高三物理专题复习板块模型

合集下载

高中物理板块模型归纳

高中物理板块模型归纳

高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。

这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。

下面详细介绍高中物理板块模型。

一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。

(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。

(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。

2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。

(2)动量定理:动量的守恒、动量的变化。

(3)能量守恒定律:动能、势能、机械能、内能。

3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。

(2)非简谐振动:阻尼振动、受迫振动。

(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。

二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。

(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。

2. 热力学(1)热力学第一定律:内能、热量、功。

(2)热力学第二定律:熵、热力学第二定律的微观解释。

3. 物态变化(1)相变:固态、液态、气态、等离子态。

(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。

三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。

(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。

(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。

2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。

(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。

3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。

(2)电磁波的传播:波动方程、折射、反射、衍射。

四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。

(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结 高考物理48个解题模型

高中物理知识点总结高考物理48 个解题模型高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。

1高中物理解题模型汇总必修一1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

必修二1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

选修3-11、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

2、“磁流发电机”模型:平衡与偏转,力和能问题。

3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。

2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

1 高考物理必考知识点总结一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S 比t ,a 用Δv与t 比。

2024年新高考二轮物理复习专题——板块模型

2024年新高考二轮物理复习专题——板块模型

考情透析命题点考频分析命题特点核心素养滑块与木板模型2023年:湖南T15山东T18辽宁T152022年:山东T18福建T14河北T13结合各省的试卷来看,此类试题通常设置滑块-木板或滑块-圆弧槽等典型的探究类情境,综合考查牛顿运动定律、运动学规律、能量和动量的相关知识,往往还会涉及碰撞的相关规律。

物理观念:运用相互作用和能量、动量守恒的物理观念分析多物体的复杂运动。

科学思维:构建滑块、木板的运动模型并结合边界条件和数学知识进行综合分析与推理。

滑块与凹槽模型热点突破1滑块与木板模型▼考题示例1(2023·辽宁省·历年真题)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态。

质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触。

木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力。

弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =212kx 。

取重力加速度g =10m/s 2,结果可用根式表示。

(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1;(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小;(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0。

求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示)。

答案:(1)1m/s 0.125m (2)0.25m32m/s (3)2008t -解析:(1)由于地面光滑,则m 1、m 2组成的系统动量守恒,则有m 2v 0=(m 1+m 2)v 1代入数据有v 1=1m/s 对m 1受力分析有a 1=21m gm μ=4m/s 2则木板运动前右端距弹簧左端的距离有21v =2a 1x 1代入数据解得x 1=0.125m(2)木板与弹簧接触以后,对m 1、m 2组成的系统有kx =(m 1+m 2)a 共物块与木板之间即将发生相对滑动时,对m 2有a 2=μg =1m/s 2且此时a 共=a 2,解得此时的弹簧压缩量x 2=0.25m对m 1、m 2组成的系统列动能定理有2212kx -=2212212111()()22m m v m m v +-+代入数据有v 2=32m/s (3)木板从速度为v 2时到之后与物块加速度首次相同时的过程中,由于木板即m 1的加速度大于木块m 2的加速度,则当木板与木块的加速度相同时即弹簧形变量为x 2时,则说明此时m 1的速度大小为v 2,共用时2t 0,且m 2一直受滑动摩擦力作用,则对m 2有:-μm 2g ·2t 0=m 2v 3-m 2v 2解得v 3=0322t -则对于m 1、m 2组成的系统有-W f =2221223122111()222m v m v m m v +-+,ΔU =-W f 联立解得:ΔU=28t - 跟踪训练1(2022·河北·历年真题)如图,光滑水平面上有两个等高的滑板A 和B ,质量分别为1kg 和2kg ,A 右端和B 左端分别放置物块C 、D ,物块质量均为1kg ,A 和C 以相同速度v 0=10m/s 向右运动,B 和D 以相同速度kv 0向左运动,在某时刻发生碰撞,作用时间极短,碰撞后C与D 粘在一起形成一个新滑块,A 与B 粘在一起形成一个新滑板,物块与滑板之间的动摩擦因数均为μ=0.1。

板块模型--2024年高三物理二轮常见模型含参考答案

板块模型--2024年高三物理二轮常见模型含参考答案

2024年高三物理二轮常见模型专题板块模型特训目标特训内容目标1高考真题(1T -3T )目标2无外力动力学板块模型(4T -7T )目标3有外力动力学板块模型(8T -12T )目标4利用能量动量观点处理板块模型(13T -17T )目标5电磁场中的块模型(18T -22T )【特训典例】一、高考真题1(2023·全国·统考高考真题)如图,一质量为M 、长为l 的木板静止在光滑水平桌面上,另一质量为m 的小物块(可视为质点)从木板上的左端以速度v 0开始运动。

已知物块与木板间的滑动摩擦力大小为f ,当物块从木板右端离开时()A.木板的动能一定等于flB.木板的动能一定小于flC.物块的动能一定大于12mv 20-fl D.物块的动能一定小于12mv 20-fl 2(2023·辽宁·统考高考真题)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触。

木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力。

弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2。

取重力加速度g =10m/s 2,结果可用根式表示。

(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1;(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小;(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0。

求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能DU (用t 0表示)。

3(2023·河北·高考真题)如图,质量为1kg 的薄木板静置于光滑水平地面上,半径为0.75m 的竖直光滑圆弧轨道固定在地面,轨道底端与木板等高,轨道上端点和圆心连线与水平面成37°角.质量为2kg 的小物块A 以8m/s 的初速度从木板左端水平向右滑行,A 与木板间的动摩擦因数为0.5.当A 到达木板右端时,木板恰好与轨道底端相碰并被锁定,同时A沿圆弧切线方向滑上轨道.待A离开轨道后,可随时解除木板锁定,解除锁定时木板的速度与碰撞前瞬间大小相等、方向相反.已知木板长度为1.3m,g取10m/s2, 10取3.16,sin37°=0.6,cos37°=0.8.(1)求木板与轨道底端碰撞前瞬间,物块A和木板的速度大小;(2)求物块A到达圆弧轨道最高点时受到轨道的弹力大小及离开轨道后距地面的最大高度;(3)物块A运动到最大高度时会炸裂成质量比为1:3的物块B和物块C,总质量不变,同时系统动能增加3J,其中一块沿原速度方向运动.为保证B、C之一落在木板上,求从物块A离开轨道到解除木板锁定的时间范围.二、无外力动力学板块模型4如图所示,质量为M的木板B在光滑水平面上以速度v0向右做匀速运动,把质量为m的小滑块A 无初速度地轻放在木板右端,经过一段时间后小滑块恰好从木板的左端滑出,已知小滑块与木板间的动摩擦因数为μ。

高三物理总复习知识集成块及其物理模型

高三物理总复习知识集成块及其物理模型

高三物理总复习知识集成块及其物理模型一、力学部分1.力平衡中的最小值问题:在三力平衡问题中,若有一个力的大小和方向都不变,另有一个力的方向不变,则第三个力一定存在着最小值:例:图中重物的质量为m ,轻细线AO 和BO 的A 、B 端是固定的。

平衡时AO 是水平的,BO 与水平面的夹角 为θ。

当AO 的拉力F 1的方向和BO 的拉力F 2的方向垂直时,拉力F 1有最小值。

2.整体法的解题技巧 例:如图:两小球受到一对大小相等、方向相反的力,用整体法立即可判定上面的悬线不发生倾斜。

3.物体在斜面上的三种情况的讨论:μ=tg θ μ<tg θ μ>tg θ4.动中有静的问题例:如图所示,质量M=10千克的木楔ABC 静置于粗糙水平地面上,滑动摩擦系数μ=0.02。

在木楔的倾角θ为30°的斜面上,有一质量m=1.0千克的物块由静止开始沿斜面下滑.当滑行路程s=1.4米时,其速度v=1.4米/秒.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向。

(重力加速度取g=10米/秒2)由匀加速运动的公式v 2=v 02+2as,得物块沿斜面下滑的加速度为a =v 2s = 1.4 2 1.4=0.7/, 222×米秒①由于a<gsin θ=5米/秒,可知物块受到摩擦力作用.分析物块受力,它受三个力,如图19-23所示,对于沿斜面的方向和垂直于斜面的方向,由牛顿定律,有mgsin θ-f 1=ma, ② mgcos θ-N 1=0, ③分析木楔受力,它受五个力作用,如图19-23所示,对于水平方向,由牛顿定律,有f 2+f 1cos θ-N 1sin θ=0, ④由此可解得地面作用于木楔的摩擦力f 2=N 1sin θ-f 1cos θ=mgcos θsin θ-(mgsin θ-ma)cos θ=macos =10.7=0.61.θ××牛23此力的方向与图中所设的一致(由C 指向B 的方向)5.运动学中的几个重要结论:F F平均速度v = s / t 对于匀变速运动来说:v t =v 0+at s= v 0t+1/2 at 2 v 02- v t 2=2as s=(2vt v0+)t 对于匀变速运动来说,某段时间内的平均速度与其时间中点的即时速度是相等的:v = s/t = (v 0+v t )/2 其位移中点的即时速度是 v =2220t v v + 相邻两段等时间T 内的位移差 ΔS=S 2 - S 1= aT 2几个重要结论: 等时性问题 最短时间问题例:一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地淌离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图中所示四种情况中符合要求的是:试证明:一个质点从竖直的圆环的最高点沿不同角度的光滑的弦下滑,到达圆周上的时间是一样的。

物理高三板块模型知识点

物理高三板块模型知识点

物理高三板块模型知识点引言:在学习物理的过程中,板块模型是一个重要的概念。

它可以帮助我们理解地球上的地壳运动以及地震、火山等地质现象。

本文将介绍物理高三板块模型的相关知识点,帮助读者更好地理解和掌握该概念。

一、板块模型的定义和基本概念1. 板块模型是指将地球表面划分成若干个大型板块,并认为这些板块在地球内部存在相对运动的理论模型。

2. 地球板块模型的形成和演化与地球上的地壳构造、地震和火山活动等密切相关。

3. 板块模型的核心理论是“地壳构造学”和“板块构造学”。

二、板块模型的分类1. 根据地壳运动方向和速度的不同,板块模型可以分为三种类型:边界运动型、内部运动型和混合型。

2. 边界运动型板块模型:板块间的相对滑动速度较快,形成了较明显的地壳运动现象,如反射地震带、弧后盆地等。

3. 内部运动型板块模型:板块内部的相对滑动速度较快,形成了内部断层和地壳运动现象,如火山地震、岩浆侵入等。

4. 混合型板块模型:同时具有边界运动型和内部运动型特征的板块模型。

三、板块模型的主要特征和作用1. 板块模型具有边界界线清晰、板块间相对运动、构造形态分明等特征。

2. 板块模型对地球上的地壳变形、地震和火山活动等地质现象起到了重要的控制作用。

3. 板块模型还可以解释地球表面的地理分布、陆地形态、海底地形等自然地理现象。

四、板块构造运动的主要类型1. 板块碰撞:两个板块的边界相互碰撞,形成山脉、高原等地形。

2. 板块俯冲:一块板块向下俯冲入地幔,形成深海槽、弧形火山等地形。

3. 板块扩张:两个板块的边界相互脱离,形成中海峡、洋脊等地形。

五、世界著名的板块边界带1. 环太平洋地震带:包括环太平洋地区的海沟、火山带以及日本、菲律宾等地的地震活动。

2. 阿尔卑斯-喜马拉雅地震带:沿着欧亚大陆的冲突带,包括阿尔卑斯山脉和喜马拉雅山脉。

3. 土耳其-伊朗-印度尼西亚地震带:包括土耳其、伊朗以及印度尼西亚等地的地震活动。

结论:板块模型是物理高三学习中的重要知识点,它可以帮助我们理解地球的地壳运动、地质现象以及自然地理现象。

高考物理模型专题归纳总结

高考物理模型专题归纳总结

高考物理模型专题归纳总结一、引言高考物理考试中的物理模型是学生们备考的重点内容之一。

物理模型的理解和应用能力是解题的关键。

在高考物理考试中,常见的物理模型包括力学模型、电磁感应模型、光学模型等等。

本文将对这些物理模型进行归纳总结,帮助广大考生更好地掌握和应用这些知识。

二、力学模型1. 牛顿运动定律模型牛顿第一定律、牛顿第二定律、牛顿第三定律是力学模型中最基础的内容。

牛顿第一定律指出物体如果没有外力作用,将保持匀速直线运动或静止状态。

牛顿第二定律则给出了物体力学模型的数学表达式F=ma,其中F为物体所受合力,m为物体质量,a为物体加速度。

牛顿第三定律则说明了作用力与反作用力相等并方向相反的关系。

2. 弹性模型弹簧弹性模型是高考中常见的题型,通过应用胡克定律和弹簧势能公式进行计算。

胡克定律描述了弹簧伸长或缩短的变形与所受力的关系,F=kx,其中F为作用在弹簧上的力,k为弹簧的劲度系数,x为弹簧的伸长或缩短量。

弹簧势能公式为E=1/2kx²,其中E为弹簧的势能。

3. 圆周运动模型圆周运动模型中,角速度、角加速度、圆周位移与线位移的关系是基础内容。

角速度ω定义为角位移θ与时间t的比值,单位为弧度/秒。

角加速度α定义为角速度的变化率,单位为弧度/秒²。

圆周位移和线位移之间的关系为s=rθ,其中s为圆周位移,r为半径,θ为角位移。

三、电磁感应模型1. 法拉第电磁感应模型法拉第电磁感应模型是高考物理中的重要内容,应用于电磁感应的计算和分析。

法拉第电磁感应定律指出,通过导线的磁通量的变化率产生感应电动势,其大小和方向由导线所围成的回路和磁场变化率决定。

可以通过Faraday公式ε=-dΦ/dt进行计算,其中ε为感应电动势,Φ为磁通量,t为时间。

2. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过导体的电流所产生的磁场与导体所受磁场力的关系。

根据该定律,通过导体的电流所产生的磁场方向垂直于电流方向,其大小与电流强度和导线到磁场中心的距离正比。

2023年高考物理总复习核心素养微专题(三)模型建构——板块模型

2023年高考物理总复习核心素养微专题(三)模型建构——板块模型

模型建构——板块模型滑块和木板组成相互作用的系统,在摩擦力的作用下发生相对滑动,称为板块模型。

板块模型是高中动力学部分中的一类重要模型,也是高考考查的重点,能从多方面体现物理学科素养。

此类模型的一个典型特征是:滑块、木板间通过摩擦力作用使物体的运动状态发生变化。

常见类型如下:类型图示规律分析B 带动A木板B 带动物块A ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +LA 带动B物块A 带动木板B ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时,二者速度相等,则位移关系为x B +L =x AF 作用在A 上力F 作用在物块A 上,先考虑木板B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况 F 作用在B 上力F 作用在木板B 上,先考虑B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况物块、木板上均未施加力(2022·山东等级考)如图所示,“L ”形平板B 静置在地面上,小物块A 处于平板B 上的O'点,O'点左侧粗糙,右侧光滑。

用不可伸长的轻绳将质量为M 的小球悬挂在O'点正上方的O 点,轻绳处于水平拉直状态。

将小球由静止释放,下摆至最低点与小物块A 发生碰撞,碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于5°),A 以速度v 0沿平板滑动直至与B 右侧挡板发生弹性碰撞。

一段时间后,A 返回到O 点的正下方时,相对于地面的速度减为零,此时小球恰好第一次上升到最高点。

已知A 的质量m A =0.1 kg,B 的质量m B =0.3 kg,A 与B 的动摩擦因数μ1=0.4,B 与地面间的动摩擦因数μ2=0.225,v 0=4 m/s,取重力加速度g = 10 m/s 2。

整个过程中A 始终在B 上,所有碰撞时间忽略不计,不计空气阻力,求:(1)A 与B 的挡板碰撞后,二者的速度大小v A 与v B ; (2)B 光滑部分的长度d ;(3)运动过程中A 对B 的摩擦力所做的功W f ;(4)实现上述运动过程,Mm A的取值范围(结果用cos5°表示)。

备战2024年高考物理一轮重难点复习-突破四、-板块模型

备战2024年高考物理一轮重难点复习-突破四、-板块模型

突破四、板块模型动力学中水平面上的板块模型水平面上的板块模型是指滑块和滑板都在水平面上运动的情形,滑块和滑板之间存在摩擦力,发生相对运动,常伴有临界问题和多过程问题,对学生的综合能力要求较高。

【例题】如图所示,在光滑的水平面上有一长L =4m 、质量为M =4kg 的木板,在长木板右端有一质量为m =1kg 的小物块,长木板与小物块间动摩擦因数为μ=0.2,长木板与小物块均静止。

现用F=18N 的水平恒力作用在木板上(g 取10m/s 2)。

(1)求木板加速度a 1和小物块加速度a 2的大小;(2)0~3s 的过程中,板块间产生的热量为多少?【答案】(1)4m/s 2,2m/s 2;(2)8J【详解】(1)根据牛顿第二定律2mg ma μ=,1F mg Ma μ-=解得a 1=4m/s 2,a 2=2m/s 2(2)物块脱离木板所需时间为t ,根据22121122L a t a t =-解得t =2s即3s 物体已经脱离木板,所以Q =μmgL =8J【总结归纳】(1)两个分析:仔细审题,清楚题目的物理过程,对每一个物体进行受力分析和运动过程分析。

(2)求加速度:准确求出各个物体在各个运动过程的加速度,注意两个运动过程的连接处的加速度可能突变。

(3)明确关系:找出物体之间的位移和路程关系或速度关系往往是解题的突破口,每一个过程的末速度是下一个过程的初速度。

当过程比较多时可以借助v­t 图像,从图像中找到时间与空间的关系,是解决问题的有效手段。

【分类训练】类型1水平面上受外力作用的板块模型1.如图所示,在光滑水平地面上静置一质量2kg M =、长度0.5m L =的薄木板A ,木板右端放有一质量4kg m =的小滑块B (可视为质点)。

某时刻在木板右端施加一水平向右的恒力14N F =,作用2s =t 后撤去。

已知滑块与木板间的动摩擦因数0.2μ=,滑块离开木板前、后的速度不变,取重力加速度大小210m /s g =,求:(1)滑块离开木板时的速度大小v ;(2)撤去恒力F 时滑块到木板左端的距离d。

专题19 板块模型-2025版高三物理一轮复习多维度导学与分层专练

专题19 板块模型-2025版高三物理一轮复习多维度导学与分层专练

2025届高三物理一轮复习多维度导学与分层专练专题19板块模型导练目标导练内容目标1无外力板块模型目标2有外力板块模型【知识导学与典例导练】滑块—木块模型的解题策略运动状态板块速度不相等板块速度相等瞬间板块共速运动处理方法隔离法假设法整体法具体步骤对滑块和木板进行隔离分析,弄清每个物体的受体情况与运动过程假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体“所需要”的摩擦力F f ;比较F f 与最大静摩擦力F fm 的关系,若F f >F fm ,则发生相对滑动将滑块和木板看成一个整体,对整体进行受力分析和运动过程分析临界条件①两者速度达到相等的瞬间,摩擦力可能发生突变②当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘,二者共速是滑块滑离木板的临界条件相关知识运动学公式、牛顿运动定律、动能定理、功能关系等一、无外力板块模型【例1】如图甲所示,小车B 紧靠平台边缘静止在光滑水平面上,物体A (可视为质点)以初速度0v 从光滑的平台水平滑到与平台等高的小车上,物体和小车的v t -图像如图乙所示,取重力加速度210m/s g =,则以下说法正确的是()A .物体A 与小车B 间的动摩擦因数为0.3B .物体A 与小车B 的质量之比为1∶2C .小车B 的最小长度为2mD .如果仅增大物体A 的质量,物体A 有可能冲出去【答案】AC【详解】A .物体A 滑上小车B 后做匀减速直线运动,对物体分析有A A A m g m a μ=由v t -图像可得22A 14=m/s 3m/s 1v a t ∆-==∆联立解得0.3μ=所以A 正确;B .对小车B 分析有A B B m g m a μ=由v t -图像可得22B 10=m/s 1m/s 1v a t ∆-==∆联立解得A B 13m m =所以B 错误;C .小车B 的最小长度为物体A 在小车B 上的最大相对滑动位移,则有()min A B 4+10+1=11m 2m 22L s s =-⨯-⨯=所以C 正确;D .如果仅增大物体A 的质量,物体A 的加速度保持不变,但是小车B 加速度增大,所以两者达到共速的时间减小了,则物体A 在小车B 上的相对滑动位移减小,所以物体A 不可能冲出去,则D 错误;故选AC 。

板块模型--2024年高考物理大题突破(解析版)

板块模型--2024年高考物理大题突破(解析版)

大题板块模型板块模型涉及相互作用的两个物体间的相对运动、涉及摩擦力突变以及功能、动量的转移转化。

情境素材丰富多变考察角度广泛,备受高考命题人的青睐,在历年高考中都有体现多以压轴题的形式出现,所以在备考中要引起高度重视,并要加大训练提升分析此类问题的解答水平。

动力学方法解决板块问题1如图甲所示,质量m =1kg 的小物块A (可视为质点)放在长L =4.5m 的木板B 的右端,开始时A 、B 两叠加体静止于水平地面上。

现用一水平向右的力F 作用在木板B 上,通过传感器测出A 、B 两物体的加速度与外力F 的变化关系如图乙所示。

已知A 、B 两物体与地面之间的动摩擦因数相等,且最大静摩擦力等于滑动摩擦力,重力加速度g 取10m/s 2。

求:(1)A 、B 间的动摩擦因数μ1;(2)乙图中F 0的值;(3)若开始时对B 施加水平向右的恒力F =29N ,同时给A 水平向左的初速度v 0=4m/s ,则在t =3s 时A 与B 的左端相距多远。

【三步审题】第一步:审条件挖隐含(1)当F >F 0时B 相对地面滑动,F 0的值为B 与地面间的最大静摩擦力大小(2)当F 0<F ≤25N 时,A 与B 一起加速运动,A 与B 间的摩擦力为静摩擦力(3)当F >25N 时,A 与B 有相对运动,A 在B 的动摩擦力作用下加速度不变第二步:审情景建模型(1)A 与B 间相互作用:板块模型(2)A 与B 的运动:匀变速直线运动第三步:审过程选规律(1)运用牛顿运动定律找加速度与摩擦力(动摩擦因数)的关系,并分析a -F 图像的物理意义(2)用匀变速运动的规律分析A 与B 运动的位移【答案】 (1)0.4 (2)5N (3)22.5m【解析】 (1)由题图乙知,当A 、B 间相对滑动时A 的加速度a 1=4m/s 2对A 由牛顿第二定律有μ1mg =ma 1得μ1=0.4。

(2)设A、B与水平地面间的动摩擦因数为μ2,B的质量为M。

第17讲 板块模型(课件)——2024年高考物理一轮复习

第17讲  板块模型(课件)——2024年高考物理一轮复习

的摩擦力方向;
2.分别隔离物体进行受力分析,准确求出各物体在各个运动过程中的加
速度(注意两过程的连接处加速度可能突变);
3.找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应
注意联系两个过程的纽带,即每一个过程的末速度是下一个过程的初
速度.
下面我们从四个不同角度来具体分析板块模型问题
第二部分
滑离后沿斜面上升的最大距离,满足-2gssinα=0-v2
解得s=0.9m。
第三部分
必刷真题
03. 必刷真题
真题1 (2021年全国乙卷8题)水平地面上有一质量为 的长木板,木板的左端上有一质量为
的物块,如图(a)所示。用水平向右的拉力F作用在物块上,F随时间t的变化关系如
图(b)所示,其中 、 分别为 、 时刻F的大小。木板的加速度 随时间t的变化关系如
01. 水平无外力
解析 若只增大滑块质量,滑块的加速度不变,木板的加速度增大,所以滑块与木板共速时, 滑块没有离开木板,之后二者一起向左做匀速直线运动,故A正确;若只增大长木板质量, 木板的加速度减小,滑块的加速度不变,以木板为参考系,滑块运动的 平均速度变大,即滑块在木板上的运动时间变短,故B正确; 若只增大木板初速度,滑块的受力不变,滑块的加速度不变,滑块相对木板的平均速度变 大,滑块在木板上的运动时间变短,所以滑块离开木板的速度变小,故C错误;若只减小 动摩擦因数,那么滑块和木板的加速度等比例减小,相对位移不变,则滑块滑离木板时速 度大于木板速度,滑块滑离木板的过程所用时间变短,木板对地位移变小,滑块滑离木板 过程中滑块对地的位移为木板对地位移减去极长,故减小,故D错误. 【参考答案:AB】
02. 水平有外力
例题2
(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面 上.已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t (N)的变力作 用,从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示. 设最大静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,下列正确的是 A.滑块与木板间的动摩擦因数为0.4 B.木板与水平地面间的动摩擦因数为0.2 C.图乙中t2=24 s D.木板的最大加速度为2 m/s2

高中物理板块模型知识点总结

高中物理板块模型知识点总结

高中物理板块模型知识点总结一、板块模型的基本概念。

1. 板块模型组成。

- 板块模型通常由一个或多个滑块(可视为质点)和木板组成。

滑块和木板之间存在着摩擦力等相互作用,并且它们在一个平面上运动,这个平面可能是光滑的,也可能存在摩擦力。

2. 研究对象的选取。

- 在板块模型中,我们既可以单独选取滑块或木板作为研究对象,也可以将滑块和木板整体作为研究对象。

当研究它们之间的相对运动时,往往需要分别分析滑块和木板的受力情况;当整体的外力情况比较明确,且不涉及它们之间的内部摩擦力做功等问题时,可以采用整体法。

二、受力分析。

1. 滑块的受力。

- 滑块受到重力G = mg(其中m为滑块质量,g为重力加速度)。

- 如果滑块在木板上滑动,它受到木板对它的摩擦力。

当滑块相对木板滑动时,摩擦力为滑动摩擦力f=μ N,其中μ为动摩擦因数,N为滑块与木板间的正压力(在水平面上N = mg)。

如果滑块有相对木板运动的趋势但未滑动,则受到静摩擦力,静摩擦力的大小根据牛顿第二定律结合物体的运动状态求解,其方向与相对运动趋势方向相反。

2. 木板的受力。

- 木板同样受到重力G'=M g(M为木板质量)。

- 它受到滑块对它的摩擦力,大小与滑块受到的摩擦力相等,方向相反(根据牛顿第三定律)。

如果木板放在水平面上,还受到水平面的支持力F_N=(m + M)g(整体法分析时),若水平面不光滑,木板还受到水平面的摩擦力。

三、运动分析。

1. 加速度的计算。

- 根据牛顿第二定律F = ma计算滑块和木板的加速度。

- 对于滑块,例如受到水平拉力F和摩擦力f时,其加速度a_1=(F - f)/(m)(假设拉力方向与摩擦力方向相反)。

- 对于木板,若受到滑块的摩擦力f和其他外力F'(如水平面的摩擦力等),其加速度a_2=(f+F')/(M)。

2. 相对运动情况。

- 当滑块和木板的加速度不同时,它们之间就会产生相对运动。

判断相对运动的方向可以通过比较它们加速度的大小和方向。

高三复习物理课件:板块模型(共24张PPT)

高三复习物理课件:板块模型(共24张PPT)
(2)木板在地面上滑行的最远距离是多大?
【练习】如图所示,质量M=4.0 kg的长木板B静止在光滑 的水平地面上,在其右端放一质量m=1.0 kg的小滑块 A(可视为质点).初始时刻,A、B分别以v0=2.0 m/s向 左、向右运动,最后A恰好没有滑离B板.已知A、B之 间的动摩擦因数μ=0.40,取g=10 m/s2.求: (1)A、B相对运动时的加速度aA和aB的大小与方向; (2)A相对地面速度为零时,B相对地面运动已发生的位 移大小x; (3)木板B的长度L.m1m2M
O
t
例3.如图所示,质量M=8kg的小车放在光滑的水平面上, 在小车右端加一水平恒力F,F=8N,当小车速度达到
v0=1.5m/s时,在小车的前端轻轻地放上一大小不计、
质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2, 小车足够长,求物体从放在小车上开始经t=1.5s通过的 位移大小。(g取10m/s2)
木板间的动摩擦因数相同.下列说法正确的是( C )
A. 若F1=F2,M1>M2,则v1>v 2 B. 若F1=F2,M1<M2,则v1<v 2 C. 若F1<F2,M1=M2,则v1>v 2 D. 若F1>F2,M1=M2,则v1>v 2
v
m M2
M1
O
t
v
m M1
M2
O
t
v
m2
m1
M
O
t
v
板块模型 de 动力学解法
概念:由一个小滑块(可视为质点) 和一长木板(或平板小车)组成的 模型
例1.如图所示,一质量为M=1kg的长木板静止在光滑
的水平面上,另一质量为m=0.5kg的小滑块(可视为 质点),以v0=6m/s的初速度从木板的左端滑上长木 板。已知滑块与木板之间的动摩擦因数为μ=0.2,取 g=10m/s2:

2025高考物理总复习动力学中的板块模型

2025高考物理总复习动力学中的板块模型
室距离为d,则下列判断正确的是( AD )
A.当a>μg时,上层木板会与下层木板发生相对滑动
B.当a=1.5μg时,下层木板受到车厢对它的摩擦力为3μmg
C.若a>2μg,下层木板一定会相对车厢发生滑动
D.若a=2μg,要使货车在紧急刹车时上层木板不撞上驾驶室,货车在水平路面上
匀速行驶的速度应不超过 2
加速度为a
对滑块,由牛顿第二定律有
μmgcos θ-mgsin θ=ma
1
1 2
滑块位移 L= at
2
2
1
纸带位移 L=2a1t2
联立可得a1=2.4 m/s2
若在滑块到达斜面顶端前纸带被拉出,拉动纸带的加速度不得小于2.4 m/s2。
(2)设纸带加速度为a2时,滑块先以加速度a加速,离开纸带后在斜面上以加
对A、B系统,由牛顿第二定律得
F0-Ff1= + 0 a
代入数据解得
F0=4 N
a=1 m/s2
要保持A、B一起做匀加速运动,力F的取值范围是
2 N<F≤4 N。
(2)拉力F=5 N>4 N时,A、B相对滑动,A的加速度大小
a=1 m/s2
对B,由牛顿第二定律得
F-Ff2=maB
代入数据解得
类型图示
规律分析
木板B带动物块A,物块恰好不从木板
上掉下的临界条件是物块恰好滑到
木板左端时二者速度相等,则位移关
系为xB=xA+L(将物块A看成质点)
物块A带动木板B,物块恰好不从木板
上掉下的临界条件是物块恰好滑到
木板右端时二者速度相等,则位移关
系为xB+L=xA(将物块A看成质点)

板块模型-2024年高考物理一轮复习热点重点难点(学生版)

板块模型-2024年高考物理一轮复习热点重点难点(学生版)

板块模型特训目标特训内容目标1无外力板块模型(1T-4T)目标2无外力板块图像问题(5T-8T)目标3有外力板块模型(9T-12T)目标4有外力板块图像问题(13T-16T)【特训典例】一、无外力板块模型1如图所示,将小滑块A放在长为L的长木板B上,A与B间的动摩擦因数为μ,长木板B放在光滑的水平面上,A与B的质量之比为1:4,A距B的右端为13L。

现给长木板B一个水平向右初速度v0=102m/s,小滑块A恰好从长木板B上滑下;若给A一个水平向右初速度v,要使A能从B上滑下,则v至少为()A.5m/sB.10m/sC.15m/sD.20m/s2如图(a)所示,质量为2m的长木板,静止地放在光滑的水平面上,另一质量为m的小铅块(可视为质点)以水平速度v0滑上木板左端,恰能滑至木板右端且与木板保持相对静止,铅块运动中所受的摩擦力始终不变。

若将木板分成长度与质量均相等(即m1=m2=m)的两段1、2后紧挨着放在同一水平面上,让小铅块以相同的初速度v0由木板1的左端开始运动,如图(b)所示,则下列说法正确的是()A.小铅块将从木板2的右端滑离木板B.小铅块滑到木板2的右端与之保持相对静止C.(a)、(b)两种过程中摩擦产生的热量相等D.(a)过程产生的摩擦热量大于(b)过程摩擦产生的热量3质量为M的木板放在光滑水平面上,木板上表面粗糙程度均匀,一质量为m的物块以水平速度v0从木板左端滑上木板,下列说法正确的是()A.若物块能从木板上滑下,仅增大物块的质量,木板获得的动能增大B.若物块能从木板上滑下,仅增大物块初速度v,木板获得的动能减小C.若物块不能从木板上滑下,仅增大物块质量,物块在木板上相对滑动的时间变长D.若物块不能从木板上滑下,仅增大物块初速度v0,物块在木板上相对滑动的时间变短4如图所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2.0m/s从左端滑上小车,最后在车面上某处与小车保持相对静止,物块与车面的动摩擦因数μ=0.5,取g=10m/s2则()A.物块与小车共同速度大小是0.6m/sB.物块在车面上滑行的时间t=0.24sC.小车运动的位移大小x=0.06mD.要使物块不从小车右端滑出,物块滑上小车左端的速度v不超过5m/s二、无外力板块图像问题5如图甲所示,足够长木板静止在光滑的水平面上,在t=0时刻,小物块以一定速度从左端滑上木板,之后长木板运动的v-t图像如图乙所示。

高考物理板块模型知识点

高考物理板块模型知识点

高考物理板块模型知识点物理是高考中一个重要的科目,其中的板块模型知识点是考试中的重点内容。

本文将详细介绍高考物理板块模型知识点,帮助同学们更好地掌握相关知识,提高考试成绩。

一、基础概念1. 板块模型的概念板块模型是基于地球外部硬壳结构特征和地震波传播规律提出的一种地球内部结构模型。

它将地球分为若干个坚硬的板块,这些板块围绕着地球表面的板块边界进行相对运动。

2. 板块边界的类型板块边界主要包括三种类型:构造边界、转型边界和消亡边界。

构造边界是两个板块相互碰撞的地方,转型边界是两个板块横向滑动的地方,消亡边界是因为一个板块向地幔下沉而消亡。

二、板块构造1. 大陆板块的特点大陆板块主要由地壳和上地幔组成,其特点是厚度较大、密度较低、构成成分复杂,包括岩石、土壤和水。

大陆板块的运动速度较慢,通常是每年几厘米到十几厘米。

2. 海洋板块的特点海洋板块是地球表面最薄的板块,主要由海洋壳组成,包括海底扩张的次级板块。

海洋板块的厚度较小、密度较大,构成成分以玄武岩为主。

海洋板块的运动速度较快,通常是每年几十厘米到一百多厘米。

三、板块边界及地震活动1. 构造边界构造边界主要发生在两个板块相互碰撞的地方。

在构造边界上,有三种主要的板块相互关系:大陆与大陆碰撞、大陆与海洋碰撞以及海洋与海洋碰撞。

这些板块相互碰撞会引发强烈的地震活动,例如中国的兰州地震。

2. 转型边界转型边界主要发生在两个板块横向滑动的地方,例如美洲中部的圣安德烈亚斯断裂带。

转型边界通常会引发剧烈的地震活动,特点是地震烈度高、范围广但面积相对较小。

3. 消亡边界消亡边界是因为一个板块向地幔下沉而消亡。

在这种边界上,板块会发生俯冲运动,促使地震的发生。

消亡边界通常位于大洋深处,世界上许多海沟就形成于此。

四、板块运动与自然灾害1. 板块运动与地震板块运动是地震的主要原因之一。

当板块之间发生相对运动时,会产生巨大的地震能量,导致地质应力的释放。

世界上许多地震都与板块运动有关,例如中国的唐山大地震和美国的旧金山地震。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:物理模型之“滑块--木板”模型“滑块—木板”模型:作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。

这类问题的分析有利于培养学生对物理情景的想象能力,有利于培养学生思维能力。

且此模型经常在高考(2015年全国Ⅰ卷25题、2015年全国Ⅱ卷25题、2013年全国Ⅱ卷25题)或模拟考试中作为压轴题出现,所以要引起同学们的重视。

1、(2016江苏卷。

多选)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中 A 、桌布对鱼缸摩擦力的方向向左B 、鱼缸在桌布上的滑动时间和在桌面上的相等C 、若猫增大拉力,鱼缸受到的摩擦力将不变D 、若猫减小拉力,鱼缸有可能滑出桌面2、(多选)如图所示,A 、B 两物块的质量分别为2 m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

最大静摩擦力等于滑动摩擦力,重力加速度为g 。

现对A 施加一水平拉力F ,则( )A 、当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >2μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、(多选)如图所示,一足够长的木板静止在粗糙的水平面上,t =0时刻滑块从板的左端以速度v 0水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。

滑块的v -t 图像可能是图中的( )2016江苏卷(选择题) 2015全国卷Ⅰ·25题2015全国卷Ⅱ·25题命题角度:多过程定性分析、力与运动 命题角度:多过程相对运动、图像应用 命题角度:多过程、相对运动与临界问题的分析 命题角度:1、判断是否相对运动 2、判断滑离时的速度 3、求相对运动的时间 4、求相对运动的位移 5、求损失的机械能易错点:1、判断是否相对运动条件 2、两物体所受摩擦力大小 3、速度相等后能否共速问题总结:从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动;若两个物体的初速度相同(包括初速为0)且受外力F情况下,则要先判定两个物体是否发生相对滑动,其方法是求出不受外力F作用的那个物体的最大临界加速度并用假设法求出在外力F作用下整体的加速度,比较二者的大小即可得出结论。

突破二、“滑块—木板”模型中加速度问题(纯运动学问题)1.如图所示,一长度L=3m,高h=0.8m,质量为M=1kg的物块A静止在水平面上.质量为m=0.49kg的物块B静止在A的最左端,物块B与A相比大小可忽略不计,它们之间的动摩擦因数μ1=0.5,物块A与地之间的动摩擦因数μ2=0.1.一个质量为m0=0.01kg可视为质点的子弹,以速度v0沿水平方向射中物块B,假设在任何情况下子弹均不能穿出。

g=10m/s2,问:(2)被击中的物块B在A上滑动的过程中,A、B的加速度各为多少?(3)子弹速度为多少时,能使物块B落地瞬间A同时停下?2.(18分)如图所示,某货场需将质量m1=50kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用光滑倾斜轨道SP、竖直面内弧形光滑轨道PQ,使货物由倾斜轨道顶端距底端高度h=1m处无初速度滑下.两轨道相切于P, 倾斜轨道与水平面夹角为θ=600, 弧形轨道半径R=2m,末端切线水平.地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=4m,质量均为m2=50kg,木板上表面与弧形轨道末端Q相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.12.(不考虑货物与各轨道相接处能量损失,最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)(1)求货物到达弧形轨道始、末端时对轨道的压力.BθROhPQS A(2)若货物滑上木板A 时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件. (3)若μ1=0.30,求货物滑上木板后与木板系统所能产生的热量.3.(18分)如图所示,倾角α=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m 、质量M= 3kg 的薄木板,木板的最右端叠放一质量m=lkg 的小物块,物块与木板间的动摩擦因数μ3施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l02/m s . (1)为使物块不滑离木板,求力F 应满足的条件;(2)若F=37.5N ,物块能否滑离木板?若不能,请说明理由;若能, 求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.突破三、“滑块—木板”模型与动量守恒相结合题型1:(18分)如图所示的轨道由半径为R 的1/4光滑圆弧轨道AB 、竖直台阶BC 、足够长的光滑水平直轨道CD 组成.小车的质量为M ,紧靠台阶BC 且上水平表面与B 点等高.一质量为m 的可视为质点的滑块自圆弧顶端A 点由静止下滑,滑过圆弧的最低点B 之后滑到小车上.已知M =4m ,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,滑块与PQ 之间表面的动摩擦因数为μ,Q 点右侧表面是光滑的.求: (1)滑块滑到B 点的瞬间对圆弧轨道的压力大小.(2)要使滑块既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离应在什么范围内?(滑块与弹簧的相互作用始终在弹簧的弹性范围内)2. 如图所示,高度相同质量均为Kg m 1.0=的带电绝缘滑板A 及绝缘滑板B 置于水平面上,A 的带电量C q 01.0=,它们的间距m S 34=。

质量为Kg M 3.0=,大小可忽略的物块C 放置于B 的左端。

C 与A 之间的动摩擦因数为1.01=μ,A 与水平面之间的动摩擦因数为2.02=μ,B 的上、下表面光滑,最大静摩擦力可以认为等于滑动摩擦力,。

开始时三个物体处于静止状态。

现在空间加一水平向右电场强度为C N E /80=的匀强电场,假定A 、B 碰撞时间极短且无电荷转移,碰后共速但不粘连。

求: (1)A 与B 相碰前的速度为多大;(2)要使C 刚好不脱离滑板,滑板的长度应为多少; (3)在满足(2)的条件下,求最终AB3、(18分)如图所示,地面和半圆轨道面均光滑。

质量M = 1kg 、长L = 4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平。

现有一质量m = 2kg的滑块(不计大小)以v0 = 6m/s的初速度滑上小车左端,带动小车向右运动。

小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ = 0.2 ,g取10m/s2。

(1(24.(18分)如图17所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m的1/4圆弧面。

A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑。

小滑块P1和P2的质量均为m。

滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力。

开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上。

当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零。

P1与P2视为质点,取g=10m/s2. 问:(1)P2在BC段向右滑动时,滑板的加速度为多大?(2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?专题一:物理模型之“滑块--木板”模型突破一:1 BCD 2 BD 3 BD突破二:1.解:(1)子弹击中B 过程中,由动量守恒定律可得:v m m v m )(000+=………2分 解得:s m v /8= ………2分(2)由牛顿第二定律可得:对B :B a m m g m m )()(001+=+μ 得: 2/5s m a B = 方向水平向左…3分 对A :A Ma g M m m g m m =++-+)()(0201μμ 得: 2/1s m a A = 方向水平向右……3分(3)子弹击中B 过程中,由动量守恒定律可得:020(v m =设B 在A 上运动的时间为1t ,则:L s s A B =-L t a t a t v A B B =--21211121)21(…2分B 做平抛运动时间2t , 2221gt h =………1分222//1s m g MMga A ===μμ……2分2/10t a t a A A -=………1分 联立求解得:子弹速度s m v m mm v B /43510002=+=………1分 2.【解析】(1)设货物滑到弧形轨道始、末端时的速度分别为v P 、v Q ,对货物的下滑过程中根据机械能守恒定律得:21121Pv m gh m =……………①[]210121)60cos 1(Q v m R h g m =-+………………② 设货物滑到弧形轨道始、末端所受支持力的大小分别为N P 、N Q ,根据牛顿第二定律得:Rv m g m N PP 210160cos =-…………………③ R v m g m N Q Q 211=-…………………………④联立以上各式并代入数据得N P =750N, N Q =1500N根据牛顿第三定律,货物到达圆轨道始、末端时对轨道的压力为750N 和1500N ,方向竖直向下. (2)若滑上木板A 时,木板不动,由受力分析得:μ1m 1g ≤μ2(m 1+2m 2)g ……………………⑥ 若滑上木板B 时,木板B 开始滑动,由受力分析得:μ1m 1g >μ2(m 1+m 2)g ………⑦ 联立并代入数据得0.24<μ1≤0.36.…………………………………………⑧(3)μ1=0.3,由上问可得,货物在木板A 上滑动时,木板不动,设货物在木板A 上做减速运动时的加速度大小为a 1,由牛顿第二定律得μ1m 1g =m 1a 1 ……………………⑨设货物滑到木板A 末端时的速度为v 1,由运动学公式得:v 21-2Q v =-2a 1l ………⑩联立并代入数据得v 1=4m/s ………………⑾ 货物滑过木板A 系统产生的热量Q 1=μ1m 1gl =600J……⑿设货物滑上木板B 经过时间t ,货物与木板B 达到共同速度v 2,木板B 的加速度为a 2,由运动学公式和牛顿第二定律,有:v 2=a 2t ……………………⒀ v 2= v 1-a 1t …………⒁ μ1m 1g -(m 1+m 2)g =m 2a 2………⒂ 木板运动位移x 2=t v 22………………⒃ 货物运动位移x 1=t vv 221+………………⒄货物相对木板B 位移x ∆=x 1-x 2 联立以上各式并代入数据得:920=∆x m…………………⒅ x ∆<l =4m,可见:货物与木板B 达共同速度后,由于μ1>μ2,故两者整体在水平面做匀减速运动直至停止,货物与木板B 系统产生的热量Q 2=μ1m 1g x ∆=31000J………………………⒆货物滑上木板系统所产生的热量Q =Q 1+Q 2=32800J≈933.3J……………⒇ 3、解析 (1)对M 、m ,由牛顿第二定律 F -(M +m )g sin α=(M +m )a ① 对m ,有F f -mg sin α=ma ② F f ≤F f m =μmg cos α③ 代入数据得F ≤30 N④ (2)F =37.5 N >30 N ,物块能滑离木板⑤ 对M ,有F -μmg cos α-Mg sin α=Ma 1⑥ 对m ,有μmg cos α-mg sin α=ma 2⑦设物块滑离木板所用时间为t ,由运动学公式12a 1t 2-12a 2t 2=L ⑧代入数据得t =1.2 s ⑨物块滑离木板时的速度v =a 2t ⑩ 由公式-2g sin α·x =0-v 2⑪ 代入数据得x =0.9 m ⑫突破三:1、(1)根据牛顿第三定律,滑块在B 点对轨道的压力大小为3N mg '= (1分)(2)滑块最终没有离开小车,滑块和小车必然具有共同的末速度设为u ,滑块与小车组成的系统动量守恒,有:()mv M m u =+ ④ (2分)若小车PQ 之间的距离L 足够大,则滑块可能不与弹簧接触就已经与小车相对静止,设滑块恰好滑到Q点,由功能关系有2211()22mgL mv M m u μ=-+ ⑤ (2分)联立①④⑤式解得 45RL μ=⑥ (2分) 若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由功能关系有22112()22mgL mv M m u μ=-+ ⑦ (2分)联立①④⑦式解得 25R L μ= ⑧ (2分) 综上所述并由⑥⑧式可知,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是2455R RL μμ<≤ ⑨ (2分) 2.(1)A 与B 相撞之前由动能定理:20221)(mv S mg qE =-μ 2分 得S mmg qE v )(220μ-=2分 代入数据得:s m v /40= 2分(2).A 与B 相碰后速度为1v 由动量守恒定律:10)(v m m mv += s m v v /221==2分 C 在A 上滑行时,A 、B 分离,B 做匀速运动 ,A 与地面的摩擦力N g M m f 8.0)22=+=(μ A 受到的电场力N qE F 8.0== 故A 、C 系统动量守恒定律, 1分 当C 刚好滑到A 左端时共速2v ,由动量守恒定律:21)(v M m mv += 得s m Mm mv v /5.012=+= 1分设A 长度为L 则由能量守恒定律有:22211)(2121v m M mv MgL +-=μ 2分得Mgv m M mv L 12221)(2121μ+-=代入数据得m L 5.0= 1分 (3).对C 由牛顿第二定律可知:Ma Mg =1μ 得21/1s m MMga ==μ 1分加速时间为s a v t 5.015.02===1分0.5s 内A 的位移m t v v S A 625.0221=+= 1分 0.5s 内B 的位移m t v S B 11== 1分所以两者以后距离关系式为tt v v S S x A B 5.1375.0)(21+=-+-= 1分3:解:(1)滑块与小车的共同速度为v 1 ,滑块与小车相对运动过程中动量守恒,有mv 0 = (m +M )v 1 …………(2分)代入数据解得 v 1 = 4m/s …(1分) 设滑块与小车的相对位移为 L 1 ,由系统能量守恒定律,有μmgL 1 =220111()22mv m M v -+……(2分)代入数据解得 L 1 = 3m …………………(1分)设与滑块相对静止时小车的位移为S 1 ,根据动能定理,有μmgS 1 =21102Mv -……………(2分)代入数据解得S 1 = 2m ……(1分)因L 1<L ,S 1<S ,说明小车与墙壁碰撞前滑块与小车已具有共同速度,且共速时小车与墙壁还未发生碰撞,故小车与碰壁碰撞时的速度即v 1 = 4m/s …(1分)(2)滑块将在小车上继续向右做初速度为v 1 = 4m/s ,位移为L 2 = L -L 1 = 1m 的匀减速运动,然后滑上圆轨道的最低点P 。

相关文档
最新文档