LM317连续可调的稳压电路参数设计及案例分析
(完整版)LM317的直流稳压电源课程设计
1.1 课题任务设计一个连续可调直流稳压电源1.2 功能要求说明①输出电压可调:Uo=+3V~+9V②输出最大电流:Iomax=800mA③输出电压变化量:△U≤5mV④稳压系数:Sv≤0.0031.3可调直流稳压电源总体方案介绍及工作原理说明1.3.1直流稳压电源的设计思路①电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压;②降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大;③脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份;④滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载。
1.3.2直流稳压电源的基本原理图1.1 直流稳压电源结构图和稳压过程电源变压器:是降压变压器,它的作用是将220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
变压器的变比由变压器的副边按确定,变压器副边与原边的功率比为P2/P1=η,式中η是变压器的效率。
整流电路:利用单向导电元件,将50HZ的正弦交流电变换成脉动的直流电。
滤波电路:可以将整流电路输出电压中的交流成分大部分滤除。
滤波电路滤除较大的波纹成分,输出波纹较小的直流电压UI。
常用的整流滤波电路有全波整流滤波、桥式整流滤波等。
稳压电路:稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
1.3.3直流稳压电源的工作原理交流电网220V的电压经过变压器降压之后,通过整流、滤波、稳压之后才可以送到负载,设变压器副边电压为:1.1其中为有效值。
变压之后,利用单向导电元件二极管,把50Hz的正弦交流电变换成脉动的直流电。
在的正半周内,二极管D1、D2导通,D3、D4截止;的负半周内,D3、D4导通,D1、D2截止。
完整版LM317直流稳压电源课程设计
课题任务设计一个连续可调直流稳压电源功能要求说明① 输出电压可调: Uo=+3V ~+9V ② 输出最大电流: Iomax=800mA ③ 输出电压变化量:△ U ≤5mV ④ 稳压系数: Sv ≤可调直流稳压电源整体方案介绍及工作原理说明直流稳压电源的设计思路① 电网供电电压交流 220V(有效值 )50Hz ,要获得低压直流输出,第一必定采用电源变压器将电网电压降低获得所需要交流电压;② 降压后的交流电压,经过整流电路变成单向直流电,但其幅度变化大;③ 脉动大的直流电压须经过滤波电路变成圆滑,脉动小的直流电,马上交流成份滤掉,保留其直流成份;④ 滤波后的直流电压,再经过稳压电路稳压,即可获得基本不受外界影响的牢固直流电压输出,供给负载。
直流稳压电源的基本源理++电 源U1U2-变压器-U1U2整 流电 路+ 波 + +滤稳压U3 路UI UO电电路---U3 UI UO图直流稳压电源结构图和稳压过程电源变压器:是降压变压器,它的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压 Ui 。
变压器的变比由变压器的副边按确定,变压器副边与原边 的功率比为 P2/P1=η,式中η是变压器的效率。
整流电路:利用单导游电元件,将 50HZ 的正弦交流电变换成脉动的直流电。
滤波电路:可以将整流电路输出电压中的交流成分大部分滤除。
滤波电路滤除较大的涟漪成分,输出涟漪较小的直流电压UI。
常用的整流滤波电路有全波整流滤波、桥式整流滤波等。
稳压电路 : 稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,经过调治与稳压管串通的限流电阻上的压降来达到牢固输出电压的目的。
直流稳压电源的工作原理交流电网 220V 的电压经过变压器降压此后,经过整流、滤波、稳压此后才可以送到负载,设变压器副边电压为:其中为有效值。
变压此后,利用单导游电元件二极管,把50Hz 的正弦交流电变换成脉动的直流电。
基于LM317的可调直流稳压电源
基于LM317的可调直流稳压电源0. 引言LM3l7是具有TO-220、TO-3、TO-202和TO-39等多种封装的三端可调稳压集成电路,该芯片具有输出电压可调、性价比高、工作稳定等特点,广泛应用于音响前级电路、精密电路和电子制作等对电源精度要求较高的领域。
利用LM317构成的可调直流稳压电源典型电路如图8-2所示,该电路输出电压范围为0~35V,输出电流为IA,适用于小功率家用电器用电。
图1 利用LM317构成的可调直流稳压电源1.电路结构及主要元器件选择由图1可知,该可调直流稳压电源由电源输人电路、负压辅助电源电路和稳压输出电路组成。
其中,电源输入电路由电源变压器T、整流二极管VD1~VD4和滤波电容C1、C2组成。
实际应用时,T 常选用lOW、二次电压为35V和6V的电源变压器;VD1~VD4均选用IN4007型硅整流二极管。
负压辅助电源电路由T的W3绕组、整流二极管VD5、滤波电容C3、电阻器R2和稳压二极管VD6组成。
实际应用时,VD5选用IN4007型硅整流二极管;VD6选用1W、1.25V稳压二极管。
稳压输出电路由三端可调稳压集成电路IC及电阻器RI、电位器RP、电容器C4和电压表PV组成。
实际应用时,IC选用LM317型三端可调稳压集成电路;RP选用合成膜电位器;PV选用0~50V直流电压表。
2. 工作原理电路通电后,交流220V电压经T降压后,在其二次绕组W2、W3上分别产生交流35V电压和交流6V电压。
其中交流35V电压经VD1~VD4整流、C1和CZ滤波及LM317稳压后输出。
交流6V电压经VD5整流、C3滤波、R2限流及VD3稳压后,产生—1.25V电压,通过RP加在LM317的控制端上。
当电网电压波动或负载减小引起输出电压降低时。
通过由电阻器RI和电位器RP组成的取样电路使LM317控制端电压发生相应变化,通过IC内电路处理后,可使其输出端输出电压增高,反之则使L317输出电压降低,从而实现稳压的功能。
用LM317制作的可调稳压器...
用LM317制作的可调稳压器
现介绍一种用集成稳压块LM317T制作的可调稳压电源,该电源输出电压范围宽、输出电流大,可满足维修、实验之用,而且它具有质优价廉、安装容易、使用灵活等优点,适合电子爱好者自制。
LM317T为三端可调正输出稳压器。
所谓“三端”即为电压输入端、输出端和调整端,其管脚排列如图1所示。
在电压调整端外接电位器可对输出电压进行调节(最大调节范围为1.25V~37V连续可调),
具有抵抗大多数过载条件的固有能力,如短路保护、过热保护、调整管安全工作区保护等。
如果加大散热片,还可使自身耗散功率增为15W,输出电流最大可达1.5A,使用极为方便。
用LM317T制成的可调直流稳压电压电源的电路图如图2。
若按图中元件所标数据安装,输出电压可在1.25V~20V范围内连续可调,输出电流最大可达1.5A,而纹波电压小于lmv。
因此,非常适合中小型实验及作为维修专用电源之用。
在实际安装时,要注意稳压器尽可能的靠近滤波电容C1,以免引起输入端反馈自激。
电阻R1两端应分别靠近稳压器的输出端和调整端,否则,输出端流过大电流时,产生的附加压降,会造成基准电压的变化。
整个电路安装在一块自制印刷电路板上,只要电路安装无误,无需调试,即可正常工作。
基于LM317LM337的连续可调直流稳压电源
基于LM317、LM337的连续可调直流稳压电源为了方便配合以后的电路板,我特意的制作了双路输出连续可调直流稳压电源,经过查找资料,比较多种电源方案后,最终确定采用以LM317、LM337为核心的双电源方案,其电压连续可调。
内置有多重保护电路,该电源内阻小,电压稳定,噪声极低,输出纹波小。
虽然功率较小,但是用于给一般的电子小制作供电也足够了,况且其输出电压连续可调,使用起来十分方便。
LM317的封装图LM337的封装图稳压管LM317的内部原理图稳压管LM337的内部原理图一、工作原理本直流电源由电源、滤波、保护、稳压等四个基本模块组成,如图I框图所示,其电路图如图II所示,PCB图如图III所示。
图I图II图III图IV电源实物图图V电源实物图1、电源变压器采用降压变压器,将电网交流电压220V变换成需要的交流电压。
此交流电压经过整流后,可获得电子设备所需要的直流电压。
2、整流电路利用单相桥式整流电路,把50Hz的交流电变换为方向不变但大小仍有脉动的直流电。
其优点是电压较高、纹波电压较小,变压器的利用率高。
本电路用4个Diode IN4007做成一个全桥整流,电流大,配合本电路的大滤波电容,使得本电源的瞬间大电流的供电特性好、噪声小、反映速度快、输出纹波小。
3、滤波电路采用电容滤波电路,将整流电路输出的脉动成分大部分滤除,得到比较平滑的直流电。
本电路采用4个2200UF/25V的电解电容两两并联使输出电压更加平滑,电源瞬间特性好,适合带感性负载,如电机的启动。
两个并联的2200V电容同时并联了一只0.1UF的瓷片电容,滤去高频干扰,使输入到集成电路的直流电尽可能的平滑和纯净。
4、稳压电路由LM317输出正电源,LM337输出负电源。
LM317和LM337均使用了内部热过载,包含过流保护、热关断和安全工作区补偿等完善的保护电路,使得电源可以省去保险丝等易损耗器件。
5、保护电路因为线性电源发热量较大,所以本电路在制作的时候覆了地,用于帮助散热。
(完整版)LM317可调稳压直流电源电路分析
LM317可调稳压直流电源电路分析一、电路原理图LM317可调直流稳压电源,采用FR-4万能板和进口ST电源集成芯片LM317设计而成,不仅具有固定式三端稳压电路的最简单形式,又具备输出可调电压(1.25-12V)的特点,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高、芯片内部具有过热、过流、短路保护电路等优点,适合课程设计、毕业设计等,原理图如下:二、电路工作原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。
一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下:直流稳压电源的原理框图和波形变换图1、降压部分电源变压器是降压变压器,它的作用是将220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
变压器的变比由变压器的副边按比例确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。
2、整流部分该设计采用单相桥式整流电路。
其由四只二极管组成,其构成原则就是保证在变压器副边电压u的整个周期内,负载上的电压和电流方向始终不变。
3、滤波电路经过整流后的直流电幅值变化很大,会影响电路的工作性能。
可利用电容的“通交流,隔直流”的特性,在电路中并人两个并联电容作为电容滤波器,滤去其中的交流成分。
电容滤波电路是最常见也是最简单的滤波电路,在整流电路的输出端(即负载电阻两端)并联一个电容即构成电容滤波电路。
滤波电容容量较大,因此一般均采用电解电容,在接线时要注意电解电容的正负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
如果将两个滤波电容相连接,且连接点接地,就可同时得到输出电压平滑的正负电源。
4、稳压电路稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有很大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
LM317可调式三端稳压电源能够连续输出可调的直流电压。
基于可调式稳压器LM317的直流稳压电源课程设计
基于可调式稳压器LM317的直流稳压电源课程设计一、背景介绍LM317是一种宽范围可调稳压器,它的基本工作原理是在两个工作端之间设置一个固定的压降,再将输入电源降至所需的电压。
LM317稳压器的输出电压可以设置在1.25V-37V之间,能满足大多数应用的需要。
因此,基于LM317的直流稳压电源具有体积小,适应范围广,性能可靠,工作稳定等优点,在直流电源中有重要的应用。
本次课程设计实现一个基于LM317的12V-1.5V直流稳压电源。
二、课程设计实现1. 使用直流电源模块作为电源,将输入电压调至12V,电源输出有20A。
2. 直流电源将输出设定至12V-1.5V,以LM317稳压器实现稳压。
3. 选择一定容量(例如47uF)的电容作为过滤电容,将LM317稳压输出与用于稳压的负载电源线连接,保证稳压的负载电路的工作。
4. 接上电表,读取电源的输出电压值,测量电压调节的精度和稳定性。
三、测试结果完成硬件配置后,测试发现在较小的允许偏差范围内完成了预期的稳压,其输出电压精度能够维持在+/-0.2V,稳定性测量出来为+/-0.05V。
四、问题分析在课程设计中我们发现,稳压器、负载电路和过滤电容的选择都会影响到输出电压的精度和稳定性。
当电压选择过大时,或者选择的过滤电容容量不够的时候,都可能会导致稳压的精度不够,从而影响负载电路工作的正常。
五、结论本次课程设计针对12V-1.5V的直流稳压电源,采用了LM317型稳压器为基础,实现了目标稳压电压的精度和稳定性,且做到体积小、成本低等优点,可以满足应用需求。
另外,在实际应用中,我们需要根据实际情况合理选择稳压器、过滤电容和负载电路,才能够更好的发挥稳压功能,使电源稳压保证更加良好。
用LM317T制作可调稳压电源
用LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。
如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。
如去掉三极管、断开W1中心点连线,3.8V小电珠立刻烧毁,测输出电压高达21V。
而加有T1时,小电珠亮度减小,此时LM317T输出电压仅为2V,从而有效的保护了负载。
此电路可以应用于单键开、关电源,有很宽的电压范围(4.5V~40V,最大19A的电流),R5为可选,当输入电压小于20V时可短接;输入电压大于20V时建议接上,R5的取值应满足与R1的分压使MOS管V1的GS电压大于-2 0V小于-5V(在V2导通时),尽量使V1的GS电压在-10V~-20V之间以使V1输出大电流。
按钮按下前,V2的GS电压(即C1电压)为零,V2截止,V1的GS电压为0,V1截止无输出;当按下S1,C1充电,V2 GS电压上升至约3V时V2导通并迅速饱和,V1 GS电压小于-4V,V1饱和导通,Vout有输出,发光管亮(此时应放开按钮)C1通过R2、R3继续充电,V1、V2状态被锁定;当再次按下按钮时,由于V2处于饱和导通状态,漏极电压约为0V,C1通过R 3放电,放至约3V时,V2截止,V1栅源电压大于-4V,V1截止,Vout无输出,发光管灭(放开按钮),C1通过R2、R3及外电路继续放电,V1、V2维持截止状态。
注:S1使Vout打开或关闭后应放开按钮,不然会形成开关振荡。
本文介绍的几种市电指示灯,具有简单易做、用电安全、耗电甚微等特点图1所示电路中只有两个元件,R选用1/6W~1/8W碳膜电阻或金属膜电阻,阻值在100~300K之间。
Ne为氖泡,也选用普通日光灯启辉器中的氖泡,若想选用体积小且在60V左右即能启辉的氖泡,其型号为NNH-616型,电阻R选用270K的1/6W金属膜电阻。
LM317可调稳压电源
LM317可调稳压电源
前段时间说做无线模块,可是无线模块对电压的要求很严格,实验室的稳压源接上负载后压降太大,输出电压达不到要求值,但是如果把稳压源的初值设置的过大又容易烧坏芯片!
今天从老师那里拿了一块LM317稳压芯片,拿来的时候不知道该怎么用,查了一下资料以后收获颇多!拿出来与大家分享一下!
首先认识一下芯片:
以下是工作电路:
图1
2211.25(1)out
adj R V I R R =++ adj I 为1脚输出电流输出电流一般控制在100µA (其大小受输入电压影响),在多数应用中可以忽略。
由电压输出公式可以看到,输出电压受输入电压的影响的影响很小,只要输入电压超过了一定的值在一定的范围内变动输出电压将为一个稳定值。
而且还可以调节可变电阻得到我们想要的输出电压!
图2 实物图片
图3 接通电源
图4 接通电源后稳压源输出电压
图5 改变输入电压后输出电压的变化
误差分析:
3.30 3.28
1.5%
9.137.83
-
===
-
输出电压变化量
误差率
输入电压变化量
由此可得输入电压的变化对输出的影响是很小的!
刚做的时候有人说,何必这么复杂,用两个电阻分压不就可以了!就此发表一下个人愚见!
先让大家看几张张仿真图:
用电阻分压
接入负载后的电压变化
接入负载后电压的变化
比较一下两种情况下介入负载后电压的变化结果大家就知道为什么不适合用电阻分压来得到我们需要的电压!
个人观点可能其中有许多不足之处,还望大家多多指教!。
lm317可调稳压电源实验报告
lm317可调稳压电源实验报告实验名称:LM317可调稳压电源实验报告一、实验目的掌握LM317可调稳压电源的原理和工作原理,了解其电路结构和基本特性,学习使用多用表、调整可调电阻和选择合适电容等操作方法,能够搭建和测试出符合设计要求的可调稳压电源,熟悉实验的步骤,基本参数和理论知识,提高实验能力和操作技能。
二、实验原理1. LM317可调稳压电源芯片LM317是一款可调稳压电源芯片,具有可调输出电压、高可靠性和保护功能等特点,是一种高精度、高稳定性的电源控制IC。
它的输入电压V1是从电源电压U1得到,通过调整其输出电压Vout,来控制所连接负载的电压稳定性。
2. LM317的工作原理LM317的工作原理是:通过调节三极管PNP管的Vbe值,来控制输出电压Vout的大小。
由于输出端和调整端之间有一个反馈电阻R2,当输出电压波动时,就会导致调整电压波动,从而引起PNP管的Vbe值发生变化,芯片内部的比较器会检测到调整端和参考端的电压差,通过PNP管的电流变化来调节输出电压Vout,使其达到所需稳定值。
三、实验器材和材料1. LM317电路板一块2. 多用表一只3. 电源箱一个4. 9V电池一个5. 电容器3只:1uF、10uF、100uF6. 电阻器6只:100Ω、220Ω、1kΩ、2.2kΩ、5.1kΩ、10kΩ四、实验步骤1. 先根据实验原理和电路图来选择合适的电容器和电阻器,进行串联和并联,搭建出LM317可调稳压电源电路。
2. 将多用表的电笔依次插入正极接口和负极接口,然后将LM317电路板输出端接入多用表。
3. 将电源线从电源箱中的正负极接口拉出,并通过对两端焊接来固定。
然后将输出端的两端通过电池正极和负极焊接在一起。
4. 打开电源箱开关,依次检测各个电容器和电阻器的参数并记录下来,然后测试输出电压和电流,并用多用表的数据显示软件记录下实验的参数数据和变化趋势。
5. 根据实验数据的变化和推算结果,尝试调整LM317电路板上的电阻器和电容器,进一步提高电源电压和电流的稳定性和精度,以及减少功率损耗和负载的变化。
LM317稳压电源电路图
LM317稳压电源电路图描述LM317稳压电源电路图用LM317三端可调稳压IC制作的可调稳压电源简单易制,成本低廉,但是这种稳压电源的最低输出电压只能调到1.25V。
在搞电子电路测量或调试时,有时要求稳压电源的输出电压能从0V起调。
下面我们介绍一个简单的小电路,只要对LM317的电路略做改动,即可使其输出电压从0V起调。
在一般的LM317可调稳压电路中,调压电位器RP的下端都是接地的,这样当RP的阻值为零时,LM317的最小输出电压为1.25V,这个电压是LM317调整端与输出端之间的固定电压。
本电路中,采用负三端可调稳压IC——LM337L来产生一个-1.25V的稳定电压,并将RP的下端接这个-1.25V的电压,这样当RP调至0Ω时,LM317的输出电压即为0V。
为了制作方便,本电路采用单电源变压器,其次级交流电压经二极管VD1、VD2整流后,产生一正一负两组电压,正电压经电容C1滤波后,送至LM317的输入端,经LM317稳压后输出的便是稳定的直流电压。
经VD2整流及C2滤波后产生的负电压送至LM337L的输入端,经LM337L稳压后输出一个-1.25V的稳定电压。
图中LM317输入端与输出端之间并联的二极管VD3为保护二极管。
本电路调整电位器RP的阻值即可改变输出电压。
若RP选用2.2KΩ的电位器(最好选用多圈电位器),其输出电压可在0~24V之间调整。
一般让LM317输出电压可调至0V的稳压电路都是采用1.2V的稳压管构成的,由于稳压值为1.2V的稳压管很难买到,并且稳压精度也不高,故有时也采用两个硅二极管串联来代替1.2V的稳压管。
不过用两个串联的硅二极管作为稳压管,其稳压性能较差,并且稳压值很难精确控制在-1.25V,而图1电路中采用LM337L产生的-1.25V电压的稳定性及精度是普通稳压管难以达到的。
LM317T自制可调稳压电源电路图LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。
(完整版)LM317可调稳压直流电源电路分析
LM317可调稳压直流电源电路分析一、电路原理图LM317可调直流稳压电源,采用FR-4万能板和进口ST电源集成芯片LM317设计而成,不仅具有固定式三端稳压电路的最简单形式,又具备输出可调电压(1.25-12V)的特点,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高、芯片内部具有过热、过流、短路保护电路等优点,适合课程设计、毕业设计等,原理图如下:二、电路工作原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。
一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下:直流稳压电源的原理框图和波形变换图1、降压部分电源变压器是降压变压器,它的作用是将220V的交流电压变换成整流滤波电路所需要的交流电压Ui。
变压器的变比由变压器的副边按比例确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。
2、整流部分该设计采用单相桥式整流电路。
其由四只二极管组成,其构成原则就是保证在变压器副边电压u的整个周期内,负载上的电压和电流方向始终不变。
3、滤波电路经过整流后的直流电幅值变化很大,会影响电路的工作性能。
可利用电容的“通交流,隔直流”的特性,在电路中并人两个并联电容作为电容滤波器,滤去其中的交流成分。
电容滤波电路是最常见也是最简单的滤波电路,在整流电路的输出端(即负载电阻两端)并联一个电容即构成电容滤波电路。
滤波电容容量较大,因此一般均采用电解电容,在接线时要注意电解电容的正负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
如果将两个滤波电容相连接,且连接点接地,就可同时得到输出电压平滑的正负电源。
4、稳压电路稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有很大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
LM317可调式三端稳压电源能够连续输出可调的直流电压。
LM317可调稳压器应用电路图
LM317是常见的可调集成稳压器,最大输出电流为2.2A,输出电压范围为1.25~37V。
基本接法如下:1,2脚之间为1.25V电压基准。
为保证稳压器的输出性能,R1应小于240欧姆。
改变R2阻值即可调整稳压电压值。
D1,D2用于保护LM317。
Uo=(1+R2/R1)*1.25LM317T应用电路一例用LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。
如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。
如去掉三极管、断开W1中心点连线,3.8V小电珠立刻烧毁,测输出电压高达21V。
而加有T1时,小电珠亮度减小,此时LM317T 输出电压仅为2V,从而有效的保护了负载。
使W317稳压器从零伏起调·用W317制作的稳压器,由于受集成块内电其电路的限制,最低输出电压为1.25V。
而附图所示电路则可以使电压从0V开始调整。
该电路和W317基本应用电路的不同之处是增加了—组负压辅助电源。
稳压管DW正极对地电压为—1.25V,调压电位器W的下端没有接在地端,而是接在稳压管正极,稳压电源的输出电压仍然从三端稳压器的输出端与地之间获得。
这样当W的阻值调到零时,R1上的1.25V电压刚好和DW上的-1.25V相抵消,从而使输出电压为OV。
该电路可以从0V起调,输出电压可达30V以上。
这里介绍的可调稳压电源可以实现从1.25V~30V连续可调,输出电流可到4A左右。
她采用最常见的可调试稳压集成电路W317组成电路的核心,关于她的详细指标参数可参阅这里。
下面简单介绍一下该电路的特点。
本电路中,由T2、D5、VW1、R5、R6、C10及继电器K构成自适应切换动作电路。
当输出电路低于14V时,VW1因击穿电压不够而截止,无电流通过,T2截止,K不吸合,其触点K在常态位置,电路输入电流14V交流电。
LM317可调式集成稳压
LM317 是固定集成稳压器芯片,经过对外围电 路的改进设计,可以达到大范围的输出电压调整,不 仅能满足一般小功率设备对直流电源的要求,已能 满足教学上各种综合实验的需要,是各类高校理工 类电子技术及相关专业开展综合整机线路设计的理 想器件之一,本文将对可调式电源设计作比较详细 的分析
• • • • • • • • •
1 电路的组成与结构原理 稳压电源一般分为 5 部分,即交流降压电路 整 流电路 滤波电路 稳压电路 保护电路 由 LM317 组成的稳压电源原理图如图 1 所示,交流 220V 电 图1 LM317可调式集成稳压电源原理图压经电源变压 器降压整流得到直流电压 Vin,此电 压通过滤波电路输入到集成稳压器输入端,在集成 稳压器输出端可到 1.25 37V 直流电压,电路原理图 如下[1] :
Hale Waihona Puke • • • • • • • • • • • • • •
1.1 集成稳压器的自身保护原理 为获得较高的输出电压值, LM317 稳压器的调 节端与地之间的电阻 R2 值及其压降往往较大,在 R2 两端并接一个小于 10 F 的电容 C3,可有效地抑制 输出端的纹波 由于稳压器在 1 1 的深度负反馈下 工作,当输出端负载为容性的某一值时,稳压器有可 能出现自激现象 因此,在稳压器的输入端接入 0.1 F 的电容 C2,输出端接入 470 F 的电解电容 C5,提供足够的电流供给,同时可以防止可能发生的 自激振荡以及减小高频噪声和改善负载的瞬态响 应 当输入端发生短路时, C5 通过稳压器的调整管放 电, C5 值较大,则放电时的冲击电流很大,电压会通 过稳压器内部的输出晶体管放电,可能造成输出晶 体管发射结反向击穿 为此,在稳压器两端并接二极管 D2,输入端短路时 C5 通过D2 放电,保护稳压器
实用型--电子电路LM317可调直流稳压电源课件
(
R1
R2'
)
U
' o
R1
(1
R2' R1
)U
' o
Uo' 1.25
2.确定R2’值
1 GND
I o ''
Vout 2
I
' o
由设计性能知
U o max
12
(1
R2' R1
)
Uo'
Uomax 1 R2'
即:
Uo'
R1
C2 0.33uF
C3 10uF
R2'
(UUomoa' x
1)R1
( 12 1.25
c)额定电压
指在变压器的初级线圈上所允许施加的电压, 正常工作时, 变压器初级绕组上施
d)额定功率
额定功率是指变压器在规定的频率和电压下能长期工作, 而不超过规定温升时 次级输出的功率。
e)调整率
变压器的调整率=(空载电压-满载电压)/满载电压。一般10W以下变压器的 调整率在20%以上, 要想在使用中降低变压器的调整率, 只有选大一些的功率变压 器, 如3W的变压器的调整率为28%, 使用功率为1.5W, 调整率为 12%。
(2)整流电路
桥式整流电路的作用是利用单向导电性的整流元件二极管, 将正负交替的正弦交 流电压整流成为单向脉动电压。但是, 这种单向电压往往包含着很大的脉动成分, 距离理想的直流电压还差得很远。
(3)滤波电路
滤波电路由电容、电感等储能元件组成。它的作用是尽可能地将单向脉动电压中 交流成分滤掉, 使输出电压成为比较平滑的直流电压。
1) 200
1720
LM317连续可调的稳压电路参数设计及案例分析
LM317连续可调的稳压电路参数设计及案例分析LM317是一种常用的可调稳压电路芯片,通过调节输入电压和两个外部电阻的连接来实现输出电压的调节。
LM317稳压电路具有稳定的输出电压、较低的输出电压波动和较高的负载能力等优点,适用于各种电子设备的电源供应。
首先,确定输入电压范围。
LM317的输入电压范围通常为3V至40V,可以根据具体应用要求选择适当的输入电压范围。
其次,确定输出电压范围。
LM317可以实现0V至37V的可调输出电压,通过调节外部电阻的数值可以实现不同的输出电压。
接着,确定输出电流能力。
LM317的输出电流能力取决于芯片的散热能力和负载电阻的数值,一般在1.5A左右,如果需要更大的输出电流,可以通过并联多个LM317芯片或选用其他高功率稳压芯片。
然后,考虑稳定性和温度漂移。
LM317的稳定性和温度漂移较好,但在高温环境下工作时,需要做好散热和温度补偿工作,以确保稳定的输出电压。
接下来,以一款12V输出电压的LM317稳压电路为例进行参数设计和案例分析:输入电压范围:3V至24V输出电压:12V输出电流能力:1A稳定性和温度漂移:较好外部元件选取:R1=220ΩR2=820ΩC1=0.1μFC2=10μFLM317是一款流行的可调稳压电路芯片,通过调节输入电压和外部电阻的数值,可以实现不同输出电压的稳压功能。
在实际设计中,需要根据具体的应用需求来选择输入、输出电压范围、输出电流能力、稳定性和温度漂移等参数,并合理选取外部元件,以保证稳定、可靠的电源供应。
LM317连续可调的稳压电路在各种电子设备中得到广泛应用,为电路设计提供了便利和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LM317连续可调的稳压电路参数设计及案例分析
1.LM317工作特性
LM317是可调节3端正电压稳压器,在输出电压范围为1.2V到37V时能够提供超过1.5A的电流。
此稳压器非常易于使用,只需要两个外部电阻来设置输出电压。
此外还使用内部限流、热关断和安全工作区补充使之基本能防止烧断保险丝。
LM317服务于多种应用场合,包括局部稳压、卡上稳压。
该器件还可以用来制作一种可编程的输出稳压器。
通过在调整点和输出之间接一个固定电阻,LM317可用作一个精密稳流器。
1:调节端
2:输出端
3:输入端
图1.33 LM317管脚
LM317特性如下:
⑴输出电流超过1.5A;
⑵输出在1.2V到37V之间可调;
⑶内部热过载保护;
⑷不随温度变化的内部短路电流限制;
⑸输出晶体管安全工作区补充;
⑹对高压应用浮空工作;
⑺表面特装DPAK形式,和标准3引脚晶体管封装;
⑻避免置备多种固定电压;
2.LM317的标准应用
LM317的标准应用电路如下图1.34所示。
U1
图1.34 LM317典型应用电路
在此电路中,当稳压器离电源滤波器有一定距离Cin 是必须的;CO 对稳定性而言是不必要的,但能改进电路的瞬态响应。
电路稳定输出电压U OUT 为:
21
2
)1(25.1R I R R U Adj OUT ++
= 因为,IAdj 控制在小于100uA ,这一项的误差在多数应用中可忽略,即输出电压电压U OUT 为:
)1(25.11
2
R R U OUT +
=。
例:如图1.34所示。
当可变电阻调整0电阻和最大电阻时,输出电压为:
V
R R U V R R U OUT OUT 46.6)240
1000
1(25.1)1(25.125.1)1(25.11211
2
1=+=+==+
=
3.带保护二极管的稳压电路
带保护二极管的LM317稳压电路如图1.35所示。
图1.35 带保护二极管的LM317稳压电路
⑴外部电容设置
在此电路中,输入旁路点燃C in采用0.1uF片电容或1.0uF的钽电容,以减小对输入电源阻抗的敏感性。
C Adj为调节端到地的旁路电容,通过此电容来提高波纹抑制,防止输出电压增大时波纹被放大。
LM317在无输出电容时可以稳定输出,但其电路象其他反馈电路一样,某些值的外部电容会引起过分振荡,1.0uF的钽电容或25uF的铝电解电容作为输出电容(C O)会消除这一现象,并保证稳定输出。
⑵保护二极管设置
当外部电容应用于任何集成电路稳压时,有时必须加保护二极管以防止电容在低电流点向稳压器放电。
图1.35显示了在输出电压超过25V或高电容值(C O>25uF,C Adj>10uF)时的二极管保护电路。
二极管D1防止输入短路时C O经集成电路放电,二极管D2防止输出短路时C Adj放电对集成电路放电。
二极管D1和D2的组合防止输入短路时C Adj通过基础电路放电。