数值分析计算方法第二章作业
数值分析(任玉杰)第2章 电子作业
在 MATLAB 的工作窗口输入下列程序: >> dfx=poly2sym(dfa) 运行后屏幕显示: dfx = 99*x^10 - 96*x^7 + 5*x^4 - 6*x 即 f(x)’=99x10-96x7+5x4-6x
4、 解: (1)首先在 MATLAB 的编辑窗口建立函数子程序,然后取名 Fun1.m 并保存,即 function F =Fun1(X);x=X(1);y=X(2);z=X(3);F(1)=x+y+z-6; F(2)=x-y+z-2;F(3)=x^2+y^2-z-2; (2)如果取初始值向量 X0=(2,2,2) , 在 MATLAB 工作窗口输入命令: >> X0=[2,2,2];X=fsolve('fun1',X0),F=Fun1(X) 运行后屏幕显示: Equation solved.
5
fsolve completed because the vector of function values is near zero as measured by the default value of the function tolerance, and the problem appears regular as measured by the gradient.
2
方法二: 在 MATLAB 的工作窗口输入下列程序: >> fa=[9,0,0,-12,0,0,1,0,0,-3,0,-12];xk=roots(fa) 运行后屏幕显示: xk = -0.910811253614122 + 0.345576680064890i -0.910811253614122 - 0.345576680064890i -0.656774889890081 + 0.940938053040631i -0.656774889890081 - 0.940938053040631i -0.258789395960213 + 0.989964230452774i -0.258789395960213 - 0.989964230452774i 1.194535509211280 0.882156642561570 + 0.474683106145632i 0.882156642561570 - 0.474683106145632i 0.346951142297207 + 0.854280068479467i 0.346951142297207 - 0.854280068479467i
计算方法各习题及参考答案
第二章数值分析已知多项式p(x) X1 X3 X2 X 1通过下列点:p(x)试构造一多项式q(x)通过下列点:表中p2(X)的某一个函数值有错误,试找出并校正它•答案:函数值表中P2( 1)错误,应有P2(1)O •利用差分的性质证明12 22n2 n(n 1)(2n1)/6 ・当用等距节点的分段二次插值多项式在区间[1,1]近似函数e x时,使用多少个节点能够保证误差不超过1 1062答案:需要个插值节点・设被插值函数f(x)C4[a,b] 出(叫x)是f(x)矢于等距节点baa Xo X1 Xn b的分段三次艾尔米特插值多项式,步长h •试估计n22I I f (x) H3(h)(x) I I .答案:| |f(x) H3(h) (x) | | M4 hl384第三章函数逼近求f(x) sin x, x [0, 0. 1]在空间span{l, x, x2} ±最佳平方逼近多项式,并给岀平方误差.答案:f (x) sin x的二次最佳平方逼近多项式为-52 sin x p2(x) 0. 832 440 7 10-5 1.000 999 lx 0. 024 985 lx2,二次最佳平方逼近的平方误差为0. 12 2 -12_ (sin x) p2 (x)) dx 0. 989 310 7 10~12・确定参数a, b和c ,使得积分[ax2 bx c 1 ] dx取最小值.l(a,b,c)求多项式f (x) 2x' x3 5x2 1在[1, 1]上的3 次最佳一致逼近多项式p(x) •8 10 a , b 0, c 33答案:f(X)的最佳一致逼近多项式为P(X) ; 7;4用幕级数缩合方法,求f (x) e s ( 1 x 1)上的3次近似多项式p6,3 ( x),并估计I f (x) P6,3(X)I ・答案:23 pe,3 ( x) 0. 994 574 65 0. 997 39583x 0. 542 968 75x2 0. 177 083 33x3,:f (x) P6,3 (x) | | 0. 006 572 327 7J求f (x) e s ( 1 x 1)上的关于权函数(x)的三次最佳平方逼近多1 X"项式S3 ( X),并估计误差I f(X)S3(X)〔2 和I I f(X)S3 (x) I •咎23、口Ss(x) 0. 994 571 0. 997 308x 0. 542 99lx2 0. 177 347 x3,丨丨 f (x) Ss(x) | 12 0. 006 894 83 , | | f (x) Ss( x) | | 0. 006 442 575 ・第四章数值积分与数值微分用梯形公式、辛浦生公式和柯特斯公式分别计算积分x n dx (n 1, 2, 3, 4),并与精确值比较答案:计算结果如下表所示式具有的代数术青度.版权文档,请勿用做商业用途h(1 ) h f (x) dx Aif ( h) Ao f (0) Ai f (h)X1(2 ) if (x) dx [f ( 1) 2f (xi) 3f (x?)]乜11 h 2(3) o f (x)dx 2h[ f (0) f (h)] h2[ f (0) f (h)]答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度. a h xi xo ,确定求积公式X12 31 (x xo) f (x) dx h2EAf (xo) Bf (xi) ] h3[Cf (xo) Df (xi) ] R[f]X中的待定参数A, B, C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.2/103)取7个节点处的函数值.用变步长的复化梯形公式和变步长的复化辛浦生公式计算 】山心砥•要求积分13 1610 3和10 6・版权文档,请勿用做商业用途 22 Ts 0. 946满足精度要求;使用复化辛浦生公式时,2 0J 田上述i 公武推导帶修忑项韵営化梯形求积公式K2 其中余域(x)dx= [占(xd 予 CxoH , &b).为 T N h [f po) 2f (xi) 2f (X2) 2f (XN 1) f (XN )],Xi xo in, (i 0, 1, 2, , N), Nh XN XO •$ x 9、用龙贝格方法计算椭圆 / y 2 1的周长,使结果具有五位有效数字. o 4 答案:1 41 9. 6884 .验证高斯型求积公 e f (x) dx Ao f (xo) Ai f (xi)的系数及节点分别为式f<4)()h 6,其中答案:A 3 , B 7 , C 30 20 1440 P2(x)是以 0, h, 口2h •为插值上的二次插值多项式,用3h0 f ( x)dx 的数值积分公式Ih,并用台劳展开法证明:P2 (x)导岀计算积分h 4 f (0) 0(h 5) • 8Ih 0 P2(X )dx°4给定积分Ih[ f(0) 3f (2h)]'sin x dx(2) (3)答5运用复化梯形公式#算上述积分值,使其截断误差不 聲萝改用复化辛浦生公式计算时,截断误差是多少?亠 10 “ •2取同样的求积节 要求的截断误差不超过106,若用复化辛浦生公式,应取多少个节点处的函数值? (1)只需n 7.5,取 9个节点,I 0. 946 ba 4 ⑷"41 6h 1 f ⑷()2) |Rn[f]| |2880 2880 4 5(V 0. 271 10 6 用事后误差估计法时,截断误不超过答案:使用复化梯形公式时,I S4 0. 946 083满足精度要求. f (1) (x) dx插值公式推导带有导数值的求积公式(b i2a )[f (b) f (a)] R[f],其中 确定高斯型求积公式0 xf (x) dx Aof (xo) Aif (xi)闻 xo , xi 及系数Ao,Ai.答案:xo 0. 289 949xi 0. 821 162 , Ao 0. 277 556, Ai 0. 389 111. 利用埃尔米特 b%ba[f(R f 山)]Ao 2: 2S Ao 2: 21x 0 2 2, Xi 2 2 . 第五章解线性方程组的直接法1 11用按列选主元的高斯若当消去法求矩 A 的逆矩阵’其中A21 01 1 0答案:用追赶法求解三对角方程组21 X11 131X22111X3221x4欣X4 2, X3L X2 1, XI 0 .第六章解线性代数方程组的迭代法X! 8X2 7X! 9X2 8作简单调整,使得用高斯一赛得尔迭代法求解时对任9x1 X2 X3 7 意初始向量都收敛,并取初始向量X (O ) [0 0 0]T使(k 1)k ()3||x (k bx k ()|| 10.3版权文档,请勿用做商业用途答案:近似解为X” [1.0000 1. 0000 1. 0000] T . 6 . 2讨论松弛因子1. 25时,用方法求解方程组1020X150101x231243x3170103x4答案: xi 2、X3 2X 21,Xi 1.411XI6 1 4. 25 2. 75X20. 512. 753. 5 X31. 25 答 xi 2X2X3用平方根法(分解法)求解方程组3用矩阵的直接三角分解法解方程组4x1 3x2 16 3xi 4x2 X3 20X2 4x312〔121,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛・12 1 123 0 2 X1bi6・4 设有方程组0 21X2b 2讨论用雅可比方法和咼斯一赛得尔方21 2 X3b3法解此方程组的收敛性•如果收敛,比较哪种方法收敛较 版权文档,请勿用做商业用途为6 . 3给定线性方程组Ax b,其中答案:雅可比方法收敛,高斯一赛得尔方法收敛,且较快.6. 5设矩阵A 非奇异.求证:方程组Ax b 的解总能通过高斯一赛得尔方法得到. …Aaij n n 为对称正定矩阵,对角阵D diag (an, a22 , , ann)・求证:高斯u 一赛得尔方法求解方程组D 2 AD 2x b 时对任意初始向量都收 敛.第七章非线性方程求根例7. 4对方程3x 2 e s 0确定迭代函数(x)及区间[a, b ],使对xo [a, b ],迭代过程 XR i (x), k 0, 1, 2,均收敛,并求解.要求 xk 1 xk | 10x X? 0.458960903 •在[3, 4]上,将原方程改写为e x 3 x 2 ,取对数得性条件,则迭代序列xki In(3 xk 2 ), k 0, 1,2,在[3, 4]中有惟一解.取x 0 3.5 , x xie 3.733067511 •例7 . 6对于迭代函数(x) x c(x 2 3),试讨论:的收敛性・若收敛,则取 x (0)[0 0 0]T迭代求解,使 ||x (I )x (k)1104-X1 1.50001,X2 答案:方程组的近似解3.33333,X32.16667 •答案:若取(X )e 2 ,则在[1,0]中满足收敛性条件,因此迭代法e 2k , k 0,1,2,在(1,0)中有惟一解•取 X0 0. 5, 3取(X )9 e"i,在[0 ,上1满足收敛性条件, 迭代序列1Xk 1 k 1 03k 0, 1, 2,在[0,1]中有惟一解.取 xo 0. 5,X X140.910001967x 2 ) (x)・满足收敛x In (3(1)当c为何值时,x kl (x k)产生的序列{x k}收敛于3;(2)c取何值时收敛最快?顿法收敛,证明牛顿迭代序列{Xk }有下列极限矢系:l k im xk i 2xk xk i第八章矩阵特征值用乘幕法求矩阵A 的按模最大的特征值与对应的特征向量,已矢口 5 5 0 A 0 5. 5 1,要求 x (k)| 10 6,这里 严表示|的第k 次近似值.3 1答案:1 5 ,对应的特征向量为[5,0,0] T :2 5 ,对应的特征向量为[5, 10, T 5 ・]1 1 0>彳 2的按模最小的特征12例7设不动点迭代xki (x)的迭代函数(x)具有二阶连续导数,/是(x)的不动1 1 5取C,力別If 鼻(X 丿旳个动点3 '妥吞| XkiXkl 1U- •3) 223(1 ) c (,0)时矗代收敛•答案: 31c 时收敛最快• O 、 233)分别取c 1,123,并取xo1.5,计算结果如下表7• 7所示yk点,且(X*) 1,证明迭代式(xk ) , Zk (xk )(yk x k )2 , k 0, 1, 2,二阶收敛于x"・版Xk 1 Xk Zk 2yk Xk权文档,请勿用做商业用途 例设(x) x p(x) f (x) q(x)f 2),试确定函数p(x)和q(x),使求解f (x) 0且以(x)为迭代函数的迭代法至少三阶收 敛.案:p(x) f X (x )・ q(x) ;[f f (W]3例7设f (x)在[a, b]上有高阶导数,x* (a, b)是 f(x) 0的m(m 2)重根,且牛知A 的按模较大的特征 值用反幕法求矩阵A的近似值为15,用p 5的原点平移法计算1及其对应的特征向量.版权文档,请勿用做商业用途 答案:0 A 的按模最小的特征值为3 0. 238442812212第九章 微分方程初值问题的数值解法用反复迭代(反复校正)的欧拉预估一校正法求解初值问题y © 0] 0<x 0.2 5 ,要求取步长h 0. 1,每步迭代误差不超过10 5 .答案:Y y(0. 1) yi y 】⑷ 0. 904 762 , y(0. 2) y 2 y?⑷ 0.818 594267 一x y , 0<x 0. 4用二阶中点格式和二阶休恩格式求初值问题"“ “嗜厲汀⑹1长h 0.2,运算过程中保留五位小数). 计算得用平面旋转变换和反射变换将向量X [23 0 5] T 变为与 ei [1 0 0 0]T 平行的向量.2/ 38 3/ 385/ 38答案: T3/ 13 2/ 13 0 00 1 010/ 49415/ 4940 13/4940. 324 442 840 0. 486 664 262 0 0. 811107 1040. 486 664 2620.812 176 0480 0.298 039 922H10.811 107 104 0. 298 039 922 00.530 266 798然后用QR 方法求A 的全部特征值.4 4 5答案:取5 2. 234375即有2位有效数字. 532若A 6 4 4 ,试把A 化为相似的上阵, 值, 21n 0 时,Ki 1.000 00, K2 1. 200 00, y(0. 2) yi=l. 240 00n 1 时,Ki 1. 737 60, 用二阶休恩格式, K 2 2. 298 72, 取初值yo 1计算得y(0. 4) y 2 =1. 699 740 1 5. 1248854 ,对应的特征向量为(8) _设方阵A 的特征值都是实数,且满足 n)时, [0.242 4310, 1 , 0. 320 011 7],为求1而作原1 2 n,点平移'试证:当平移量P 2,(2幕法收敛最快•用二分法求三对角对〈方 A的最小特征 使它至少具有2位有212 答案:用二阶中点格式,取初值yo 1n 0 时,Ki 1.000 00, Ka 1.266 67, y(0.2) yi=1.240 00n 1时,Ki 1.737 60, Ka 2.499 18, y(0.4) y 2 =1.701 76用如下四步四阶阿达姆斯显格式 y n 1 y n h(55f n 59 fn 137fn2 9fn 3)/24求初值问题y x y, y(0) 1在[0,0.5]上的数值解•取步长h 0.1 小数点后保留8位•答 y(0.4) y 40.583 640 216 ‘ y(0.5) y 51.797 421 984 ・ 为使二阶中点公式ym yn hf(Xn h 2h,yn h f(Xn, yn)),求解初值问题2 n nh 的大小应受到的限制条件・hf (Xn,yn)用如下反复迭代的欧拉预估T&榴式 yn (k 11) yn h[f(Xn,y n ) f(Xn1,y n (k)1)]'k 0,1,2,; n 0,1,2,求解初值问题心讪•小时,如何选择步长h ,使上述格式矢于k 的迭y(0) 1代收敛•2答案:h 时上述格式尖于K 的迭代是收敛的・e求系数a,b,c,d ,使求解初值问题y f (x, y), y(xo) a 的如下隐式二步法 yn2aynh(bfn2Cfmdfn)的误差阶尽可能高,并指出其阶数•高'为五阶。
数值分析上机作业2
数值实验数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。
求解方法大致可分为直接法和迭代法两大类。
直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。
当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。
如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。
Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。
对正定对称矩阵,采用平方根方法无需选主元。
方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。
实验一一、实验名称:矩阵的LU分解.二、实验目的:用不选主元的LU分解和列主元LU分解求解线性方程组Ax=b, 并比较这两种方法.三、实验内容与要求(1)用所熟悉的计算机语言将不选主元和列主元LU分解编成通用的子程序,然后用编写的程序求解下面的84阶方程组将计算结果与方程组的精确解进行比较,并就此谈谈你对Gauss消去法的看法。
(2)写出追赶法求解三对角方程组的过程,并编写程序求该实验中的方程组(1)①不选主元高斯消去法求解方程组function [L,U]=gauss1(A,b)n=length(A);for k=1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A(:,1:n),-1)+eye(n);U=triu(A);主程序为:Clear;clc;a=ones([84,1])*6;b=ones([83,1]);c=ones([83,1])*8;A=diag(a)+diag(b,1)+diag(c,-1); d=ones([82,1])*15;b=[7;d;14];[L U]=gauss1(A,b);n=length(A);y=ones(n,1);y=L\b;x=ones(n,1);x=U\y解为:x=11.000000000000001.000000000000001.000000000000000.9999999999999981.000000000000000.9999999999999931.000000000000010.9999999999999721.000000000000060.9999999999998861.000000000000230.9999999999995451.000000000000910.9999999999981811.000000000003640.9999999999927251.000000000014550.9999999999708981.000000000058200.9999999998835921.000000000232820.9999999995343671.000000000931270.9999999981374691.000000003725060.9999999925498741.000000014900250.9999999701994971.000000059601010.9999998807979861.000000238404030.9999995231919461.000000953616110.9999980927677831.000003814464440.9999923710711301.000015257857740.9999694842845201.000061031430960.9998779371380811.000244125723840.9995117485523231.000976502895350.9980469942092911.003906011581410.9921879768371871.015624046325570.9687519073490881.062496185300920.8750076294018071.249984741181830.5000305176945351.99993896437811 -0.999877927824961 4.99975585192486 -6.99951168894947 16.9990233182979 -30.9980463981918 64.9960918427676 -126.992179871071 256.984344484284 -510.968627937136 1024.93701174855 -2046.87304699420 4096.74218797682 -8190.46875190732 16383.8750076293 -32764.5000305175 65531.0001220701 -131055.000488281 262097.001953124 -524127.007812498 1048001.03125000 -2094975.124999994185857.49999999-8355328.9999999716645128.9999999-33028126.999999965007744.9999998-125821439.000000234866688.999999-402628606.999999536838144.999998可见,这是一个病态方程,从56个跟开始发散。
数值分析计算方法试题集及答案
数值分析复习试题第一章 绪论 一. 填空题 1.*x为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 位;又取 1.73≈-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为0.01 。
6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为0.0000204 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3位和 4 位有效数字。
9、若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
北航数值分析大作业第二题(fortran)
!计算A(r+1) DO I=1,N DO J=1,N A(I,J)=A(I,J)-W(I)*U(J)-U(I)*P(J) ENDDO ENDDO ENDIF ENDDO RETURN END
!***************符号函数子程序*****************! FUNCTION SGN(X) REAL(8) X IF(X>0) THEN SGN=1 ELSE IF(X<0) THEN SGN=-1 ELSE IF(X==0) THEN SGN=0 ENDIF END
DIMENSION A(N,N),A1(N,N),A2(N,N),C(2,N),Q(N,N),R(N,N),CR(N),CM(N)!C为存储特征值的数 组,1为实部,为虚部 REAL(8) A,A1,A2,C,Q,R,CM E=1E-12 L=1000 !精度水平 !迭代最大次数
OPEN(1,FILE='数值分析大作业第二题计算结果.TXT') DO I=1,N DO J=1,N IF(I==J) THEN A(I,J)=1.52*COS(I+1.2*J) ELSE A(I,J)=SIN(0.5*I+0.2*J) ENDIF ENDDO ENDDO A1=A WRITE(*,"('矩阵A为:')") WRITE(1,"('矩阵A为:')") DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,\)") A(I,J) WRITE(1,"(2X,E20.13,2X,\)") A(I,J) ENDDO WRITE(*,"(' ')") WRITE(1,"(' ')") ENDDO !使用矩阵的拟上三角化的算法将矩阵A化为拟上三角矩阵A(n-1) CALL HESSENBERG(A,N) WRITE(*,"('拟上三角化后矩阵A(n-1)为:')") WRITE(1,"('拟上三角化后矩阵A(n-1)为:')") DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,\)") A(I,J) WRITE(1,"(2X,E20.13,2X,\)") A(I,J) ENDDO WRITE(*,"('')") WRITE(1,"('')") ENDDO !计算对矩阵A(n-1)实行QR方法迭代结束后所得矩阵 A2=A CALL QRD(A2,N,Q,R)
数值分析习题(含标准答案)
]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。
数值分析作业答案
第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
数值分析-第二次作业答案
2020级数值分析第二次作业(非线性方程求根)参考答案和评分标准班级学号姓名一(20分)用二分法求方程3()10f x x x =--=在区间[1.0,1.5]内的一个实根,且要求有3位有效数字。
试完成:(1)估计需要二分的次数;(8分)解:容易知道方程在[1.0,1.5]有且仅有一个实根。
记此实根为*x ,根据二分法误差估计公式有12()1*22k k k b a x x ++--≤=要使得近似解有3位有效数字,只需要有22111022k -+≤⨯从而可得6k ≥,即满足精度要求的二分次数为6次。
(2)将计算过程中数据填入表1.(中间过程填写到小数点后面3位)(12分,每个k x 得2分,其它空不计分)表1题1计算过程kk a k b kx 0 1.0 1.5 1.251 1.25 1.5 1.3752 1.25 1.375 1.3163 1.313 1.375 1.3494 1.313 1.344 1.3285 1.313 1.328 1.32061.3201.3281.324二.(10分)为了计算方程()3sin 2120f x x x =--=的根,某同学将()0f x =改写为14sin 23x x =+,并建立迭代公式114sin 23k k x x +=+。
请问此迭代公式在R 上是否全局收敛的吗?说明理由。
证明:(1)对任意的x R ∈,有11113()4sin 2,333x x R ϕ⎡⎤=+∈⊆⎢⎣⎦;(2)对任意的x R ∈,有22'()cos 2133x x ϕ=≤<;从而可知,迭代格式在R 上全局收敛。
三.(20分)设有方程3()10f x x x =--=,试回答下列问题:(1)确定方程3()10f x x x =--=实根的数目;(4分)解:由2'()31f x x =-可知函数3()1f x x x =--的单调递增区间是,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,单调递减区间是,33⎛- ⎝⎭。
数值分析上机作业
《数值分析》上机作业(第一二三章)学院:电气工程学院班级:电气13级硕士2班教师:石佩虎老师姓名:**学号: ******第一章实验1 舍入误差与有效数设2211NN j S j==-∑,其精确值为1311()221N N --+。
(1) 编制按从大到小的顺序222111 (21311)N S N =+++---,计算N S 的通用程序; (2) 编制按从小到大的顺序222111...1(1)121N S N N =+++----,计算N S 的通用程序; (3) 按两种顺序分别计算210S 、410S 、610S ,并指出有效位数(编制程序时用单精度); (4) 通过本上机题你明白了什么?解答如下:(1). 按从大到小的顺序计算N S 的通用程序如下所示: n=input('Please Input an N (N>1):'); y=0;accurate=1/2*(3/2-1/n-1/(n+1)); %精确值 for i=2:1:n %从大到小的顺序 x=1/(i^2-1);x=single(x); y=y+x; enderror= accurate-y; format long;disp('____________________________________________________'); disp('The value of Sn from large to small is:'); disp(y);disp('The value of error is:'); disp(error);(2) 编制按从小到大的顺序计算N S 的通用程序如下所示: n=input('Please Input an N (N>1):'); y=0;accurate=1/2*(3/2-1/n-1/(n+1)); for i=n:-1:2 x=1/(i^2-1);x=single(x); y=y+x;enderror= accurate-y; format long;disp('____________________________________________________'); disp('The value of Sn from large to small is:'); disp(y);disp('The value of error is:'); disp(error);(3) 计算结果:按从大到小的顺序计算得:(4)总结:当我们采用不同的计算顺序,对于同一个计算式,会得出不同的结果。
数值分析第二版(丁丽娟)答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
第八章答案
练习: 第一章
答案
练习二 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为
,
,
,
,
,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
第一章答案第二章答案第三章答案第四章答案050525000500005500010500019000019500021000000000000000380001950004250009100009150001700000000000000018199999999999999166363636363636371705000315000031550001623809523809523716578947368421051161794871794871796825000146700001467500016058823529411764161208791208791201603825136612021827305000505100005051500016014662756598241160349206349206351601109350237717910922500023483000023483500016003663003663004160074982958418521600238500851788743690500080827000080827500016000915583226515160021777865769151600069286350589则开根号得400011444626607140002722140595534000086607000640对应的特征向量为第五章答案第六章答案2727930204331053600038939418364475947673代入数据得132解
数值方法(第2版)答案
C语言编程习题第二章习题2-25.用二分法编程求6x4 -40x2+9=0 的所有实根。
#include <stdio.h>#include <math.h>#define N 10000double A,B,C;double f(double x){return (A*x*x*x*x+B*x*x+C);}void BM(double a,double b,double eps1,double eps2){int k;double x,xe;double valuea = f(a);double valueb = f(b);if (valuea > 0 && valueb > 0 || valuea <0 && valueb < 0) return;printf("Finding root in the range: [%.3lf, %.3lf]\n", a, b);for(k=1;k<=N;k++) {x=(a+b)/2;xe=(b-a)/2;if(fabs(xe)<eps2 || fabs(f(x))<eps1) {printf("The x value is:%g\n",x);printf("f(x)=%g\n\n",f(x));return;}if(f(a)*f(x)<0) b=x;else a=x;}printf("No convergence!\n");}int main(){double a,b,eps1,eps2,step,start;printf("Please input A,B,C:\n");scanf("%lf %lf %lf",&A,&B,&C);printf("Please input a,b, step, eps1,eps2:\n");scanf("%lf %lf %lf %lf %lf",&a,&b,&step,&eps1,&eps2);for (start=a; (start+step) <= b; start += step) { double left = start;double right = start + step;BM(left, right, eps1, eps2);}return 0;}运行:Please input A,B,C:6 -40 9Please input a,b, step, eps1,eps2:-10 10 1 1e-5 1e-5Finding root in the range: [-3.000, -2.000]The x value is:-2.53643f(x)=-0.00124902Finding root in the range: [-1.000, 0.000]The x value is:-0.482857f(x)=0.00012967Finding root in the range: [0.000, 1.000]The x value is:0.482857f(x)=0.00012967Finding root in the range: [2.000, 3.000]The x value is:2.53643f(x)=-0.00124902有时若把判别语句if(fabs(xe)<eps2 || fabs(f(x))<eps1)改为if(fabs(xe)<eps2 && fabs(f(x))<eps1)会提高精度,对同一题运行结果:Finding root in the range: [-3.000, -2.000]The x value is:-2.53644f(x)=-4.26496e-007Finding root in the range: [-1.000, 0.000]The x value is:-0.482861f(x)=-7.3797e-006Finding root in the range: [0.000, 1.000]The x value is:0.482861f(x)=-7.3797e-006Finding root in the range: [2.000, 3.000]The x value is:2.53644f(x)=-4.26496e-007习题2-35. 请用埃特金方法编程求出x=tgx在4.5(弧度)附近的根。
数值分析第二次大作业SOR最优松弛因子选取方法及SOR迭代法的改进
《数值分析》第二次大作业题目:SOR最优松弛因子选取方法及SOR迭代法的改进内容:1.SOR最优松弛因子选取方法2.SOR迭代法的改进(SSOR迭代法)3.SSOR迭代法的Matlab程序4.举例比较jacobi,Gauss-Seidel,SOR及SSOR 迭代法的收敛速度姓名:合肥工业大学学号:2011班级:信息与计算科学11-1班参考资料:1.《确定SOR最优松弛因子的一个实用算法》李春光等《计算力学学报》2.《数值分析与实验》,薛毅,北京工业大学出版社.3.《数值分析中的迭代法解线性方程组》,马云,科学出版社4.《非线性互补问题的改进超松弛迭代算法》,段班祥等,江西师范大学出版社5.《迭代法解线性方程组的收敛性比较》,郑亚敏,江西科学出版社.一、SOR最优松弛因子选取方法SOR迭代法迭代公式:x(k+1)i=(1-ω)xi+(k) bi-∑aijxjaii⎝j=1ω⎛ i-1(k+1)-j=i+1∑axijn(k)j⎫⎪ (i=1,2,..n.), ⎪⎭1.二分比较法将松弛因子1/2,ω的区间(1,2)进行二分,每个小区间的长度为ω去中间值3/2,按照SOR 迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定ω的值;否则将(1,2)四等分,每个区间长度为1/4,ω取各分点值,继续迭代,一般地,将1区间(1,2)二分M次,每次二分步长为,ω一次取取各分点值,2M按照SOR迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定的ω的值,这样总能找到一个不超过指定发散常数ω值。
2.逐步搜索法将1+ω的取值区间(1,2)进行M等分,ω分别取ω的值。
12M-1,1+,...,1+,通过迭代公式依次对同意精度要求求出迭代MMM次数k的值,并从中选出最优松弛因子3.黄金分割法依据黄金分割比的思想,通过计算机主动选取最优松弛因子的近似值,步骤如下a.对(1,2)区间进行第一次0.618的分割,区间边界a1=1,b1=2,在区间(a1,b1)分割出黄金点p1=a1+0.618(b1-a1),进行SOR迭代法的迭代,求出迭代次数k的值,如果没有超过规定的发散常数,迭代结束,否则做步骤b。
北航数值分析报告大作业二
数值分析大作业(二)学院名称宇航学院专业名称航空宇航推进理论与工程学生姓名段毓学号SY16153062016年11月5日1 算法设计方案首先将矩阵A 进行拟上三角化,把矩阵A 进行QR 分解,计算出RQ 。
要得出矩阵A 的全部特征值,首先对A 进行QR 的双步位移得出特征值。
最后,采用列主元的高斯消元法求解特征向量。
1.1 A 的拟上三角化因为对矩阵进行QR 分解并不改变矩阵的结构,因此在进行QR 分解前对矩阵A 进行拟上三角化可以大大减少计算机的计算量,提高程序的运行效率。
具体算法如下所示,记A A =)1(,并记)(r A 的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)(ΛΛ+==。
对于2,,2,1-=n r Λ执行 若()n r r i a r ir,,3,2)(Λ++=全为零,则令)()1(r r A A =+,转5;否则转2。
计算()∑+==nri r ir r a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若)(,12r rr r r r a c c h +-=令()nTr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0ΛΛ。
计算r r T r r h u A p /)(=r r rr r Tr r h u p t /=r r r r u t q -=ωT rr T r r r r p u u A A --=+ω)()1(继续。
1.2 A 的QR 分解具体算法如下所示,记)1(1-=n A A ,并记[]nn r ij r a A ⨯=)(,令I Q =1 对于1,,2,1-=n r Λ执行 1.若()n r r i a r ir ,,3,1)(Λ++=全为零,则令r r Q Q =+1r r A A =+1,转5;否则转2。
天津大学《数值计算方法》在线作业二答案
A.按模最大
B.按模最小
C.全部
D.任意一个
?
正确答案:B
8. ()是利用函数的值求自变量的值。
A.三次样条插值
B.反插值
C.分段插值
D.爱尔米特插值
?
正确答案:B
9. A.
B.
C.
D.
?
正确答案:B
10.梯形公式是求解常微分方程的()阶方法。
《数值计算方法》在线作业二
一,单选题
1. A. 1
B. 2
C. 0
D. 3
?
正确答案:A
2.设f(-1)=1,f(0)=3,f(2)=4,则抛物插值多项式中x2的系数为()。
A. -0.5
B. 0.5
C. 2
D. -2
?
正确答案:A
3.求解一阶常微分方程初值问题的梯形公式为()步法。
A.多
B. 2
C. 3
A.错误
B.正确
?
正确答案:A
8.高斯-塞德尔迭代法一定比雅可比迭代法收敛快。()
A.错误
B.正确
?
正确答案:A
9. A.错误
B.正确
?
正确答案:A
10.逐次超松弛迭代法是高斯-赛.正确
?
正确答案:B
A. 2
B. 4
C. 3
D. 5
?
正确答案:A
二,判断题
1.梯形方法是一种隐式的多步法。()
A.错误
B.正确
?
正确答案:A
2.求解微分方程初值问题的向后Euler法是隐式方法。()
A.错误
B.正确
计算方法与实习第五版-习题答案
方程求根
习题2——3:用简单迭代法求方程ex-4x=0的 根,并验证收敛性,精确到4位有效数字。
解:2.在区间[0,1]上构造收敛的公式并计算
x=ln(4x)= φ2(x) (1)两种等价形式: x=ex/4=φ1(x); xk (2) x=ex/4=φ1(x): e |φ1’(x)|=ex/4<1 (收敛), 迭代公式为: xk 1
(3) x=ln(4x)= φ2(x): |φ2’(x)|=1/x<1 (收敛),
迭代公式为:
xk 1 ln(4xk )
x3=2.137 x8=2.153
(4) 计算:x0=2 x4=2.146 x5=2.150
x1=2.079 x2=2.118 x6=2.152 x7=2.153 ∴ x ≈ 2.153
绪论
习题1——1:指出下列各数有几位有效数字
4.8675 4.08675 0.08675 96.4730 96*105 5 6 4 6 2
0.00096
2
绪论
习题1——2:对下列各数写出具有5位有效数 字的近似值
3.25894 3.25896 4.382000 0.000789247
3.2589
1.《计算方法》课程主要研究以计算 机为工具的 数值 分析方法 ,并评价 该算法的计算误差。 2.近似值作四则运算后的绝对误差限 公式为 ( x1 x2 ) ( x1 ) ( x2 ) ,近似值 1.0341的相对误差限不大于 1 10 2 , 则它至少有三位有效数字。 4
2 3
| x 0 1.5
=0.4557 <1(收敛) ∴2比1收敛快
∵ | 2’(x)|<|1’(x)|
数值分析上机作业(2)
一、数值求解如下正方形域上的Poisson 方程边值问题 2222(,)1,0,1(0,)(1,)(1),01(,0)(,1)0,01u u f x y x y x y u y u y y y y u x u x x ⎧⎛⎫∂∂-+==<<⎪ ⎪∂∂⎪⎝⎭⎨==-≤≤⎪⎪==≤≤⎩二、用椭圆型第一边值问题的五点差分格式得到线性方程组为2,1,1,,1,10,1,,0,141,?,?,?,?0,1i j i j i j i j i j ijj N j i i N u u u u u h f i j N u u u u i j N -+-+++----=≤≤====≤≤+, 写成矩阵形式Au=f 。
其中1.三 、编写求解线性方程组Au=f 的算法程序, 用下列方法编程计算, 并比较计算速度。
2.用Jacobi 迭代法求解线性方程组Au=f 。
3.用块Jacobi 迭代法求解线性方程组Au=f 。
4. 用SOR 迭代法求解线性方程组Au=f,用试算法确定最佳松弛因子。
1122N N v b v b u f v b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4114114ii A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭11,12,1,121,22,2,21,2,,2211,12,1,121,22,2,221,2,,(,,...,),(,,...,),......,(,,...,)(,,...,)?,(,,...,)?,......,(,,...,)?1,999,0.10.011T T N N TN N N N N T T N N T N N N N N v u u u v u u u v u u u b h f f f b h f f f b h f f f h N h N ====+=+=+===+取或则或,1,,1,2,...,i j f i j N== 1122NN A I I A A I I A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭5.用块SOR 迭代法求解线性方程组Au=f,用试算法确定最佳松弛因子。
清华大学贾仲孝高等数值分析第二次作业
1. 解:由于求解Ax b =等价于极小化2Ax b -,相当于极小化泛函:()()1,2x Ax b Ax b ϕ=-- 从任一k x 出发,沿着()x ϕ在k x 点下降最快的方向搜索下一个近似点1k x +,使得()1k x ϕ+在该方向上达到极小值,最速下降方向为:()()T T k k x A Ax b A r ϕ-∇=--=令1,T k k k k k k p A r x x p α+==+,需要寻找合适的k α使得()()11min k k Rx x αϕϕ++∈=,则()()()()()()1,=T T T T k k k k k k k k d x x p p A A x p b p A p r d ϕϕααα+=∇=+-- 令()0d x d ϕα=,可得: ()()()(),,,,k k k k k k k k k Ap r p p Ap Ap Ap Ap α==则()22,0k k d Ap Ap d ϕα=>,因此上式的k α即为所求 于是得到极小化泛函()()1,2x Ax b Ax b ϕ=--的最速下降法: 1) 选取初值0n x R ∈,计算00r b Ax =-2) k=0,1,2,……若k r ε≤,则停止;ε为事先给定的停机场数;否则,k=k+1()()11;,;,;;T k k k k k k k k k k k k k k k p A r p p Ap Ap x x p r r Ap ααα++===+=-2. 解:()()111k k k k AAAx x x r x p A x x α***----=+-=-其中()1p A A α=-,设A 的特征根为120n λλλ≥≥≥> ,则有()11max k i k AAi nx x p x x λ**-≤≤-≤-当120αλ<<时,()1max 1i i np λ≤≤<,因此此方法收敛当()111n αλαλ-=--即12n αλλ=+时,()1max i i n p λ≤≤取最小值11n nλλλλ-+,此时收敛最快3. 解:设x *为方程组Ax b =精确解,k k e x x *=-,则()1,TT Tk k k E e e -=,则原迭代法等价于()110k k I A I E E I βαβ+⎡++-⎤=⎢⎥⎣⎦令()10I A I B I βαβ⎡++-⎤=⎢⎥⎣⎦,则迭代法收敛等价于()1B ρ<,即()1,1i B i nλ<≤≤,令0B I λ-=,即 ()10n I A ββλαλλ⎛⎫+--+-= ⎪⎝⎭ 当0λ≠时,则有10I A ββλαλ⎛⎫+--+= ⎪⎝⎭设120n μμμ≥≥≥> 是A 的特征根,则有()210101112i i i ββλαμλλβαμλβλβαμβ+--+=-+++=<⇔++<+<则有:()()()11112,1211,0,1211,0i i B i ni n ρβαμβββαμββαμ<⇔++<+<≤≤+⇔<-<<≤≤+⇔<-<< 4.5. 证明:反证法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次差值多项式 (1)用单项式基底 (2)用拉格朗日插值基底
(1)解:设 f(x)abxcx2 则a+b+c=0 a-b+c=-3 a+2b+4c=4
解得
a7,b3,c5 326
所以 f(x)73x5x2
解:由p(0)=0,p(1)=1,p(2)=1,我们可以得出
P 2 ( x ) ( x ( 1 1 ) ) ( ( x 2 ) 2 ) 0 ( 1 ( x ) 0 ( ) x ( 1 2 2 ) ) 1 ( ( 2 x ) ) ( ( 2 x 1 1 ) ) 1 1 2 x 2 3 2 x
将 p'(0)0,p'(1)1 代入到上式中,得出
a 3 ,b 1
4
4
从而有 P4(x)1 4x43 2x39 4x2
p ( x 0 ) f ( x 0 ) , P '( x 0 ) f '( x 0 ) , P ''( x 0 ) f ''( x 0 ) ,p ( x 1 ) f ( x 1 )
解:设 P ( x ) f( x 0 ) f'( x 0 ) ( x x 0 ) f''2 ( x ! 0 )( x x 0 ) 2 a ( x x 0 ) 3
解:设P(x)= ax3bx2cxd
则 P'(x)3ax22bxc
d 0 代入已知条件,得到: c 1
abcd 1 3a 2b c 2
解得a=1,b=-1,c=1,d=0
所以P(x)= x3 x2 x
16.求一个次数不高于4次的多项式P(x),使它满足:
p ( 0 ) p '( 0 ) 0 ,p ( 1 ) p '( 1 ) 1 ,p ( 2 ) 1
32 6
(2)解: l0 (x ) (( x x 0 x x 1 1 ) )( (x x 0 x x 2 2 )) ((x 1 1 1 ) )( (1 x 2 2 )) (x 1 )2 (x 2 )
l1(x)
(x1)(x2) 6
l2(x)
(x1)(x1) 3
R 2(x)e 6 (xx0h)(xx0)(xx0h)
令 t x x0
则
R2 (t)
e 6
(t3 h2t)
当t= 3 h 3
时,上式有最大值 2 3 h 3 9
则
R 2(t)e 6 (t3h2t)e 6 4293h310 6
解得 h6.58*103
13.求次数小于等于3的多项式P(x),使满足条件:
从而 P 4 ( x ) P 2 ( x ) a x ( x 1 ) ( x 2 ) b x 2 ( x 1 ) ( x 2 ) a,b都为待定系数
P 4 '( x ) 4 b x 3 3 ( a 3 b ) x 3 ( 4 b 6 a 1 ) x 2 a 3 2
n
于是有 Rn(x)xk xikli(x)0 i0 n 所以 f(x)xk Ln(x) xikli(x) i0
n
(2)解:当f(t)=(t-k)^k(k<=n)时,Pn(t) lj(t)(xj x)k, j0
又因为 f (n1)(t) 0 ,所以 Rn (t) 0
a x b
a x b 2 !
8
8 a x b
6.在-4<=x<=4上给出f(x)=e^x的等距节点函数表,若用二次插值求e^x的 近似值,要求截断误差不超过10^-6,问使用函数表的步长h应取多少?
解:假设节点取 x0h,x0,x0h
R 2 ( x ) f( 3 3 ) ! ()w 3 ( x ) e 6 ( x x 0 h ) ( x x 0 ) ( x x 0 h )
Rn(x)f'2'(!)(xa)(xb)
Ln(x)a f( ab )(xb)b f (ba )(xa)0
所以 f(x)f''()(xa)(xb)
2!
m a x f( x ) m a x f''() ( x a ) ( x b ) 1 ( b a ) 2f''() 1 ( b a ) 2 m a x f''( x )
a为待定系数,这样的P(x)显然满足前三个条件,将第四 个条件代入,可以求解出:
af(x1)f(x0)f'(x (0 x )1 (x 1x 0) x 3 0)f''( 2 x0)(x1x0)2
将a带回到P(x)中即可
14.求次数小于等于3的多项式P(x),使其满足条件:
p (0 ) 0 ,P '(0 ) 1 ,P ( 1 ) 1 ,p '( 1 ) 2
Ln(x)kn 0yklk(x)5 6x23 2x7 3
4.设xj为互异节点,求证:
(1) n
x
k j
l
j
(
x)
xk
j 0
(2) n (xj x)klj (x) 0 j0
(1)解:余项定理 Rn(x)f(x)Ln(x)f((nn1)1()!)wn1(x) 当f(x)=x^k(k<=n)时, f (n1)(x) 0
n
即 (tx)k lj(t)(xj x)k 0 j0
n
将t替换为x,得到 (xj x)klj (x) 0 j0
5.设 f(x)C2 a,b 且f(a)=f(b)=0,求证:m ax a x bf(x)1 8(ba)2m aபைடு நூலகம்a x x bf''(x)
解:Rn(x)f(x)Ln(x)