利润问题
![一元二次方程应用-销售利润问题](https://img.taocdn.com/s3/m/b6a0e703302b3169a45177232f60ddccda38e682.png)
习数学的兴趣
问题1:
华润万家超市销售一种月饼,其进价为
每份40元,按每份60元出售,平均每天可售出
100份.中秋节为促销,决定适当降价,单价每
降低1元,则平均每天获利2240
元,并尽量让利于顾客.每份月饼应售价多少
(1)单利润=售价—进价
(2)总利润=单利润×销售数量
售价−进价
利润
(3)利润率=
× %=
× %
进价
进价
(4)售价=进价×(1+利润率)
打折数
(5)售价=标价×
➢ 以一元二次方程解决实际问题为载体,进
一步探索数学建模的基本方法
➢ 通过小组讨论、独立思考的方式,在分析
销售问题的过程中培养数学思维
销量
元
元
份
份
设每份月饼应售价元,那么降价了多
少元呢?增加销量又是多少?
售价
降价
60−
销售量
原销量
增加销量
100
10(60−)
如果设每份月饼降价元,数量关系中
的每部分基本代数式如何表示?
降价
单利润
− −
销售量
原销量
增加销量
100
10
通常情况下,一般采用间接设法可降
题需要注意哪些地方?
通常采用间接设法,设降价(涨价)可以降低列方程和解方
程的复杂程度,但要注意题目要求,如果求售价记得求出售价
列方程时先逐个表示单利润、销量(基础销量±价格变化增
加或减少的销量)的代数式,再依据等量关系列方程
解方程时要先化为一般式,再选择适合自己的解法
一元二次方程利润问题
![一元二次方程利润问题](https://img.taocdn.com/s3/m/bc2dad127cd184254b353552.png)
一元二次方程应用利润问题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:若商场平均每天要赢利1200元,每件衬衫应降价多少元?2、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元3、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?4、某种服装,平均每天可销售20件,每件赢利44元,在每件衣服降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,如果每天要赢利1600元,每件应降价多少元?5、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?6、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?7、百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?8、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?9、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
一元二次方程应用--利润问题
![一元二次方程应用--利润问题](https://img.taocdn.com/s3/m/003edf11964bcf84b9d57b79.png)
【畅谈收获】:
1.解决一元二次方程应用题的 关键: 找等量关系。
2.
每件售价-每件进价 每件利润x件数
3.解:使实际问题有意义 符合题目条件
作业:
课本P65 7.14
!
排球进价30元/个, 卖价40元/个。
卖一个排球赚多少钱? 一箱排球60个,全部卖 完赚多少钱? (有时也叫成本价)
每件售价-每件进价
每件利润x件数
1、排球每个进价30元,售价40元,可得利润 10 元. • (1)若涨价2元,则售价 42 元,利润 12 元。 • (2)若涨价x元,则售价 (40+x) 元,利润(10+x) 元。 • (3)若降价x元,则售价 (40-x) 元,利 (10-x) 元
每件商品的利润= 售价
—
进价
.
2、排球原来每天可销售80个,后来进行价格调整。 (1)ቤተ መጻሕፍቲ ባይዱ场调查发现,该商品每降价3元,商场平均每天 可多销售2个。 ①如果降价3元,则多卖 2 个,每天销售量为 82 个
②如果降价9元,则多卖 6 个,每天销售量为 86 个。
③如果降价x元,则多卖
2 x) 每天销售量为 (80+ 3 个。
解:设涨价x元,由题意得 (40+x-30)(600-10x)=10000 x2-50x+400=0 x1=10 x2=40
答:应涨价10元或40元.
• 2、某商场礼品柜台春节期间购进大量贺 年卡,每张贺年卡进价0.5元,以0.8元 出售,平均每天可售出500张。为了尽 快减少库存,商场决定采取适当的降价 措施。调查发现,如果这种贺年卡的售 价每降价0.1元,那么商场平均每天可多 售出100张。商场要想平均每天盈利120 元,每张贺年卡应降价多少元?
(完整版)一元二次方程应用题之利润问题
![(完整版)一元二次方程应用题之利润问题](https://img.taocdn.com/s3/m/a8de90a650e79b89680203d8ce2f0066f53364b6.png)
(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。
该公司希望通过调整销售价格来最大化利润。
现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。
请求解这个问题。
解决方法:设销售价格为p元,销售商品的数量为q件。
由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。
设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。
由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。
根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。
方程的极值点对应的销售价格就是能够使利润最大化的价格。
因为a=0,所以只需要求二次项的系数b即可。
结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。
注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。
在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。
因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。
一元二次方程应用题3销售利润--非常不错
![一元二次方程应用题3销售利润--非常不错](https://img.taocdn.com/s3/m/b3410e81a48da0116c175f0e7cd184254b351b9b.png)
答:每X束1玫=1瑰不应符降合价题4元意。应舍去
列一元二次方程解应用题 的基本步骤:
数量关系
( 每束利润 )×(束数 ) = 利润
审
10-X
40+8X
432
解:设每束玫瑰应降价X元,
设
则每束获利(10-X)元,
平均每天可售出(40+8X) 束,
由题意,得 (10-X)(40+8X)= 432
列
X2-5X+4=0
• 分析:如果设衬衫的单价降ⅹ元,那么商场平均每天可 多售出_2_ⅹ___件。根据相等关系:
• 售_出__的__衬_衫__件_数_ x _每__件_衬__衫_的__盈_利_ =1200,
• 可以列出方程求解
解:设衬衫的单价降x元。 根据题意得 (20+2 x)(40- x)=1200
整理得
X2-30X+200=0
每株利润 × 株株数数 =利润利润
直接设:3设每盆应该3植X株 3×3 增加X1{株3-03.﹣5(0X.5-×3)1}=103+1间接设未知数
增加2株 3﹣0.5×2 3+2
…
…
…
增加x株 3﹣0.5x
3+x
10
回顾与思索
如果每束玫瑰盈利10元, 小新家的花圃用花盆培育 平均每天可售出40束.为扩 玫瑰花苗,经过试验发现, 大销售,经调查发现,若 每盆植入3株时,平均每株 每束降价1元,则平均每天 盈利3元;以同样的栽培条 可多售出8束.如果小新家每 件,每盆每增加1株,平均 天要盈利432元,那么每束 每株盈利就减少0.5元。要 玫 瑰 应 降 价 多 少 元 ? 使每盆的盈利达到10元,
a.设旅游的x人,比30人多了多少人? (x-30)人
一元二次方程的应用利润问题
![一元二次方程的应用利润问题](https://img.taocdn.com/s3/m/e708d5536d175f0e7cd184254b35eefdc8d31596.png)
优化
使用求根公式解一元二次方 程,找到满足条件的最小利 润。
一元二次方程在利润问题中的局限性与 注意事项
局限性 注意事项
一元二次方程假设利润与销售量之间存在线性 关系,可能无法准确描述复杂的实际情况。
在应用一元二次方程解决利润问题时,需要严 谨地制定方程模型,考虑各种因素的影响。
总结与收尾
1 总结
一元二次方程的应用利润 问题
利润问题可以帮助我们了解如何最大化或最小化利润,通过一元二次方程来 解决这些问题。
利润问题的背景与定义
背景
利润是指企业在销售产品或提供服务后,获 得的收入与成本之间的差额。
定义
利润问题涉及计算和优化利润的数学模型和 方法。
一元二次方程的形式与解法
形式
一元二次方程的一般形式是ax²+ bx + c = 0,其 中a、b和c是常数。
1
分析现状
了解产品的成本和销售情况,找到利
建立方程
2
பைடு நூலகம்
润最大化的关键因素。
根据产品成本和销售量之间的关系,
建立一元二次方程。
3
解方程
使用求根公式解一元二次方程,得到 可能的最大利润。
实际案例2 :利润最小化
问题
我们希望在满足一定条件下, 找到能够最小化利润的解决 方案。
方案
根据特定的要求和限制条件, 建立一元二次方程。
2 收尾
利润问题涉及建立与利润相关的一元二次 方程,并使用求根公式解方程,找到最优 解。
掌握一元二次方程的应用技巧,可以帮助 我们在利润问题中做出明智的决策。
解法
使用一元二次方程的求根公式可以求得方程的解。
应用一元二次方程解决利润问题的步骤
一元二次方程实际应用之利润问题PPT讲稿
![一元二次方程实际应用之利润问题PPT讲稿](https://img.taocdn.com/s3/m/c21b3aa0763231126fdb1178.png)
x1 25, x2 31.
x 31 21 1 20% 25.2, x 31不合题意,舍去.
答 : 每件商品的售价应为25元,要卖出100件。
• 例3某商店经销一种销售成本为每千克40元的
水产品,椐市场分析,若按每千克50元销售, 一个月能售出500千克;销售单价每涨1元, 月销售量就减少10千克。针对这种水产品的 销售情况,要使月销售利润达到8000元,销 售单价应定为多少?(月销售利润=月销售量 ×销售单价-月销售成本.)
∴当 x=15时, y有最大值是1250
答:每件降价15元时, 平均每天盈利最多1250元
3.某个体经营户以2元/kg的价格购进一批西瓜,以3元 /kg的价格出售,每天可卖出200kg,为了促销,该经 营户决定降价销售。经调查发现这种西瓜每降价0.1元 /kg ,每天可多售出40kg(每天房租等费用共计24元), 该经营户要想赢利200元,应将每千克的西瓜的售价降 低多少元?
例4 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40
元,为了扩大销售,尽快减少库存,商场决定采取适当的降价
措施。经调查发现,如果每件衬衫降价1元,商场平均每天可多
售出2件。(1)若商场平均每天销售这种衬衫的盈利要达到1200
元,每件衬衫应降价多少元?(2)每天衬衫降价多少元时,商
场平均每天盈利最多?
分析:这类销售问题,涉及的数量关系比 较多,我们可以通过列表的方式来分析其 中的数量关系.
每天的销 售量(件)
每件衬衫 的盈利 (元)
降价前 降价后
20 20+2x
40 40-x
总利润 (元)
800 1200
解:设每件衬衫应降价 x 元,根据题 意,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
例2 某商场销售一批名牌衬衫,平均每天 可销售出20件,每件盈利40元,经调查发 现,如果每件衬衫每降价1元,商场平均 每天可多售出2件.若商场平均每天要盈 利1200元,每件衬衫应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600
分析:若设每件服装降价x元,每件盈利(_4_4 _ _x)__元,每天
能售出_(_20__5_x_)件.
规定 : 利润 = 售价 - 进价 5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称
将标价进行了几折.或理解为:销售价占标价的百分率. 例如某种服装打 8 折即按标价的百分之八十出售,或 按标价的十分之八出售
• 例1、某商场从厂家以每件21元的价格购进 一批商品,若每件的售价为a元,则可卖出 (350—10a)件,商场计划要赚450元,则 每件商品的售价为多少元?
解:设每件衬衫应降价 x 元,根据题 意,得
(40-x)(20+2x)=1200.
整理得:x2-30x+200=0. 解得,x1=10,x2=20. 答:每件衬衫应降价 10 元或 20 元.
• 引例3某商店经销一种销售成本为每千克40元的 水产品,椐市场分析,若按每千克50元销售,一 个月能售出500千克;销售单价每涨1元,月销售 量就减少10千克。针对这种水产品的销售情况, 要使月销售利润达到8000元,销售单价应定为多
少?(月销售利润=月销售量×销售单价-月销 售成本.)
• 分析:设销售单价应涨x元,根据题意得:
• (50-40+x)(500-10x)=8000
•
解得:x1=10,x2=30
即x2-40x件,每件盈利 44元.若每件降价1元,则每天可多售5件.如果 每天盈利1600元,应降价多少元?
22.3实际问题与一元二次方程
四、营销和利润问题
销售利润问题
基本关系
利润=售价 - 成本 总利润=每件平均利润×总件
1.进价:购进商品时的价格(有时也叫成本价) 2.售价:在销售商品时的售出价(有时也叫成交价,卖出价) 3.标价:在销售时标出的价(有时称原价,定价) 4.利润:在销售商品的过程式中的纯收入,在教材中,我们就