《卡方检验》PPT课件

合集下载

《卡方检验正式》课件

《卡方检验正式》课件

卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03

卡方检验PPT课件

卡方检验PPT课件

配对卡方检验
配对卡方检验
选中进行配对 卡方检验
配对卡方检验
结果分析
Chi-Square Tests
Pearson Chi-Square Continuity Correctiona
V al ue 14 .15 4b
11.836
df 1 1
Asymp. Sig. (2-si de d) .000
c. Binom ial distribution used.
R×C表卡方检验
▪ 1979年某地发生松毛虫病,333例患者按年龄分为2组,资料如下,分析 不同年龄人群病变类型结构有无区别?
某地松毛虫患者病变构成
年龄分 皮炎型 骨关节 软组织炎 混合




合计
儿童组 50
48
成人组 105
10
合计
两种方法的检测结果
免疫荧光法 + -
合计
乳胶凝集法
+

11
12
2
33
13
45
合计 23 35 58
配对卡方检验
首先建立数据文件,如下。
配对卡方检验
同理,由于是频数表数据,应该先用weight cases进行预 处理。
不能忘记 哦!
配对卡方检验
在此选入频数变量即可进 行下一步的分析。
配对卡方检验
❖ 表示药物加化疗与单用药物治疗某种癌症的疗效比较的行 ×列表,除了观察值以外,还有期望值。
四格表卡方检验
结果分析
❖ 此为四格表2检验的结果,2=6.508,P=0.011,差异有显著性
意义,即药物加化疗与单用药物治疗癌症的疗效有显著性差异。

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

卡方检验ppt课件

卡方检验ppt课件
2检验 (chi-square test)
.5
.4
ν=1
.3
.2
ν=3
ν=6
.1
ν=பைடு நூலகம்0
0.0
0
5
10
15
20
25
1
主要内容
2分布
– 了解2分布的基本思想和2分布曲线
四格表资料的2检验
– 掌握应用条件、基本思想和检验过程
配对设计资料的2检验
– 掌握应用条件、基本思想和检验过程
2分布的形状依赖于自由度ν的大小,当 ν≤2时,曲线呈L型;随着ν的增加,曲线 逐渐趋于对称;当ν→∞时, 2分布趋向正 态分布。
3
2分布曲线
.5
.4
ν=1
.3
.2
ν=3
ν=6
.1
ν=10
0.0 0
5
10
15
20
25
4
2 检验
2检验是一种用途非常广泛的以2分布 为理论依据的假设检验方法,主要用于:
14
本例的2检验
H0:π1=π2,即两种给药方法的总体不良 反应发生率相同
H1:π1≠π2,即两种给药方法的总体不良 反应发生率不同
α=0.05
15
本例的2检验
2 (A T )2 (35 30.76)2 (74 78.24)2 (22 26.24)2 (71 66.76)2 1.771
实际频数:表内各格数字为实际资料的数字。
10
2 检验的基本思想
实际频数和理论频数差异的大小可以用2值的大
小来说明,当样本量n和各个按检验假设计算的理
论频数T都足够大时,比如n≥40,T≥5, 似于2分布,n越大,近似程度越好。

卡方检验举例PPT课件

卡方检验举例PPT课件

Manip>Stack/Unstack>Stack Column…
稳定性及随机性
运行图
Stat>Quality Tool>Run Chart 输出: 4 个 P > 0.05 …证明数据没有“趋势”“成群”“振荡”“混合”
形状
统计描述图
Stat>Basic Statistics>Display Descriptive Statistics...
改进前后均值比较
双样本 T检验(盒形图) Stat>Basic Statistic>2-Sample T-Test
(之前需要F检验)
ANOVA+盒形图
Stat>ANOVA>One-way
输出:如 F检验 P>0.05,需做T检验或ANOVA检验,P<0.05,有改进
6.131
前后独立性测试
卡方检验(Y离散X离散) Stat>Tables>Chi-Square Test… 输出:P < 0.05, 改进有意义
页码 4.49 6.63 4.37 4.109 6.7
6.103 6.94 6.109
6.167
控制
控制阶段主要目的: 证明改善是有效的 使改善保持下去
目的
工具
Minitab
采集改进后数据
数据采集表/采集规则
数据整理
重叠
Manip>Stack/Unstack>Stack Column…
稳定性及随机性
贯彻改进方案质量计划
“书面新流程” “操作公差” “监督评审内容” “对故障的响应计划” 培训操作人员
P12.4
避免错误
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四格表卡方检验
注意:由于上表给出的不是原始数据,而是频数表数据,应 该进行预处理。
四格表卡方检验
四格表卡方检验
四格表卡方检验
四格表卡方检验
四格表卡方检验
四格表卡方检验
结果分析
❖ 表示药物加化疗与单用药物治疗某种癌症的疗效比较的行 ×列表,除了观察值以外,还有期望值。
四格表卡方检验
结果分析
一致性检验
结果分析
❖ 如果在crosstab过程的 statistics子对话框中勾选上 Kappa复选框,则有以下结果:
一致性检验
一般认为, 当Kappa≥0.75时,表明两者一致性较好;
0.75>Kappa ≥0.4时,表明一致性一般; Kappa<0.4时,表明两者一致性较差。
一致性检验
两分类变量间关联程度的度量
相对危险度RR:是一个概率的比值,指试验组人群反应阳性概率
与对照组人群反应阳性概率的比值。数值为1,表明试验因素与 反应阳性无关联;小于1时,表明试验因素导致反应阳性的发生 率降低;大于1时,表明试验因素导致反应阳性的发生率增加。
优势比OR:是一个比值的比,是反应阳性人群中试验因素有无的
配对卡方检验
例2 某实验室分别用乳胶凝集法和免疫荧光法对58名 可疑系统性红斑狼疮患者血清中抗核抗体进行测定,结 果见下表,问两种方法的检测结果有无差别?(数据见 McNemar.sav)
两种方法的检测结果
免疫荧光法 + -
合计
乳胶凝集法
+

11
12
2
33
13
45
合计 23 35 58
配对卡方检验
卡方检验基础
2值的计算:
2 ( A E)2
E
由英国统计学家Karl Pearson首次提出,故被 称为Pearson 2 。
卡方检验基础-卡方分布
当n比较大时, 2 统计量近似服从k -1个自由度的2分布。 在自由度固定时,每个2值与一个概率值(P 值)相对应,
此概率值即为在H0成立的前提下,出现这样一个样本或偏
年龄<40岁
病例组 对照组 合计
服药
21 17 38
未服药
26 59 85
年龄≥40岁
服药
18 7 25
未服药
88 95 183
分层卡方检验
❖选入分层 变量center
分层卡方检验
进行分层 卡方检验
分层卡方检验
结果分析
❖ 首先给出的是层间差异的检验,结果显示,不同组别, 药物与发病的联系是相同的。
离假设总体更远的样本的概率。如果P 值小于或等于显著
性水准,则拒绝H0,接受H1,即观察频数与期望频数不一致。
如果P 值大于显著性水准,则不拒绝H0,认为观察频数与 期望频数无显著性差异。P 值越小,说明H0假设正确的可 能性越小;P 值越大,说明H0假设正确的可能性越大。
卡方检验基础-用途
检验某个连续变量的分布是否与某种理论分布一致,如是否符合正态 分布等
首先建立数据文件,如下。
配对卡方检验
同理,由于是频数表数据,应该先用weight cases进行预 处理。
不能忘记 哦!
配对卡方检验
在此选入频数变量即可进 行下一步的分析。
配对卡方检验
配对卡方检验
配对卡方检验
选中进行配对 卡方检验
配对卡方检验
结果分析
一致性检验
在Pearson 卡方检验中,对行变量和列变量的相关性作检 验,其中行变量和列变量是一个事物的两个不同属性。 在实际中,还有一种列联表,其行变量和列变量反映的是 一个事物的同一属性的相同水平,只是对该属性各水平的 区分方法不同。其特征是:行的数目和列的数目总是相同 的。如果希望检验这两种区分同一属性的方法给出的结果 是否一致,则不应当使用Pearson 2检验,而应该采用 Kappa一致性检验对两种方法一致程度进行评价。
感谢下 载
海鲜
吃 未吃 合计
食物中毒


10
30
6
54
16
84
合计
40 60 100
两分类变量间关联程度的度量
两分类变量间关联程度的度量
❖ 分别指定 行列变量到 Row(s)和 Columns中。
两分类变量间关联程度的度量
选中可得到RR值
两分类变量的四格表。
两分类变量间关联程度的度量
四格表卡方检验
例1 某种药物加化疗与单用某种药物治疗的两 种处理方法,观察对某种癌症的疗效,结果见下 表。(数据见cancer.sav)
两种治疗方法的疗效比较
处理 药物加化疗 单用药物
合计
有效 42 48 90
疗效
无效 13 3 16
合计 55 51 106
四格表卡方检验
首先建立数据文件,如下。
比例与反应阴性人群中试验因素有无的比例之比。
当关注的事件发生概率比较小时(<0.1),优势比可作为相对危 险度的近似。
两分类变量间关联程度的度量
例3 某次食物中毒,现想通过调查发现,吃某海产 品(food)和食物中毒发生(poison)是否具有相关 性,以及吃了某食物的人是没吃海产品的人的几倍。 数据文件见poison.sav。
结果分析
❖ 这是卡方检验的结果,说明吃食物与食物中毒相关。
两分类变量间关联程度的度量
结果分析
❖ 结果显示,OR=3.00,说明吃了该食物者发生食物中
毒的可能性是没有吃该食物者的3.00倍?
分层卡方检验
例4 某研究人员病例对照研究服用某种药物与 心肌梗死的关系,考虑到年龄是一个可能混杂的 因素,因此也将年龄纳入研究,结果如下:
检验某个分类变量各类的出现概率是否等于指定概率 检验两个分类变量是否相互独立,如吸烟是否与呼吸道疾病有关 检验控制某种或某几种分类变量因素的作用之后,另两个分类变量是 否独立,如上例控制年龄、性别之后,吸烟是否与呼吸道疾病有关 检验两种方法的结果是否一致,如两种诊断方法对同一批人进行诊断, 其诊断结果是否一致
OR值是比值的比。是反应阳性人群中试验因素有无的比例 与反应阴性人群中试验因素有无的比例之比。在下列两个 条件均满足时,可用于估计RR值:①所关注的事件发生概 率比较小(<0.1),②所设计的研究是病例对照研究。
小结
3.Kappa一致性检验对两种方法结果的一致程度进行评价;配对检验则用于分 析两种分类方法的分类结果是否有差异。
注意:
Kappa检验会利用列联表的全部信息,而McNemar 检 验只会利用非主对角线单元格上的信息。因此,对于 一致性较好,即绝大多数数据都在主对角线的大样本 列联表,McNemar检验可能会失去实用价值。
两分类变量间关联程度的度量
2检验可以从定性的角度说明两个变量是否存在关联,当
拒绝原假设时,在统计上有把握认为两个变量存在相关。 但接下来的问题是,如果两变量之间存在相关性,它们之 间的关联程度有多大?针对不同的变量类型,在SPSS中可 以计算各种各样的相关指标,而且Crosstabs过程也对此 提供了完整的支持,此处只涉及两分类变量间关联程度的 指标,更系统的相关程度指标见相关与回归一章。
卡方检验
`
❖ 内容提要
卡方检验基础 四格表卡方检验 配对卡方检验与一致性检验 两分类变量间关联程度的度量 分层卡方检验 小结
卡方检验基础
2检验是以2分布为基础的一种假设检验方法, 主要用于分类变量,根据样本数据推断总体的分布 与期望分布是否有显著差异,或推断两个分类变量 是否相关或相互独立。其原假设为:
大差别样本的概率。如果P 值小于或等于显著性水准,
则应拒绝H0,接受H1。
小结
2.关联程度的测量:卡方检验从定性的角度分析是否存在 相关,而各种关联指标从定量的角度分析相关的程度大小。 不同的指标适合不同类型的变量。
RR值是一个概率的比值,是指试验组人群反应阳性概率与 对照组人群反应概率的比值。用于反映试验因素与反应阳 性的关联程度。
H0:观察频数与期望频数没有差别
卡方检验基础
❖ 2检验的基本思想
首先假设H0成立,计算出2值,它表示观察值与理论值之间 的偏离程度。根据2分布,2统计量以及自由度可以确定
在H0成立的情况下获得当前统计量及更极端情况的概率P。 如果P 很小,说明观察值和理论值偏离程度太大,应当拒
绝原假设,表示比较资料之间有显著性差异;否则就不能 拒绝原假设,尚不能认为样本所代表的实际情况与理论假 设有差别。
分层卡方检验
结果分析
❖ 分层卡方检验结果,即考虑了分层因素的影响以后,对年龄 与发病的检验结果,共给出一致性2检验和分层 2检验两种结
果,前者是后者的改进,可见P 值均小于0.05,即可认为年龄
与发病有关。
分层卡方检验
结果分析
❖ 结果显示,ORMH 值为0.636,表明去除了年龄的混杂效应以
后,和未服药相比,服药后发病优势比为0.636,或者说服药 后更容易引发心肌梗死。
❖ 此为四格表2检验的结果,2=6.508,P=0.011,差异有显著
性意义,即药物加化疗与单用药物治疗癌症的疗效有显著性差异。
配对卡方检验
在Pearson卡方检验中,对行列变量的相关性作了检验,
其中的行列变量是一个事物的两个不同属性。
实际应用中,还有一种列联表,其中的行列变量反映的 是一个事物的同一属性。例如把每一份标本分为两份,分 别用两种方法进行化验,比较两种化验方法的结果是否有 本质不同;或分别采用甲、乙两种方法对同一批病人进行 检查,比较此两种方法的结果是否有本质不同,此时要用 配对卡方检验。
小结
4.分层卡方检验是把研究对象分解成不同层次,按 各层对象来进行行变量与列变量的独立性研究。可 在去除分层因素下更准确地对行列变量的独立性进 行研究。在SPSS中,交叉表过程的统计量子对话框 中选中Cochran’s and Mantel-Haenszel statistics会自动给出分层卡方检验的结果。
相关文档
最新文档