大学分子生物学复习重点
分子生物学复习
![分子生物学复习](https://img.taocdn.com/s3/m/74800078fbd6195f312b3169a45177232f60e48a.png)
分子生物学复习分子生物学是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。
它是现代生物学的重要组成部分,对于我们理解生命的奥秘、疾病的发生机制以及生物技术的发展都具有至关重要的意义。
当我们准备复习分子生物学这门学科时,需要对其各个重要的知识点进行系统的梳理和深入的理解。
首先,我们来谈谈核酸的结构与功能。
核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 是遗传信息的携带者,它具有双螺旋结构,由两条反向平行的多核苷酸链通过碱基互补配对形成。
了解 DNA 的一级结构、二级结构和高级结构对于理解基因的表达、复制和遗传变异等过程至关重要。
RNA 则在基因表达中发挥着重要作用,包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)等。
mRNA 携带遗传信息,指导蛋白质的合成;tRNA 则在翻译过程中负责转运氨基酸;rRNA 是核糖体的组成成分。
基因的概念也是复习的重点之一。
基因是具有遗传效应的 DNA 片段,它不仅包括编码蛋白质的序列,还包括调控序列和非编码序列。
基因的表达是一个复杂的过程,涉及到转录和翻译两个主要环节。
转录是指以 DNA 为模板合成 RNA 的过程,而翻译则是以 mRNA 为模板合成蛋白质的过程。
在这个过程中,启动子、终止子、增强子等调控元件对基因的表达起着精确的调控作用。
接下来是 DNA 复制。
DNA 复制是细胞分裂过程中遗传信息传递的关键步骤。
半保留复制是 DNA 复制的基本特征,即亲代 DNA 分子的两条链分别作为模板合成两条新的子代链。
参与 DNA 复制的酶和蛋白质包括解旋酶、DNA 聚合酶、拓扑异构酶等,它们协同作用确保复制的准确性和高效性。
然后是转录过程。
转录是在 RNA 聚合酶的作用下,以 DNA 链为模板合成 RNA 的过程。
RNA 聚合酶能够识别启动子序列并结合上去,开始转录。
转录过程包括起始、延伸和终止三个阶段,产生的初级转录产物需要经过一系列的加工修饰,如剪接、加帽和加尾等,才能成为成熟的 RNA 分子。
医学分子生物学复习重点
![医学分子生物学复习重点](https://img.taocdn.com/s3/m/d2dc7d24866fb84ae45c8dd8.png)
分子生物学需要掌握的重点一、DNA、RNA、蛋白质、质粒、基因、端粒、聚合酶、密码子、突变、变性的概念或结构、性质及特点;二、复制、转录、逆转录、翻译、加工修饰、靶向输送的主要过程及特点;三、癌基因的概念、原癌基因产物的类型及细胞定位、癌基因活化致癌的主要机制;四、常用分子生物学技术的原理、主要步骤、酶学及特点;五、基因表及其调控的原理、主要过程或步骤,乳糖操纵子的正、负调节机制;六、常用的基因诊断及基因治疗技术;七、基因克隆、基因诊断、基因治疗、管家基因、抑癌基因、Klenow片段、核蛋白体、限制性内切核酸酶、人类基因组计划、原位杂交的概念;八、双脱氧末端终止法DNA测序、重组DNA技术的主要步骤;九、结构基因、顺式作用元件、启动子、遗传密码、反式作用因子、氨基酰-tRNA、基因组文库、DNA多态性、转位因子、探针、Tm值、DNA微阵列、DNA甲基化的概念、性质;十、核酸分子杂交的主要类型、PCR的主要步骤及引物设计;十一、DNA、RNA及多肽链的合成方向;十二、真核细胞转染的基本方法;十三、细胞周期的主要调控点;十四、DNA损伤及修复的主要类型和机制;十五、基因文库筛选的主要方法及原理。
名词解释●质粒——是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。
质粒只有在宿主细胞内才能够完成自己的复制。
●基因——指贮存有功能的蛋白质多肽链或RNA序列及表达这些信息所需的全部核苷酸序列,是核酸分子中贮存遗传信息的遗传单位。
●癌基因——是细胞内控制细胞生长和分化的基因,具有潜在的诱导细胞恶性转化的特性,它的结构异常或表达异常,可以引起细胞癌变。
●基因克隆——是指把一个生物体的遗传信息(基因片段)转入另一个生物体内进行无性繁殖,得到一群完全相同的基因片段,又称DNA克隆。
●抑癌基因——是指存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因,当这类基因在发生突变、缺失或失活时可引起细胞恶性转化而导致肿瘤发生。
分子生物学 科大重点知识点
![分子生物学 科大重点知识点](https://img.taocdn.com/s3/m/bc74507db80d6c85ec3a87c24028915f804d84e0.png)
分子生物学科大重点知识点1. DNA的结构和功能•DNA是由核苷酸组成的双链螺旋结构,包括脱氧核糖核酸(deoxyribonucleic acid) 和四种碱基 (腺嘌呤 Adenine,胸腺嘧啶Thymine,鸟嘌呤 Guanine,胞嘧啶 Cytosine)。
•DNA具有存储遗传信息、自我复制和编码蛋白质等重要功能。
•DNA的结构包括双螺旋结构、碱基配对、磷酸二酯键等。
2. DNA复制和遗传信息传递•DNA复制是指将一个DNA分子复制成两个完全相同的分子。
•DNA复制包括解旋、引物合成、DNA聚合酶的作用等步骤。
•遗传信息传递是指将DNA中的信息转录成RNA,然后翻译成蛋白质。
•遗传信息传递包括转录和翻译两个过程。
3. 基因调控和表达调控•基因调控是指通过控制基因的转录和翻译过程来调节蛋白质的表达水平。
•基因调控的机制包括启动子、转录因子、染色质重塑等。
•表达调控是指通过调控蛋白质的稳定性和活性来调节蛋白质的功能。
•表达调控的机制包括翻译调控、蛋白质修饰等。
4. DNA修复和突变•DNA修复是指通过一系列机制修复DNA中的损伤,保证基因组的完整性。
•DNA修复的机制包括直接修复、错配修复、核苷酸切除修复等。
•突变是指DNA序列的改变,可以是点突变、插入、缺失等。
•突变可以导致遗传信息的改变,对生物体的生存和发育产生影响。
5. 基因工程和基因编辑•基因工程是指通过改变或插入外源基因来改变生物体的性状。
•基因工程包括基因克隆、转基因技术、基因组编辑等。
•基因编辑是指通过切割和替换DNA序列来改变基因组的特定部分。
•基因编辑技术包括CRISPR/Cas9等。
6. 分子进化和物种起源•分子进化是指通过分析物种的基因组序列来推断物种的演化关系和起源。
•分子进化研究使用多种分析方法,包括系统发育树、基因家族等。
•分子进化为我们理解物种的起源和演化提供了重要的证据和线索。
以上是分子生物学的科大重点知识点,涵盖了DNA的结构和功能、DNA复制和遗传信息传递、基因调控和表达调控、DNA修复和突变、基因工程和基因编辑以及分子进化和物种起源等内容。
《分子生物学导论》笔记_学习笔记
![《分子生物学导论》笔记_学习笔记](https://img.taocdn.com/s3/m/3293792330b765ce0508763231126edb6f1a768d.png)
《分子生物学导论》笔记第一章:分子生物学概述1.1分子生物学的定义与发展1.2分子生物学的研究对象1.3分子生物学与其他学科的关系1.4分子生物学的重要性第二章:DNA的结构与功能2.1DNA的双螺旋结构2.2DNA的复制机制2.3DNA的修复与重组2.4DNA的功能与基因表达第三章:RNA的类型与作用3.1信使RNA(mRNA)3.2转运RNA(tRNA)3.3核糖体RNA(rRNA)3.4小RNA及其功能第四章:蛋白质的合成与功能4.1转录与翻译过程4.2蛋白质的结构层次4.3蛋白质的折叠与修饰4.4蛋白质的功能与作用机制第五章:基因调控机制5.1基因表达调控的基本概念5.2转录因子与增强子5.3表观遗传学与基因表达5.4RNA干扰与基因沉默第六章:分子生物学的应用6.1分子生物学在医学中的应用6.2分子生物学在农业中的应用6.3分子生物学在生物技术中的应用6.4未来发展与挑战第1章:分子生物学概述分子生物学的定义与发展分子生物学是研究生命现象的分子基础的科学,主要关注生物大分子的结构、功能及其相互作用。
其核心内容包括DNA、RNA和蛋白质的相互关系。
分子生物学的起源可以追溯到20世纪初,随着显微镜技术的发展,科学家们对细胞组成的认识逐渐深入。
1940年代,随着DNA的双螺旋结构被发现,分子生物学开始正式形成。
关键概念包括:DNA(脱氧核糖核酸):遗传信息的载体,结构为双螺旋。
RNA(核糖核酸):在基因表达中起到中介作用,主要类型有信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)。
蛋白质:由氨基酸构成,承担细胞内外的多种功能。
重要发展里程碑:1953年,沃森和克里克提出DNA双螺旋结构。
1961年,霍普金斯等人发现RNA的转译机制。
1970年代,基因工程技术的引入,推动了分子生物学的应用。
考点:分子生物学定义的准确描述DNA、RNA和蛋白质的基本功能和相互关系重要历史事件及其影响分子生物学的研究对象分子生物学的研究对象主要包括核酸(DNA和RNA)、蛋白质、酶及其相互作用。
分子生物学总复习期末考试总复习
![分子生物学总复习期末考试总复习](https://img.taocdn.com/s3/m/c057cbe9988fcc22bcd126fff705cc1755275f29.png)
分子生物学课程重点,以及一份真题。
1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。
在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。
这些蛋白质在维持染色体结构中起着重要作用。
(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B 介于两者之间。
H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。
一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。
(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。
DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
分子生物学复习大纲
![分子生物学复习大纲](https://img.taocdn.com/s3/m/d451520dcdbff121dd36a32d7375a417876fc170.png)
分子生物学复习大纲第一章绪论1、分子生物学*: 是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。
2、分子生物学研究内容*:DNA重组技术(又称基因工程)基因表达调控研究生物大分子的结构功能研究(又称结构分子生物学)第二章生物大分子蛋白质;蛋白质是由若干个聚氨基酸(多肽)组成的多聚体。
核酸;核苷酸由三部分组成:戊糖(pentose),硷基(base)和磷酸根(phosphate group)。
1、决定蛋白质和核酸三维结构的几种非共价相互作用有?:无规则线团(random co):线状多肽链和核酸链含有几种键,这些键中,有的可以自由旋转,在不存在任何链内互相作用的情况下,每个氨基酸或核苷酸将是自由旋转的。
这种自由旋转只受到原子不能占据同一空间的限制。
像这样一种链的三维构象叫无规则线团(random co)。
氢键;生物系统中常见的氢键如下:①C==O…H—N ②—C—OH…O==C ③N—H …N. 核酸中的氢键是由两条链之间的两个配对的核苷酸碱基之间形成的。
疏水相互作用:是指两个微溶于水的分子或分子的某些部分之间的相互作用。
难溶于水的两个分子(可能是两个不同的分子)趋向于缔合。
离子键:是不同的电荷之间相互吸引的结果。
范德华引力:存在于所有分子之间,它们是长期偶极子和电子环流的结果第三章核酸1、DNA的物理化学结构● DNA的一级结构: 是指4种核苷酸的连接及其排列顺序,表明DNA分子的化学构成。
● DNA的二级结构: 是指两条多核苷酸链反向平行盘绕所形成的双螺旋结构。
● DNA的二级结构分两大类:右手螺旋:A—DNA、B—DNA、C—DNA。
根据X射线衍射照片,设想的DNA分子是两条反相平行的多核苷酸链围绕同一中心轴构成的右手螺旋结构(即B-DNA)。
左手螺旋DNA: 即Z-DNA每螺圈12个碱基对,而且Z-DNA双螺旋只有一个槽沟。
2、决定DNA结构的因素?⑴变性和熔解曲线●增色效应:双链DNA缓慢加热,其溶液对紫外光的吸收值增加,叫增色效应(hyperchromic)。
分子生物学知识点整理
![分子生物学知识点整理](https://img.taocdn.com/s3/m/25fff0484b7302768e9951e79b89680203d86b1c.png)
分子生物学知识点整理1.基本分子生物学概念:基因、DNA、RNA和蛋白质是分子生物学的基本概念。
基因是一段DNA序列,负责编码产生RNA和蛋白质。
DNA是脱氧核糖核酸,由含有遗传信息的碱基序列组成。
RNA是核糖核酸,负责将DNA的信息转录成具体蛋白质的制作指令。
蛋白质是由氨基酸组成的大分子,负责细胞的结构和功能。
2.DNA的结构:DNA是双螺旋结构,由两条互相缠绕的链组成,这两条链通过碱基之间的氢键相互连接。
DNA的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
3.DNA复制:DNA复制是细胞分裂的过程中,DNA双链被复制为两条相同的DNA双链。
这是生命的一个基本过程,确保每个新细胞都有完整的遗传信息。
DNA复制是由DNA聚合酶酶进行的,它们能够将新的碱基加到原有的DNA链上。
4.转录:转录是将DNA的信息复制成RNA的过程。
这个过程包括三个步骤:启动、延伸和终止。
在转录开始时,RNA聚合酶酶会识别DNA链上一个特定的启动位点,然后沿着DNA模板链向前延伸合成RNA链。
转录的终止是由特定的序列标志着的,一旦被识别,RNA聚合酶酶就会停止合成RNA。
5.翻译:翻译是将RNA的信息转化成蛋白质的过程。
这个过程涉及到tRNA和核糖体的作用。
tRNA具有与特定氨基酸结合的能力,并根据mRNA 模板上的密码子序列,将氨基酸逐个带入核糖体中合成蛋白质。
6.基因调控:基因调控是细胞内基因表达的调控机制,使细胞能够根据需要调整哪些基因的表达,以适应不同的环境条件。
这包括启动子、转录因子和RNA干扰等机制。
7.基因突变和遗传变异:基因突变是指在DNA链上发生的改变,可能导致蛋白质的结构和功能的改变。
遗传变异包括基因重组、基因扩增和基因缺失等,能够产生新的基因组和生物特征。
8.PCR:聚合酶链式反应(PCR)是一种用于扩增DNA片段的技术。
它涉及到短的引物,用于界定所需扩增的DNA片段,然后通过多次的加热和冷却循环,DNA被不断复制,产生大量的DNA片段。
分子生物学重点完整版
![分子生物学重点完整版](https://img.taocdn.com/s3/m/2c4f532e30b765ce0508763231126edb6f1a76e4.png)
第一章绪论1953年,Watson和Crick提出双螺旋模型。
1983年,美国遗传学家McClintock由于在50年代提出并发现了可移动的遗传因子而获得诺贝尔生理学奖或医学奖。
第二章染色体与DNA染色体组成:(1)组蛋白:H1、H2A、H2B、H3、H4。
(2)非组蛋白(3)DNA(4)RNA染色体包装:①核小体:200bp左右DNA分子盘绕在H2A、H2B、H3、H4各两分子生成的八聚体外,H1位于核小体外。
7②螺线管:染色细丝盘绕成而成,每一个螺旋包含6个核小体。
6③超螺旋:30个30nm螺线管缠绕而成。
40④染色体:超螺旋圆筒进一步压缩。
5真核生物基因组特点:①基因组庞大;②基因组存在大量重复序列;③大部分为非编码序列;④转录产物为单顺反子;⑤断裂基因,有内含子结构;⑥存在大量顺式作用元件;⑦存在大量的DNA多样性,包括单核苷酸多态性和串联重复序列多态性;⑧具有端粒结构。
C值:生物单倍体基因组DNA的总量。
原核生物基因组特点:①结构简练;②存在转录单元;③有重叠基因。
DNA的一级结构:4种核苷酸的连接及其排列顺序,表示该DNA分子的化学构成。
DNA的二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
①右手螺旋:A-DNA:与B-DNA比大沟变窄,小沟变宽。
每圈螺旋11个碱基对B-DNA:是大多数DNA的构象。
相邻碱基对平面之间的距离为0.34nm,即顺中心轴方向,每个0.34nm有一个核苷酸,以3.4nm为一个结构重复周期,双螺旋的直径为2.0nm。
②左手螺旋:Z-DNA:每圈螺旋含12对碱基,大沟平坦,小沟深而窄,核苷酸构象順反相间,螺旋骨架成呈Z字形。
DNA的变性:DNA溶液温度接近沸点或者pH较高时,DNA双链的氢键断裂,最后完全变成单链的过程。
复性是热变性的DNA经缓慢冷却,从单链恢复成双链的过程。
Tm值:DNA在260nm处吸光度最大。
将吸光度相对温度变化绘制曲线,吸光度增大到最DNA的解链温度(熔点)。
分子生物学期末复习重点
![分子生物学期末复习重点](https://img.taocdn.com/s3/m/64b0a0a18e9951e79a89279f.png)
分子生物学期末复习重点友情提示:一般出判断题一般出填空3、-------- 一般出名词解释4、******** 一般出简答题5、阴影部分也是重点(一)第一章蛋白质的结构与功能一级结构:指多肽链中氨基酸的排列顺序,即它的化学结构。
二级结构:指借助主链不包括侧链的氢键形成的具有周期性的构象。
三级结构:指1条肽链包括主链和侧链完整折叠而形成的构象。
四级结构:指含有多条肽链的寡聚蛋白质分子中各亚基间相互作用,形成的构象。
超二级结构和结构域是在蛋白质二级和三级结构之间的两个层次。
超二级结构:指相邻的二级结构单元,在侧链基团次级键的作用下彼此靠近而形成的规则的聚集结构。
结构域:指在1条肽链内折叠成的局部结构紧密的区域。
组成四级结构的多肽链称为蛋白质的亚基,多个亚基组成的蛋白质为寡聚蛋白质1 维持蛋白质分子构象的作用力,主要包括氢键、疏水性相互作用、范德华引力、离子键和二硫键。
2 二级结构主要包括下面几种基本类型一α?螺旋二β折叠三转角四β突起五卷曲六无序结构3 β折叠有两种类型,1种是平行式,1种是反平行式。
反平行折叠在能量上更稳定。
4 转角主要分两类:β转角和γ转角。
转角结构通常负责各种二级结构单元之间的连接作用。
5 常见的3种超二级结构单元为:ααββ,βαβ。
6 结构域不仅仅是折叠单位和有一定功能的结构单位,还是一个遗传单位7结构域可以分为4种类型:反平行α,平行α/β,反平行β,不规则的小结构1、多肽链的折叠过程天然蛋白质是多肽链合成后经折叠而形成的热力学上稳定的构象。
多肽链的折叠是一自发过程..人们现已提出了一些多肽链的折叠模型,大致可以分为二类。
一种模型认为多肽链的折叠是逐步进行的,先形成一种稳定的二级结构作为核心,然后二级结构的氨基酸侧链进一步发生交互作用,扩大成天然三维结构;另一种模型提出,多肽链可能由于其疏水侧链的疏水交互作用而突然自发折叠,形成一种含二级结构的紧密状态,最后调整成天然结构。
分子生物学知识点归纳
![分子生物学知识点归纳](https://img.taocdn.com/s3/m/12d66782d4bbfd0a79563c1ec5da50e2524dd103.png)
分子生物学知识点归纳1.DNA的结构和功能:DNA是生物体内贮存遗传信息的分子,由磷酸、五碱基、脱氧核糖组成。
DNA以双螺旋结构存在,通过序列编码生物体的遗传信息,并在细胞分裂中复制和传递。
2.RNA的结构和功能:RNA是将DNA信息翻译为蛋白质的中间分子,有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)。
RNA具有与DNA类似的结构,但是鸟嘌呤(G)和胸腺嘧啶(T)被腺嘌呤(A)和尿嘧啶(U)所取代。
3.基因表达:基因表达是指将DNA中的遗传信息转录成RNA,然后翻译成蛋白质的过程。
这个过程包括转录、剪接、RNA修饰、起始和终止等多个步骤。
基因表达过程中的调控对于维持生物体的正常功能至关重要。
4.蛋白质合成:蛋白质合成是指RNA翻译成蛋白质的过程。
这个过程包括译码、蛋白质折叠和修饰。
蛋白质的结构和功能由其氨基酸序列决定,但结构和功能的形成还受到其他因素的调控。
5.基因组学:基因组学是研究生物体基因组的学科,包括基因组的结构、功能和演化。
随着高通量测序技术的发展,基因组学成为了分子生物学的前沿领域。
6.分子遗传学:分子遗传学是研究遗传信息传递和表达的分子机制的学科。
它研究遗传物质的结构、复制、易位、突变和修复等,以及遗传信息的传递和表达的分子级机制。
7.基因调控:基因调控是指细胞内基因表达的调节过程。
这个过程包括转录因子与DNA结合、组蛋白修饰、DNA甲基化等多个调控机制。
基因调控决定了细胞的发育、分化和对环境刺激的响应。
9.蛋白质相互作用和信号传导:蛋白质相互作用是指蛋白质之间的物理或化学交互作用。
这些相互作用对于细胞信号传导、代谢调控和细胞活动的协调起着重要作用。
10.DNA修复和细胞凋亡:DNA修复是细胞内修复DNA损伤的过程,以维持遗传稳定性。
细胞凋亡是指细胞主动性死亡的过程,常常发生在DNA 严重损伤和细胞失控增殖时。
以上只是分子生物学的一些知识点,这个领域还有很多其他的重要概念和研究方向,如非编码RNA、表观遗传学和细胞信号转导等。
大学分子生物学知识点
![大学分子生物学知识点](https://img.taocdn.com/s3/m/6e71ee3276c66137ee0619ba.png)
大学分子生物学知识点分子生物学是在分子水平上研究生命现象的科学。
通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。
下面是为你整理的大学分子生物学知识点,一起来看看吧。
大学分子生物学知识点1、半保留复制:指新老搭配,由1条母代DNA链和1条子代DNA链配对产生自带双螺旋DNA。
2、冈崎片段:DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,这条链叫前导链,而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段合成,故称为滞后链,滞后链片段又叫冈崎片段。
3、复制体:在DNA合成的生长点(growth point),即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复合体。
4、C值:是指某物种单倍体基因组的全部DNA含量的总和。
不同物种的C值差异很大。
5、C值矛盾::①与预期相比,C 值明显过大;②同一物种,C 值相差很大。
这种C值与生物进化复杂性不相对应的现象称为C值矛盾或C值悖理6、启动子:是基因转录起始所必须的一段DNA序列,一般位于结构基因的上游,是DNA分子上与RNA聚合酶特异性结合而使转录起始的部位,启动子本身不被转录。
7、hnRNA: 在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA),然而在细胞浆中起作用,作为蛋白质的氨基酸序列合成模板的是mRNA(messenger RNA)。
hnRNA是mRNA的未成熟前体。
两者之间的差别主要有两点:一是hnRNA核苷酸链中的一些片段将不出现于相应的mRNA 中,这些片段称为内含子(intron),而那些保留于mRNA中的片段称为外显子(exon)。
8、转录:是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。
9、同功受体tRNA :转运同一种氨基酸的几种tRNA称为同功受体tRNA 。
《分子生物学》知识要点汇总
![《分子生物学》知识要点汇总](https://img.taocdn.com/s3/m/74e90896284ac850ad024260.png)
《分子生物学》知识要点汇总1. 基因表达:转录+翻译。
2. 时间特异性、空间特异性,管家基因(组成性表达)3. 转录起始(基本控制点)4. 原核与真核区别:基因表达原核真核启动子o 因子识别-35 区TTGACA-10 区TATAAT -25 区TATA 盒TF- ⅡD 决定了聚合酶识别特异性特点操纵子模型具有普遍性顺式作用原件具有普遍性机制主要是负性调节(阻遏调节)主要是正性调节(诱导调节)结果转录衰减染色体结构改变原核生物:单复制子,多顺反子真核生物:多复制子,单顺反子1. 得:染色体分离、化学合成、基因组文库、cDNA 法、PCR 法。
2. 选:克隆载体(质粒、自我复制),表达载体(大肠杆菌)3. 接:DNA 连接酶,黏性末端连接准确性最高。
4. 转:重组质粒导入宿主细胞为转化,重组噬菌体导入大肠杆菌为转染。
5. 筛:载体遗传标志、标志补救、序列特异性(分子杂交、PCR、测序、RE 酶切)、亲和筛选1. RE:细菌产生,识别回文结构,切割双链DNA 得到黏性末端。
2. DNA 连接酶:目的基因+载体重组。
2. DNApol I 的大片段(Klenow):cDNA→dsDNA,标记3´-端。
3. 逆转录酶:mRNA→cDNA。
5. 多聚核苷酸激酶:5´-OH 末端磷酸化作标记探针。
6. 末端转移酶:3´-OH 末端加尾。
7. 碱性磷酸酶:切除末端磷酸基团。
1. 正常。
2. 获得启动子或增强子、染色体易位、基因扩增、点突变。
3. 产物:类别名称生长因子(本质是多肽)sis(过度表达)、int-2生长因子受体(本质蛋白质) fms、kit、her-2/erb-b2 (扩增)、EGFR/erb-b1细胞信号转导蛋白膜结合酪氨酸激酶src、abl(转位)细胞内酪氨酸激酶TRK细胞内丝/苏氨酸激酶 raf膜GTP 结合蛋白ras(点突变)转录因子fos、jun、myc(转位)细胞周期蛋白cyclin D4. 与肿瘤相关。
分子生物学复习资料-绝对重点
![分子生物学复习资料-绝对重点](https://img.taocdn.com/s3/m/59650d0abf1e650e52ea551810a6f524ccbfcbe0.png)
分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。
是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。
二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。
2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。
均为真核生物基因中的转录调控序列。
顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。
3VNTR / STR—可变数目串联重复序列 / 短串联重复。
均为非编码区的串联重复序列。
前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。
(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。
病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。
正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。
当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。
均指在mRNA中的核苷酸序列。
前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。
分子生物学期末考试重点
![分子生物学期末考试重点](https://img.taocdn.com/s3/m/bdda5ca74128915f804d2b160b4e767f5bcf8017.png)
分子生物学期末考试重点分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。
对于这门课程的期末考试,以下是一些重点内容,希望能帮助大家更好地复习。
一、DNA 的结构与功能1、 DNA 的化学组成了解脱氧核苷酸的结构,包括碱基(腺嘌呤 A、胸腺嘧啶 T、鸟嘌呤 G、胞嘧啶 C)、脱氧核糖和磷酸基团。
掌握碱基互补配对原则(A 与 T 配对,G 与 C 配对)。
2、 DNA 的二级结构熟悉 DNA 双螺旋结构的特点,如两条反向平行的多核苷酸链围绕同一中心轴相互缠绕;碱基位于双螺旋内侧,磷酸和脱氧核糖在外侧构成骨架;碱基平面与纵轴垂直,糖环平面与纵轴平行等。
3、 DNA 的高级结构理解超螺旋、核小体等概念。
知道真核生物 DNA 与组蛋白结合形成核小体,进而折叠压缩形成染色质的过程。
4、 DNA 的功能明确DNA 是遗传信息的携带者,通过复制将遗传信息传递给子代,通过转录和翻译控制蛋白质的合成从而实现基因的表达。
二、基因与基因组1、基因的概念掌握基因的经典概念和现代概念。
经典概念认为基因是决定遗传性状的功能单位、突变单位和交换单位;现代概念认为基因是产生一条多肽链或功能 RNA 分子所必需的全部核苷酸序列。
2、基因组了解不同生物基因组的大小和特点。
比如原核生物基因组较小,结构简单,通常为环状 DNA;真核生物基因组较大,结构复杂,包含大量的重复序列和非编码序列。
3、真核生物基因组的特点包括基因不连续性(内含子和外显子)、大量重复序列、存在多基因家族和假基因等。
三、DNA 复制1、复制的基本特征清楚半保留复制、半不连续复制和双向复制的概念。
2、复制的酶学掌握参与 DNA 复制的酶和蛋白质,如解旋酶、拓扑异构酶、引物酶、DNA 聚合酶、连接酶等的作用。
3、复制的过程熟悉原核生物和真核生物 DNA 复制的起始、延伸和终止过程,了解两者的异同点。
四、转录1、转录的基本过程包括转录的起始、延伸和终止。
分子生物学 期末重点
![分子生物学 期末重点](https://img.taocdn.com/s3/m/c099b50a14791711cc7917a2.png)
分子生物学期末考试重点浙江万里学院第一讲绪论1.分子生物学含义广义来讲,蛋白质及核酸等生物大分子结构和功能的研究,也就是从分子水平阐明生命现象和生物学规律。
★狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。
当然,也涉及到与这些过程有关的蛋白质和酶的结构与功能的研究。
2.分子生物学发展简史(了解重要的人物做了什么事,客观题)1944年,Avery在肺炎双球菌转化实验中证实了DNA是遗传的物质基础,标志着分子生物学的诞生;1953年,Watson和Crick在Nature杂志(171:737~738)上提出了著名的DNA双螺旋模型,为分子生物学的发展奠定了坚实的基础;1956年,Kornberg在大肠杆菌的无细胞提取液中实现了DNA的合成;1958年,Crick提出了遗传信息的传递规律,即著名的“中心法则”;同年,Meselson与Stahl 用实验证明了DNA复制是一种半保留复制;1959年,Uchoa发现了细菌的多核苷酸磷酸化酶,成功地合成了RNA,研究并重建了将基因内的遗传信息通过RNA中间体翻译成蛋白质的过程;1961年,Nirenberg和Matthaei破译了所有三联体密码子;同年,法国科学家Jacob和Monod提出了著名的乳糖操纵子模型;1977年,Robert和Sharp在研究腺病毒的mRNA合成时,首次发现了断裂基因的存在;1977年, Sanger和Gilbert分别提出了两种DNA测序技术-酶法(或双脱氧链终止法)和化学修饰法;1981年,Cech和Altman首次发现RNA具有生物催化功能;1983年,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术,极大地推动了分子生物学的发展;1990年,人类基因组计划启动,同时先后开展多种模式生物的基因组测序。
标志着生命科学研究进入“基因组学”时代;1994年,Wilkins和Williams等首次提出了蛋白质组的概念;1997年,Wilmut等首次成功地从体细胞中克隆出羊-Dolly;到目前为止,人们已完成包括人和水稻等重要模式生物的基因组测序工作。
分子生物学知识点
![分子生物学知识点](https://img.taocdn.com/s3/m/9ecb9f3d0640be1e650e52ea551810a6f424c85b.png)
分子生物学知识点分子生物学是生物学的一个重要分支,研究生物体内分子的结构、功能和相互作用等方面的知识。
本文将介绍分子生物学的几个重要知识点,包括基因、DNA复制、蛋白质合成、转录与翻译、基因调控和突变等。
一、基因基因是生物遗传信息的基本单位,是指能够编码蛋白质或功能RNA的DNA片段。
基因分为编码基因和非编码基因两类。
编码基因是指能够直接转录成mRNA并翻译成蛋白质的基因,而非编码基因则是指不具备编码蛋白质能力的基因,其转录产物主要是功能RNA。
二、DNA复制DNA复制是指在细胞分裂过程中,DNA分子能够通过互补配对原则进行复制的过程。
DNA复制是生物体遗传信息传递的基础,也是细胞分裂和繁殖的重要过程。
DNA复制的关键酶是DNA聚合酶,它能够在模板DNA链上合成新链。
三、蛋白质合成蛋白质合成是指在细胞中将mRNA上的遗传信息翻译成蛋白质的过程。
蛋白质合成包括转录和翻译两个过程。
转录是指在细胞核内将DNA上的遗传信息转录成mRNA的过程,而翻译则是在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。
四、转录与翻译转录是指在细胞核内,由RNA聚合酶将DNA模板上的遗传信息转录成mRNA的过程。
转录分为初始化、链式生长和终止三个阶段。
翻译是指在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。
翻译过程中需要使用到tRNA和rRNA等辅助分子。
五、基因调控基因调控是指在生物体内控制基因表达的过程。
基因调控包括转录水平的调控和转录后水平的调控两个层次。
转录水平的调控主要涉及到转录因子和启动子区域的结合,以及染色质构象的调整等。
转录后水平的调控则主要包括RNA剪接、RNA修饰和RNA降解等过程。
六、突变突变是指生物体遗传信息发生永久性改变的现象。
突变可以分为基因突变和染色体突变两类。
基因突变是指基因上的DNA序列发生改变,包括点突变、插入突变和缺失突变等。
染色体突变是指染色体上的结构发生改变,包括染色体缺失、染色体断裂和染色体重排等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释
1.基因表达;
2.组成性基因表达;
3.管家基因;
4.操纵子;
5.顺式作用元件;
6.启动子;
7.增强子;
8.沉默子;
9.反式作用因子;
10.衰减子;
11.降解物基因活化蛋白;
12. 应答元件;
13. miRNA;
14. 基因表达的多级调控;
15. 多顺反子mRNA;
16.表观遗传调控;
17. 原位杂交;
18. 转基因技术;
19.正调控;
20. 负调控。
21.基因突变
22. 自发突变
23.诱发突变
24.致死突变
25. 回复突变
26.碱基替换
27.光修复
28. 切补修复
29.重组修复
30.无义突变
31.错义突变
32.同义突变
33.移码突变
34. 同义突变
35.错义突变
36.无义突变
37.同源重组,
38.Holliday异构体,
39.位点专一性重组
40.转座子
1. 在什么条件下,RNA聚合酶在乳糖操纵子中的活性最大?
2 .举例说明基因表达的时间特异性和空间特异性。
3 .举例说明什么是管家基因及其基因表达特点。
4 .结合乳糖操纵子结构,简述阻遏蛋白和CAP如何协同调
节结构基因转录。
5 .简述原核基因表达调控的特点。
6 .简述真核基因转录因子分类及功能。
7 .简述增强子具有哪些特点。
8 .简述真核生物基因表达调控的特点。
9. 简述操纵子的基本结构。
10.举例说明基因表达的诱导与阻遏,正调控与负调控。
11.简答真核生物基因表达的调控方式。
12.色氨酸的负调控及弱化作用?
14. 乳糖操纵子的正调控及负调控?
15. 原核生物和真核生物基因表达的异同。
16. RNAi的调控机制。
17.基因突变有哪些特征?
18.紫外线照射引起的DNA损伤如何修复?
19.简述同源重组的类型、分子机制、酶类及交换热点。