第二章电阻电路的等效变换

合集下载

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

-
C
i
+ u
-
对A电路Hale Waihona Puke 言,C代替B后BA
C
A
(1)等效变换的条件
结 论 (2)仅仅是对外等效
(3)对内不等效
两电路具有相同的VCR
即外电路A中的电压、 电流和功率不变。
C是B的简化。
2.3 电阻的串联、并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
R31
R1
R2
R3
2
R23
3
2
3
形网络
Y形网络
R2
b
R4
三端 网络
,Y 网络的变形:
形电路 ( 形)
T 形电路 (Y形)
这两个电路当它们的电阻满足一定的关系时, 能够相互等效。
2. —Y 变换的等效条件
1 +– i1
1 +i1Y –
u12 R12
– i2
2+
R23 u23
等效条件:
i1 =i1Y ,
第二章 电阻电路的等效变换
2.2 电路的等效变换
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端网络(或一端口网络)。
i i
2. 电路等效的概念
两个二端电路,端口具有相同的伏安特性,则两电路等效
B
i
+ u
等效
i3 =u31 /R31 – u23 /R23
根据等效条件,比较式(3)与式(1),得Y型型的变换条件:
R12
R1R2R2R3R3R1 R3

第二章 电阻电路的等效变换.

第二章 电阻电路的等效变换.

第二章 电阻电路的等效变换§ 2-1 引言§ 2-2电阻的等效变换 § 2-3 电阻串联和并联§ 2-4 星三角变换(一)教学目标1、 要求掌握电路等效的概念;2、 要求掌握电阻串并联电路的计算方法及分压分流公式;3、要求掌握星形三角形的等效变换。

(二)教学难点星三角变换为难点(三)教学思路对于简单电路的分析,常常采用的是等效化简的方法,首先让同学理解等效的概念,在此基础上,再接下来介绍串并联等效化简及其他变换。

(四)教学内容和要点2.2等效变换的概念(二端网络)i =i ’c(二端网络)若两个二端网络N 1和N 2,当它们与同一个外部电路相接,在相接端点处的电压、电流关系完全相同时,则称N 1和N 2为相互等效的二端网络.2.3 电阻的串联、并联和混联一. 电阻的串联+ + _ _ u u u R 3 i R eq1.特征:流过同一电流(用于以后判断是否为串联) 2.KVL:iR u u u u u k R k ⋅==++∑3213.等效电阻:∑=keq RR4.分压公式:u R R u eqkk =5.功率:2i R P k k = ∑=kPP二. 电阻的并联特征:1.承受同一个电压2.KCL:∑=++k i i i i 321分流不分压,分流电路u GR ui k kk ==u G i k )(∑= ∑=k eq G G3.等效电阻:∑=keq GG4.分压公式:i G G u G i eqkk k == 5.功率:2u G P k k =∑=kP P并联串联↔↔↔,,i u G RR 1 G 1i 1(R eq)G eq三.电阻的混联串联 串并联13232R R R R R R eq++=321321)(R RR R R R R eq ++⋅+=求R ab . R ab =4Ω+6Ω=10Ω 例:桥式电路 具有四个节点 每个节点联接三条支路求R ab .平衡电桥:R 1﹒R 4=R 2﹒R 3例:R 1c 6Ω3Ω4Ω4Ω2Ω1Ω3R 4求R ab =2R a00804080804031603a ab R R ⨯==Ω+=Ω 例:无限长梯形网络,求R ab =?(R=5Ω) R cd ≈R ab 近似解法22205250ab ab abab ab abab ab R R R R R R R R R R R R R ⋅=++--⋅=--=∴==R ab2.4 电阻的Y —⊿等效变换1、三端网络的等效概念若两个三端网络的电压u 13、u 23与电流i 1、i 2之间的关系完全相同时,则称这两个三端网络对外互为等效。

大学物理-电阻电路的等效变换名师公开课获奖课件百校联赛一等奖课件

大学物理-电阻电路的等效变换名师公开课获奖课件百校联赛一等奖课件

+ u_
N2 压电流与电路(b)中外电路部分旳完
全相同。
(b)
思索题:
i +
2 u
4V
_
N1
i +
3 u
5V
_
N2
如上图所示两个一端口网络N1和N2,已知N1:当u=2V时,i =-1A; 对于N2: 当u=2V时,i=-1A;即两个网络具有相同 旳电压和电流,问这两个网络是否等效?
两个端口旳伏安关系:
由串联组合(us, R)
并联组合(is, G)旳等效变换:
i
+
uS _
+
u
R
_
变换
由并联组合(is, G)

联组合(us, R)旳等效变换:
i
iS
+
Gu _
i
iS
+
Gu _
is us R , G 1 R
i
+
uS _
+
u
R
_
us is G ,
R
1 G
注意:
1. 一般情况下,这两种等效变换前后旳内部功率不相同, 但对外部来说,他们吸收或发出旳功率相同。
– i1 u31 R31
1+ u12
R12
+ i3 3–
R23 u23
型网络
i2 +2
,Y 网络旳变形:
型电路 ( 型)
T 型电路 (Y 型)
2. — Y 等效变换



1
R31
R12
3
R23
2
1
外 电 路
R1
R3

第02章电阻电路的等效变换(丘关源)

第02章电阻电路的等效变换(丘关源)
(1-29)
(6)恒压源并联任何元件其两端电压不变;
恒流源串联任何元件其流出电流不变;
a a
+ us

+ +

对外等效
us

b
c
b c
对外等效
is
+

d
is
d
(1-30)
例1 用电源等效变换法求i R5
R1 u1 + R2 R3 i
+
i=?
解:
-u3
R4
is
R5 u3 — R3 i
应 用 举 例
一、理想电压源的串联和并联
1、串联 + uS1_ _ uS2 +
+ 注意参考方向
º uS=+uS1 …-uS2 i + uS _ º
等效
+
uS _
º +
_ º
2、并联
条件:uS=uS1=uS2 方向相同 º 恒压源中的电流由外电路决定。相同的恒压源才能并联 。
(1-21)
uS1_
u S2
+ _
i
º
3、恒压源与任意支路(非恒压源)并联的等效 i i + + + + 任意 uS 对外等效 uS _ u _ u 元件 _ _ 4、实际电压源的串联等效
+ i +
uS1 _
R1
_ uS2 + u
R2 _
等效
uS _ R + i +
u
_
uS=+uS1-uS2
R=R1 + R2
(1-22)
二、理想电流源的串联和并联

第2章电阻电路的等效变换

第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5

02第二章电阻电路的等效变换

02第二章电阻电路的等效变换

12
12
12
8 //(4 4) 4
R
R eq R
R
R
例6.求Req。
解:
R
R
R
R R
Req

R 8
例7.
R R I1 I2
I3
I4 求:I1 ,I4 ,U4
12V
2R 2R
2R
U4 2R
解:
I1

12 R
I4


1 2
I
3


1 4
I2


1 8
I1


1 8
12 R
3 2R
0.04
16.5mA
10mA
I3

G1

G3 G2

G3
Is

0.04 0.025 0.1
0.04
16.5mA
4mA
三、 电阻的串并联(混联)
电阻的串联和并联相结合的联接方式叫电阻的串并联 (或混联)。
要求:弄清楚串、并联的概念。
计算举例:
4
º
例1.
Req
2 3
Req
i1

i' 1
,
i2

i' 2
,
i3

i' 3
i' 2
2
对,各个电阻的电流分别为:
R31
'
i ' 31
i3 3
1 i'
1
i' 12
i' u12 R 12
12
R 12
R23

电阻电路的等效变换法

电阻电路的等效变换法

i
R1
+
u
R2
-
VAR:
i + u VAR:
R=R1+R2
注意:当电路中的某一部分用其等效电路替代后,未被替代部分的电压电流均 应保持不变,即“对外等效”。
§2-1 引言
三、等效法
1、等效法:将复杂电路进行等效化简,从而求出各i. u, p的一种分析方法
2、本章内容
电阻的等效变换 电源的等效变换
第二章 电阻电路的等效变换法
R4
Rg
R2
R3
若R1 R3=R2 R4
R1
R4
则电桥平衡
或者
R2
R3
R1
R4
x
R2
R3
第二章 电阻电路的等效变换法
§2-3 Y—△等效变换
一、电阻的Y、△联接 1、为什么需Y—△变换 2、Y形联接
Байду номын сангаас
§2-3 Y—△等效变换
3、△形联接 a
4、举例: 上图:R1.R2.R3 R3.R4.R5——△ R1.R3.R4 R2.R3.R5——Y
+
i
+
US -
U
R0 -
i
+
US R0
R0
U
-
§2-5 两种实际电源的等效变换
2、实际电流源——实际电压源
iS R0
+
i
iSR0 -
R0
3、说明: 注意极性 等效对外电路等效,内部不等效 举例说明其应用 受控源也可以同样等效(但不能将受控变掉)
§2-5 两种实际电源的等效变换
+
U1
-
R0

第二章电阻电路的等效变

第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。

2. 电源的串联、并联及等效变换。

3. “实际电源”的等效变换。

4. 输入电阻的求法。

2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。

表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。

2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。

2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。

第二章电阻电路等效变换

第二章电阻电路等效变换

3、在同样的条件下,等效电路的形式也不是唯 一的。
4、电路进行等效变换的目的是为了简化电路以 方便地求解未知量。
3
§2-2 电阻的串联、并联和混联
一、电阻的串联 (Series connection of resistors)
1、电阻的串联 特点:在串联电路中,各元件流过的电流相同。
由欧姆定律及KVL得: i u = u 1 + u 2 + + u n a =R1i+R2i+ +Rni + u =(R1+R2+ +Rn)i 令R eq=R1+R2+…+Rn=Rk b 则有 u= R eqi
27
电压源: u U s Rs i 电流源: u i Is Rs I s Rs i u Rs
电源模型等效的条件为: 电压源 I RS + US a Uab b
Is
US
RS
Is
电流源 I' a
RS ' RS
Uab' RS'
b
U s I s Rs' Rs Rs'
即形电阻 电阻两两乘积之和 Rmn i' 接在与 Rmn相对端钮的电阻 31

R31
i3'
i'1 2
R23
i'2 3

21
2)形等效为Y形,有:
i1'
R12
i2'
R31 R12 R1 R12 R23 R31 R12 R23 R2 R12 R23 R31 R23 R31 R3 R R R 12 23 31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )

第2章 电阻电路的等效变换

第2章 电阻电路的等效变换

方法2:加流看压法
原理图:
R in
+
u
-
i 列u、iS为变量的方程
S
u
⇒ Rin = iS
练习1:求端口的最简等效形式
R i1
i
+
βi1
_uS
Rin
判断:是无源网络吗? 最简形式是什么?
由KCL(设流入为正): i + i1 − βi1 = 0
由VCR:i1
=

uS R
得:
R in
=
uS i
=R
1− β
王馨梅
第二章 电阻电路的等效变换
“电阻电路”:由电阻、独立源、受控源组成 (不含L或C) 等效变换的目的:为了化简电路!
课件符号: ★ 重要 * 大纲之外的知识扩展
§§22--11、、§§22--22 等等效效概概念念
2Ω 1Ω 2Ω
i
+
u
i
+

u
-
-
N1
N2
★概念:两个网络的端口伏安特性曲线完全相同,则 称这两个网络对外等效。
但等效电导好求:
n
∑ G eq =
Gk
k =1
i k = G k u = G k × ( R eq ⋅ i ) ⇒
并联分流公式: i k
=
Gk G eq
i
并联电导越大 则分流越大
思考:电阻除了串并联关系之外,还有其它连接方式吗?
三、Δ⎯Y之间的等效变换
引例:
A
B
A
B
A
B
R1
R2
R3
1
R12
2
R31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换
将三个串联的电阻等效为一个电阻,其电阻为
R R2 R1 R3 4 2 6 12
由图(b)电路可求得电阻RL的电流和电压分别为:
i uS 15V 1A R RL 12 3
u RLi 3 1A 3V
例2-3电路如图2-7(a)所示。已知iS1=10A, iS2=5A, iS3=1A, G1=1S, G2=2S和G3=3S,求电流i1和i3。
u2

R3i1

(R2

R3
)i2

对电阻三角形联接的三端网络,外加两个电流源i1 和i2,将电流源与电阻的并联单口等效变换为一个
电压源与电阻的串联单口,得到图(b)电路,由此得

i12

R31i1 R23i2 R12 R23 R31
uu12

R31i1 R31i12 R31 (i1 i12 ) R23i12 R23i2 R23 (i2 i12 )
例2-2 图(a)所示电路。已知uS1=10V, uS2=20V, uS3=5V, R1=2, R2=4, R3=6和RL=3。求电阻RL的电流和电压。
解:为求电阻RL的电压和电流,可将三个串联的电压 源等效为一个电压源,其电压为
uS uS2 uS1 uS3 20V 10V 5V 15V
R3

R12
R23 R31 R23
R31
(2 13)
由此 解得
R2

R12
R12 R23 R23

R31

(2 14)
R2

R3

R23 (R12

R31 )

电阻电路的等效变换

电阻电路的等效变换

R23
R31
R12 R3 R31 R2 R1 R2 R3
R12 R31 R1
R1
R12
R12 R31 R23
R31
已知电阻,求Y形电阻
R1
R12
R12 R31 R23
R31
R2
R12
R23 R12 R23
R31
R3
R12
R31 R23 R23
R31
请用文字概括以上三个公式
R31 i3/ 3
已知电阻,求Y形电阻
R1
R 12
R12R 31 R 23 R 31
R2
R 12
R 23R12 R 23 R 31
R3
R 12
R 31R 23 R 23 R 31
R1
R2
R3
RY
1 3
R
用电导表示时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
Y形电阻两两乘积之和 Y形不相邻电阻
Y连接的三个电阻相等R1=R2=R3=RY时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
R3 R1
R31
R1 R2
R2 R3 R2
R3 R1
R R12 R23 R31 3 RY
连接的三个电阻相等R12=R23=R31=R 时
并联 16 64 12.8
10
16 64
串联12.8 7.2 20
并联 20 30 12 20 30
例: 电路如图,求等效电阻 Rab 和 Rcd。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

º
º 并联: 电压相同的电压
源才能并联,且
每个电源的电流
º
不确定。
二、理想电流源的串并联
并联: 可等效成一个理想电流源 iS(与iS参考方向相
注意方向 !
4. 功率关系
p1=G1u2, p2=G2u2,, pn=Gnu2
p1: p2 : : pn= G1 : G2 : :Gn
总功率 p=Geqi2 = (G1+ G2+ …+Gn ) u2 =G1i2+G2i2+ +Gni2 =p1+ p2++ pn
(1)电阻并联时,各电阻消耗的功率与电阻大小成反比 (2)等效电导消耗的功率等于各并联电导消耗功率总和
i
+
i1 i2
ik
in 等效 +
u R1 R2
Rk
Rn
u
Req
_
_
由KCL: 故有
i = i1+ i2+ …+ ik+ in= u / Req
1/Req= 1/R1+1/R2+…+1/Rn
令 G =1 / R, 称为电导
Geq=G1+G2+…+Gk+…+Gn= Gk= 1/Rk
º Rin=? 1.3 6.5 13
2-2 电阻的串联、并联和串并联
一、 电阻串联 ( Series Connection of Resistors )
1. 电路特点:
R1
Rk
Rn
i
+ u1 _ + uk _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流(KCL);
(b) 总电压等于各串联电阻的电压之和 (KVL)。
u u 1 u k u n
等效电阻针对电路的某两 端而言,否则无意义。
R ab R 1 R R 2 2 ( R R 3 3 R R 4 4 ) 6 1 1( 5 5 5 5 5 5 ) 1 2 R cd R R 3 3( R R 22 R R 44 )5 5( 11 5 5 55 ) 4
例5:求:Rab a
三、 电阻的串并联(混联)
要求:弄清楚串、并联的概念。
例1. º
R º
4 2
3 6 3
R = 4∥(2+3∥6) = 2
例2.
40
º
º
R
R
30
º
30
º
R = (40∥40+30∥30∥30) = 30
40 40
30 30
例3.
+ 12V_
I1 I2 R I3 R
+
+
2R U_1 2R U_2 2R
两个两端电路,端口具有相同的电压、电流
关系,则称它们是等效的电路。
VCR相同
N1
等效
N2
B
i
+ u
等效
C
i
+ u
- VCR相同
-
对A电路中的电流、电压和功率而言,满足
B
A
C
A
(1)电路等效的条件 明 确 (2)电路等效的对象
(3)电路等效的目的
两电路具有相同的VCR
未变化的外电路A中的 电压、电流和功率 化简电路,方便计算
2. 等效电阻Req
R1
Rk
Rn
Req
等效
i
+ u1 _ + uk _ + un _
i
+
u
_
+
u
_
Req=( R1+ R2 +…+Rn) = Rk
结论:串联电路的总电阻等于各分电阻之和。
3. 串联电阻上电压的分配 例i :两个电阻分压, 如下图
º
uk
Rk Req
u
++ u-1
uu2
_+
R1
u1
R1 R1 R2
º
3. 并联电阻的电流分配

ik u/ Rk Gk i u/ Req Geq
Rin=1.3∥6.5∥13 故 R=1/G=1
即 电流分配与电导成正比
知 ik Gk i Gk
对于两电阻并联, 有
i
º i1
i2
R1
R2
º
i11/R1 1 /R 1/R2iR1R 2R2i i21/R 1 1 /R 1/2R 2iR 1R 1R 2i
二、电阻并联 (Parallel Connection)
1. 电路特点:
i
+
i1 i2
ik
in
u R1 R2
Rk
Rn
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
i = i1+ i2+ …+ ik+ …+in
2. 等i 效电阻Req
u
R2
u2
R2 R1 R2
u
º
注意方向 !
4. 功率关系
p1=R1i2, p2=R2i2,, pn=Rni2
p1: p2 : : pn= R1 : R2 : :Rn
总功率 p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 =p1+ p2++ pn
(1)电阻串联时,各电阻消耗的功率与电阻大小成正比 (2)等效电阻消耗的功率等于各串联电阻消耗功率的总和
I4 +
2R U_4
求:I1 ,I4 ,U4
解: ① 用分流方法做
I41 2I31 4I28 1I18 11 R 2 2 3 R
U 4I42R3V
I1
12 R
②用分压方法做
U4
U2 2
14U1
3V
I4
3 2R
例4 电路如图所示。已知R1=6, R2=15, R3=R4=5。试求ab两端和cd两端的等效电阻。
第二章 电阻电路的等效变换
Georg Simon Ohm (1787-1845),欧姆
a
US
U
R
I R R US
c US
b
重点:电阻等效变换,无源电阻电路的等效变换;
2-1 2-2 2-4 2-5 2-6
引言 电阻的串联、并联和串并联 电压源、电流源的串并联 电源的等效变换 输入电阻和等效电阻
R
R
d
Rab
uab i
R
Rab R
练习:电路如图所示。试求ab两端和cd两端的等效电阻。
R ab3 0 R cd 1 5
2-4 电压源、电流源的串并联
一、 理想电压源的串并联
+
º
uS1 _
+
uSk _ º
Iº ++ 5V_ 5V_
º
+ uS _
I + 5V_
º 串联: uS= uSk
其中与Us参考方向相 同的电压源Us取正号, 相反则取负号。
2-1 引言
一、电路分类:
线性电路:线性无源元件、受控源、独立电源组成 非线性电路:含非线性元件
二、电路求解方法:
1.等效电路 2.独立变量i,u,根据KCL、KVL列方程求解 3.线性电路的性质,定理。
二、等效:
1. 两端电路(网络): 电路为二端网络(或一端口网络)。
i

i


i


i


2. 两端电路等效的概念
20 40
b
100 10 60 50
a
20
120
b
100 60
60
80
a
b
20 100
a
100
Rab=70
20 40
b
100 60
例6:求:Rab
c
对称电路
c、d等电位
c
R
R
iR a i1
R
Байду номын сангаас
R
i
R i2 b
短路 a
b
R
R
d
c
根据电
d
R
R
流分配
i1
1 2
i
i2
a
b
11 uabi1Ri2R(2i2i)RiR
相关文档
最新文档