2017年天津中考数学试题及答案

合集下载

2017年天津市中考数学试卷解析版

2017年天津市中考数学试卷解析版

2017年天津市中考数学试卷解析版一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣8解:(﹣3)+5=5﹣3=2.故选:A .2.cos60°的值等于( )A .√3B .1C .√22D .12 解:cos60°=12,故选:D .3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .解:A 、不可以看作是轴对称图形,故本选项错误;B 、不可以看作是轴对称图形,故本选项错误;C 、可以看作是轴对称图形,故本选项正确;D 、不可以看作是轴对称图形,故本选项错误.故选:C .4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .0.1263×108B .1.263×107C .12.63×106D .126.3×105解:12630000=1.263×107.故选:B .5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D . 解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选:D .6.估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选:C .7.计算a a+1+1a+1的结果为( )A .1B .aC .a +1D .1a+1解:原式=a+1a+1=1, 故选:A . 8.方程组{y =2x 3x +y =15的解是( ) A .{x =2y =3 B .{x =4y =3 C .{x =4y =8 D .{x =3y =6解:{y =2x①3x +y =15②, ①代入②得,3x +2x =15,解得x =3,将x =3代入①得,y =2×3=6,所以,方程组的解是{x =3y =6. 故选:D .9.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC 解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C.10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=−3x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3解:∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选:B.11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC解:如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选:B.12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x﹣1C.y=x2﹣2x+1D.y=x2﹣2x﹣1解:当y=0,则0=x2﹣4x+3,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2﹣4x+3=(x﹣2)2﹣1,∴M点坐标为:(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y =(x +1)2=x 2+2x +1.故选:A .二、填空题(本大题共6小题,每小题3分,共18分)13.计算x 7÷x 4的结果等于 x 3 .解:原式=x 3,故答案为:x 314.计算(4+√7)(4−√7)的结果等于 9 .解:(4+√7)(4−√7)=16﹣7=9.故答案为:9.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是56 .解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为56. 故答案为:56. 16.若正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 ﹣2 (写出一个即可).解:∵若正比例函数y =kx 的图象经过第二、四象限,∴k <0,∴k 的值可以是﹣2,故答案为:﹣2(答案不唯一).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD上,P 为AE 的中点,连接PG ,则PG 的长为 √5 .解:方法1、延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH=12OA=12(3﹣1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG=√PH2+HG2=√12+22=√5.故答案是:√5.方法2、如图1,延长DA,GP相交于H,∵四边形ABCD和四边形EFCG是正方形,∴EG∥BC∥AD,∴∠H=∠PGE,∠HAP=∠GEP,∵点P是AE的中点,∴AP=EP,∴△AHP≌△EGP,∴AH=EG=1,PG=PH=12HG,∴DH=AD+AH=4,DG=CD﹣CG=2,根据勾股定理得,HG=√DH2+DG2=2√5,∴PG=√5,故答案为√5.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于√17;(2)在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N.连接DN,EM,DN与EM相交于点P,点P即为所求..解:(1)AB=√12+42=√17.故答案为√17.(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME 的面积:平行四边形CDNB 的面积:平行四边形DEMG 的面积=1:2:3,△P AB 的面积=12平行四边形ABME 的面积,△PBC 的面积=12平行四边形CDNB 的面积,△P AC 的面积=△PNG 的面积=12△DGN 的面积=12平行四边形DEMG 的面积,∴S △P AB :S △PBC :S △PCA =1:2:3.三、解答题(本大题共7小题,共66分。

天津市2017年中考数学试题含答案

天津市2017年中考数学试题含答案

2017 年天津市初中毕业生学业考试试卷数 学1.计算(3) 5的结果等于( A .2B .2 cos600 的值等于( )8 C .8 D . D . 2. ) 2 1 23 A B . C . 2 3.在一些美术字中,有的汉子是轴对称图形.下面 4个汉字中,可以看作是轴对称图形的是() 4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年 4月末,累计发放社会保障卡)0.1263108))A .4和 5之间a 1 7.计算 的结果为( )1 A .1 D . a 1 y 的解是( )3x y 15 2 x A . D . 3y 9.如图,将ABC 绕点 B 顺时针旋转600 得 DBE ,点 的对应点 E 恰好落在 AB 延长线上,连接 A D . C 下列结论一定正确的是()3 (1, y ) B(1, y ) 10.若点 A , ,C y 在反比例函数 y 的图象上,则 y y y 的大小关系是( ) 1 2 3 x 1 2 3 B . 1 2 3 23 1 3 2 1 2 1 3 11.如图,在ABC 中, AB AC A D,C E ABC , 是 的两条中线,P 是 A D 上一个动点,则下列线段的)A . BCB .CEC. A D D . AC A ,B(点 A 在点 B 左侧),顶点为M .平移该抛物线,使12.已知抛物线 y 2 与 x 轴相交于点 ' x B B' 点 M 平移后的对应点M 落在 轴上,点 平移后的对应点 落在 轴上,则平移后的抛物线解析式为 y() y x 2x 1 y x 2x 1 A . y 2 B . 2 C. 2 213.计算 x7 x 4 的结果等于 . 14.计算(4 7 )(4 7)的结果等于 15.不透明袋子中装有 6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出 1个球,则它是红球的概率是. . k 0 16.若正比例函数 y( 是常数, (写出一 个即可).17.如图,正方形 AB C D 和正方形 EF C G 的边长分别为 3和 1,点 F,G 分别在边 B C,C D 上, P 为 AE 的中点,连接 P G ,则 P G 的长为 . 18.如图,在每个小正方形的边长为 1的网格中,点 A,B ,C 均在格点上.(1) AB 的长等于 ; S ,请在如图所示的网格中,用无刻度的 ...PAB PBC PCA 直尺,画出点 P ,并简要说明点 P 的位置是如何找到的(不要求证明).1 2 ①②x 19.解不等式组 ;;(2)解不等式②,得 (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出 如下的统计图①和图②.请根据相关信息,解答下列问题:;21.已知 AB 是⊙O的直径,AT 是⊙O 的切线,ABT 500 O ,BT 交⊙ 于点C ,E 是 AB 上一点,延 长CE 交⊙O 于点 D .BC 时,求CDO 的大小.22.如图,一艘海轮位于灯塔P 的北偏东后,到达位于灯塔 P 的南偏东 450 方向上的 B 处,求 BP 和 BA 的长(结果取整数).s in 64 0.90, c os 64 0.44, t an 64 2.05, 2 取1.414 .参考数据: 0 0 0 4 23.用 A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1 元.在乙复印店复印同样的文件,一 次复印页数不超过 20 时,每页收费 0.12 元;一次复印页数超过 20 时,超过部分每页收费 0.09 元. 设在同一家复印店一次复印文件的页数为x ( x 为非负整数).一次复印页数(页) 甲复印店收费(元) 乙复印店收费(元) 5 ………2.4 (2)设在甲复印店复印收费 y 元,在乙复印店复印收费 y 元,分别写出 y 关于 x 的函数关系式;1 2 2 70 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片 AB O 放置在平面直角坐标系中,点 A ( 3,0),点 B ( 0,1) ,点O (0,0)'折叠该纸片,得点 A 的对应点 A .上的一点(点 P 不与点 A 重合),沿着OP ' A' (1)如图①,当点 A 在第一象限,且满足 A B O B 时,求点 的坐标;'B(2)如图②,当 P 为 AB 中点时,求 A 的长;x 2 bx 3 b 25.已知抛物线 y (1)求该抛物线的解析式和顶点坐标;(2) P (m,1) ( 是常数)经过点' 为抛物线上的一个动点,P 关于原点的对称点为 P .' ①当点 P 落在该抛物线上时,求 的值;m 'm ②当点 P 落在第二象限内, P A 取得最小值时,求 的值.。

2017天津市中考数学试题含答案

2017天津市中考数学试题含答案

第 13 页
2017 年天津市初中毕业生学业考试试卷

注意事项:

第Ⅱ卷
。 1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用 2B 铅笔) 2.本卷共 13 题,共 84 分。
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) (13)计算 x7 x4 的结果等于 (14)计算 的结果等于 (4 7) (4 7) . .
2 2
(B) 2 (D) 8
(B) 1 (D) 第 11 页
1 2
(3)在一些美术字中,有的汉字是轴对称图形.下面 4 个汉字中,可以看作是轴对称 图形的是
(A)
(B)
(C)
(D)
(4)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至 2017 年 4 月末, 累计发放社会保障卡 12 630 000 张.将 12 630 000 用科学记数法表示为 (A) 0.1263 108 (C) 12.63 106 (B) 1.263 107 (D) 126.3 105
120 海里的 A 处,它沿正南方向航行一段时间后,到达位于
64
A P
45
灯塔 P 的南偏东 45 方向上的 B 处.求 BP 和 BA 的长(结果取 . 整数) 参考数据: sin 64 0.90 , cos64 0.44 , tan 64 2.05 ,
2 取 1.414 .
E A
N
三、解答题(分) 解: (Ⅰ) x ≥1 ; (Ⅱ) x ≤ 3 ; (Ⅲ)
0
1
2
3
4
5
(Ⅳ) 1≤ x ≤ 3 . 第 19 页
(20) (本小题 8 分) 解: (Ⅰ) 40 , 30 . (Ⅱ)观察条形统计图, ∵ x

历年天津市中考数学试卷(含答案)

历年天津市中考数学试卷(含答案)

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C. D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡张.将用科学记数法表示为()A.×108B.×107C.×106D.×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2017年天津市中学考试数学试卷(Word版含问题详解)

2017年天津市中学考试数学试卷(Word版含问题详解)

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1.计算(﹣3)+5的结果等于()。

A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()。

A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()。

A.B. C. D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4 月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()。

A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。

A.B. C. D.6.估计的值在()。

A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间7.计算的结果为()。

A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()。

A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()。

A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()。

A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()。

天津市2017中考试题数学卷(含解析)

天津市2017中考试题数学卷(含解析)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算(3) 5的结果等于( )A. 2 B2C . 8D .8【答案】 A.【解析】试题分析 根据有理数的加法法则即可得原式-2,故选A.2. COS600的值等于( )A 品B.1C 2D1 2【答案】D.【解析】试题分析;棍据特殊角的三角函数值可得3丸0匸:,故选D3.在一些美术字中,有的汉子是轴对称图形 •下面4个汉字中,可以看作是轴对称图形的 是( )礼迎全运CA )(B ) (C ) (D )【答案】C. 【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选 C.4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 放社会保障卡12630000张•将12630000用科学记数法表示为()【答案】B.2017年4月末,累计发 8 7A. 0.1263 10 B . 1.263 106C . 12.63 105D . 126.3 10试题分析:学记数法的表示形式为a x I0n的形式,其中1w|a|v 10, n为整数,n的值为这个数的整数位数减1,所以=1.263 107.故选B.5. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是()第<5)IS (O【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3, 1,故选D.6. 估计.38的值在()A. 4和5之间 B . 5和6之间C. 6和7之间D . 7和8之间【答案】C.【解析】试題分析:由即可得X ,烦<匚故选C7.计算a1的结果为()a 1 a 11A. 1B.aC. a 1Da 1【答案】A.【解析】试题分析:根据同分母的分式相加减的法则可得,原式=a 1 1,故选A.a 1y2x8.方程组J的解是()3x y15x2x4x4x3A.B C. D .y3y3y8y6(A>iD)【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为X 3,故选D.y 69.如图,将ABC绕点B顺时针旋转600得DBE,点C的对应点E恰好落在AB延长线上,连接AD .下列结论一定正确的是()【答案】C.【解析】试题分析;WilSC绕点鸟顺时针谄专6L富3EE ,由此可得遊吧厶BXZEBWr ;即可得△ABD为等边三对略根据等边三角形的性贡可得4期司o° ,所以4蛇立瑰,所以,化”比,其它结论都不能够推岀,故选c10.若点A(1, y i) , B(1,y2), C(3,y3)在反比例函数y3的图象上,贝UXy1,y2, y3 的大小关系是()A. y i y2y3 B . y2 y3 屮 C. y3y2 y1 D . y2 y1 y3【答案】B.【解析】试题分析:把A( 1,yJ , B(1, y2), 53小)分别代入y -可得,Xy i 3,y23,y3 1,即可得y2 y3 y i,故选B.CBE C. AD//BC D . AD BCAABD E A.11.如图,在ABC中,AB AC , AD,CE是ABC的两条中线,P是AD上一个动点,EP最小值的是(C. AD D . AC【解试题分析:在ABC 中,AB AC , AD是ABC的中线,可得点B和点D关于直线AD对称,连结CE交AD于点P,此时BP EP最小,为EC的长,故选 B.12.已知抛物线y x2 4x 3与x轴相交于点A,B (点A在点B左侧),顶点为M .平移该抛物线,使点M平移后的对应点M '落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()2 2 2A. y x 2x 1 B . y x 2x 1 C. y x 2x 1D. y x2 2x 1【答案】A.【解析】试题分析=令 E 即r-4A+3 = 0 ;解得口或3,即可得A (b 0), 抛物线+ 3 = 的顶点坐标为(初・1人平移该挞物袋,使点胚平移后的对应点M落在工轴上点B平移后的对应点B'落在>■轴上,也就是把该抽物线问上平移1个单仏向左平移3个单位,抿協抛物线平移规律可得新抛物线的解析式九丄二0+=$ + 2工+1「故选A.二、填空题13.计算x7 x4的结果等于_____________ .【答案】X3.【解析】试题分析:根据同底数幕的除法法则计算即可,即原式=x3.14. 计算(4 7)(4 . 7)的结果等于________ .【答案】9.【解析】试题分析:根据平方差公式计算即可,即原式=16-7=9.15. 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【答案】5.6【解析】试题分析:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5.616. 若正比例函数y kx ( k是常数,k 0 )的图象经过第二、四象限,贝U k的值可以是(写出一个即可).【答案】k<0,只要符合条件的k值都可,例如k=-1.【解析】试題分析=正比例酗"是常数,的團象经过第二HW限’根16正比例函数的性质可得Z 只要符合条件的k值都可』例如k-h17. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【解析】 试题分析:连结 AC 根据正方形的性质可得 A 、E C 三点共线,连结FG 交AC 于点M ,因正 方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC=FG= 2 ,AC=3 ;2 ,即可得AE=2 2 ,因P 为AE 的中点,可得PE=AP= 2 ,再由正方形的GM=EM=Z ,FG 垂直于 AC,在 Rt △ PGM 中,PM 丄22 2PG=.5.【答案】(1) .17 ;( 2)详见解析 【解析】试题分析:⑴根据勾股定理即可求得AB-, 17 ; (2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点 M 、N ,连结DN 、EM ,DN 与EM 相交于性质可得由勾股定理即可求得18. 如图,在每个小正方形的边长为 1的网格中,点 代B,C 均在格点上.(1)AB 的长等于 ___________ ;(2 )在ABC 的内部有一点P ,满足S PAB : S PBC :: S PCA 1:2,请在如图所示的网格中, 用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证 明)点P,点P即为所求•三、解答题19. 解不等式组X 1 2 ①5x 4x 3 ②请结合题意填空,完成本题的解答•(1) ___________________________ 解不等式①,得;(2) ___________________________ 解不等式②,得;(3 )把不等式①和②的解集在数轴上表示出来:0 12 3 4 5(4)原不等式组的解集为__________ •【答案】(1)x > 1; (2) x< 3; (3)详见解析;(4) K x w 3.【解析】试题分析:⑴ 移莎合并同类项即可求得答案;⑵ 移项、合并同类臥系数化为1即可求得答案:⑶ 根据不等式解集在数轴上的表示方法』画出即可,(4)找出这两个不等式解集的公共咅吩』即可得不等式组的解集.试题解析:(1)x > 1 ;(2) x w 3;(J 2 3^5(3)(3) 1 w x w 3.20.某跳水队为了解运动员的年龄情况, 作了一次年龄调查,根据跳水运动员的年龄 (单位:岁),绘制出如下的统计图①和图② •请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为(2 )求统计的这组跳水运动员年龄数据的平均数、众数和中位数 【答案】(1)40, 30;( 2)15,16,15.【解析】试題分析:(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,祁可得本^接受调查的跳水运动 员人如用泊岁年龄的人数除以本次接登调查的跳水运动员人数即可求得m 的怪<2>根据统计囲中给出 的信息,结合求平t 渊、介数、中位数的方法求解即可.试题解析:(1)40,30; (2)观察条形统计图,-13 4 14 10 15 11 16 12 17 3 , J x ---------------------------------------------------- 15 ,40•••这组数据的平均数为 15;•••在这组数据中,16出现了 12次,出现的次数最多, •这组数据的众数为 16;15 15•••将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15 15 15 ,2•这组数据的中位数为 15.21.已知AB 是O O 的直径,AT 是O O 的切线,ABT 50° , BT 交O O 于点C , E 是,图①中m 的值为AB上一点,延长CE交O O于点D .(1) 如图①,求T和CDB的大小;(2) 如图②,当BE BC时,求CDO的大小.【答案】(1) / T=40。

天津市2017年中考数学试卷(精校word版,含答案)

天津市2017年中考数学试卷(精校word版,含答案)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8-2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯B .710263.1⨯C .61063.12⨯D .5103.126⨯5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( ) A .4和5之间 B .5和6之间 C. 6和7之间 D .7和8之间7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x x y 的解是( ) A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 . 14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小. ①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表: 一次复印页数(页)5 10 20 30 … 甲复印店收费(元)5.0 2 … 乙复印店收费(元)6.0 4.2… (2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.。

【试题】2017年天津市中考数学试题及答案清晰无错版

【试题】2017年天津市中考数学试题及答案清晰无错版

【关键字】试题天津市2017年中考数学试题及答案一、选择题:(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A.2 B.C.8 D.2.的值等于()A B.C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡张.将用科学记数法表示为()A.B.C.D.5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是()6.估计的值在()A.4和5之间B.5和6之间 C. 6和7之间D.7和8之间7.计算的结果为()A.1 B. C. D.8.方程组的解是()A.B. C. D.9.如图,将绕点顺时针旋转得,点的对应点恰好落在延长线上,连接.下列结论一定正确的是()A.B. C. D.10.若点,,在反比例函数的图象上,则的大小关系是()A.B. C. D.11.如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是()A.B. C. D.12.已知抛物线与轴相交于点(点在点左侧),顶点为.平移该抛物线,使点平移后的对应点落在轴上,点平移后的对应点落在轴上,则平移后的抛物线解析式为()A.B. C. D.2、填空题(本大题共6小题,每小题3分,共18分)13.计算的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.216.若正比例函数(是常数,)的图象经过第2、四象限,则的值可以是(写出一个即可).217.如图,正方形和正方形的边长分别为3和1,点分别在边上,为的中点,连接,则的长为.w18.如图,在每个小正方形的边长为1的网格中,点均在格点上.(1)的长等于;(2)在的内部有一点,满足,请在如图所示的网格中,用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2017年天津市中考数学试题与答案

2017年天津市中考数学试题与答案

2017年天津市中考数学试题与答案考试说明:1. 本试卷分为选择题、非选择题两部分。

试卷满分120分,考试时间100分钟2. 答卷前,请你务必将白己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

3. 答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

4. 考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!一、选择题:1. 计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2. 060cos 的值等于( )A.3 B .1 C .22D .213. 在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6. 估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7. 计算111+++a a a 的结果为( ) A .1 B .a C. 1+a D .11+a 8. 方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y xB .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9. 如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10. 若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( )A .321y y y <<B .132y y y << C. 123y y y << D .312y y y << 11. 如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12. 已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无.刻度..的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题 19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.①②21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.参考答案:一、选择题:1.A2.D3.C4.B5.D6.C7.A8.D9.C 10.B 11.B 12.A二、填空题13.3x. 14. 9. 15.56.16. k<0,只要符合条件的k值都可,例如k=-1. 17.18.(1;(2)详见解析.三、解答题19.(1)x≥1;(2)x≤3;(3);(4)1≤x≤3.20.(1)40,30;(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=, ∴这组数据的中位数为15. 21.(1)如图,连接AC,∵AB 是⊙O 的直径,AT 是⊙O 的切线, ∴AT ⊥AB,即∠TAB=90°. ∵050=∠ABT , ∴∠T=90°-∠ABT=40°由AB 是⊙O 的直径,得∠ACB=90°, ∴∠CAB=90°-∠ABC=40° ∴∠CDB=∠CAB=40°;(2)如图,连接AD,在△BCE 中,BE=BC ,∠EBC=50°, ∴∠BCE=∠BEC=65°, ∴∠BAD=∠BCD=65° ∵OA=OD∴∠ODA=∠OAD=65° ∵∠ADC=∠ABC=50° ∴∠CDO=∠ODA-∠ADC=15°.22.∴PC=PA·sin∠A=120×sin64°,AC=PA×cos∠A=120×cos64°,23.(3)顾客在乙复印店复印花费少.当x>70时,有1y =0.1x ,2y =0.09x+0.6 ∴1y -2y ==0.1x-(0.09x+0.6)=0.01x-0.6 记y= =0.01x-0.6由0.01>0,y 随x 的增大而增大, 又x=70时,有y=0.1. ∴x>70时,有y>0.1,即y>0 ∴1y >2y∴当x>70时,顾客在乙复印店复印花费少. 24.(1)因点)0,3(A ,点)1,0(B ,∴根据题意,由折叠的性质可得△A ’OP ≌△AOP.∴OA ’由OB B A ⊥',得∠A ’BO=90°.在Rt △A ’OB 中,'A B ==∴点A 1).(2) 在Rt △AOB 中,∴2AB == ∵当P 为AB 中点, ∴AP=BP=1,OP=12AB=1. ∴OP=OB=BP,∴△BOP 是等边三角形 ∴∠BOP=∠BPO=60°, ∴∠OPA=180°-∠BPO=120°. 由(1)知,△A ’OP ≌△AOP , ∴∠OPA’=∠OPA =120°,P ’A=PA=1, 又OB=PA ’=1,∴四边形OPA ’B 是平行四边形.∴A ’B=OP=1.(3)或 .25.试题解析:(1)∵抛物线32-+=bx x y 经过点)0,1(-A , ∴0=1-b-3,解得b=-2.∴抛物线的解析式为223y x x =--,∵2223(1)4y x x x =--=--, ∴顶点的坐标为(1,-4).(2)①由点P(m ,t)在抛物线223y x x =--上,有223t m m =--. ∵P 关于原点的对称点为'P ,有P’(-m ,-t ).∴2()2()3t m m -=----,即223t m m =--+∴222323m m m m --=--+解得12m m =则22222',(1)214P H t AH m m m t ==-+=-+=+当点A 和H 不重合时,在Rt △P’AH 中,222''P A P H AH =+ 当点A 和H 重合时,AH=0, 22''P A P H =,符合上式.∴222''P A P H AH =+,即22'4(40)P A t t t =++-≤≤ 记2'4(40)y t t t =++-≤≤,则2115'()24y t =++,∴当t=-12时,y’取得最小值. 把t=-12代入223t m m =--,得21232m m -=--解得122222m m ==由m>0,可知22m =不符合题意∴22m +=。

【2017中考数学真题】天津市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】天津市试卷及解析【2017数学中考真题系列】

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

天津数学(含答案)2017年中考数学真题试卷

天津数学(含答案)2017年中考数学真题试卷

.
三、解答题
x1 2
19. 解不等式组

5x 4x 3 ②
请结合题意填空,完成本题的解答 .
( 1)解不等式①,得

( 2)解不等式②,得

( 3)把不等式①和②的解集在数轴上表示出来:
( 4)原不等式组的解集为
.
20. 某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁)
12630000 张 . 将 12630000 用科学记数法表示为(

2017 年 4 月末,累计发放社会保障卡
A. 0.1263 108 B . 1.263 107 C . 12.63 106 D . 126.3 10 5
5. 右图是一个由 4 个相同的正方体组成的立体图形,它的主视图是(

6. 估计 38 的值在(
如下的统计图①和图② . 请根据相关信息,解答下列问题:
,绘制出
( 1)本次接受调查的跳水运动员人数为
,图①中 m 的值为

( 2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数
.
21. 已知 AB 是⊙ O 的直径, AT 是⊙ O 的切线, ABT 500 , BT 交⊙ O 于点 C , E 是 AB 上一点,延
和 5 本笔记本只需 85 元.设每支铅笔 x 元,每本笔记本 y 元,则可列方程组(

20x 30 y 110
A.
10x 5 y 85
20x 10 y 110 20x 5 y 110 5x 20 y 110
B.
C.
D.
30x 5 y 85
30x 10 y 85 10x 30 y 85

2017年天津市中考数学试卷

2017年天津市中考数学试卷

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

2017年天津市中考数学试卷含答案

2017年天津市中考数学试卷含答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈取1.414.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)1cos602=. 【解析】3638<【提示】利用二次根式的性质,得出【考点】无理数的估算【解析】ABC △绕点60得DBE △60,AB =ABD ∴△是等边三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】3k =-<,10y >,数学试卷 第9页(共18页) 数学试卷 第10页(共18页)231y y y ∴<<.【提示】根据反比例函数的性质判断即可. 【考点】反比例函数的图象和性质 11.【答案】B【解析】如图连接PC ,AB AC =,BD CD =,AD BC ∴⊥,PB PC ∴=,PB PE PC PE ∴+=+,PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【提示】如图连接PC ,只要证明PB PC =,即可推出PB PE PC PE +=+,由P E P C C E +≥,推出P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【考点】等腰三角形的性质 12.【答案】A【解析】当0y =,则2043x x -=+,(1)(3)0x x --=,解得11x =,23x =,(1,0)A ∴,(3,0)B ,2243(2)1y x x x =+=---,∴M 点坐标为(2,1)-,平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为22(1)21y x x x =+=++.【提示】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A ,B ,M 点坐标,进而得出平移方向和距离,即可得出平移后解析式. 【考点】二次函数图象的平移交换第Ⅱ卷二、填空题 13.【答案】3x【解析】共【解析】若正比例函数.P 直角45,∴△1,∴数学试卷 第11页(共18页) 数学试卷 第12页(共18页)四边形DEMG 的面积,PAB PBC PCA S S S ∴=△△△.(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案; (2)移项、合并同类项、系数化为1即可求得答案; (3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集. 【考点】解不等式组 20.【答案】(1)40 30(2)平均数为15 众数为16 中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT∠=,9040ABT∴∠-∠=;由AB是⊙的直径,得90ACB=,9040CAB ABC∴∠=-∠=,40CAB=;AD,50,65,65BCD∴∠∠,OA OD=65ODA OAD=∠,50ADC∠=,655015CDO ODA ADC∴∠=∠-∠=-=.90,根据的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等65,利用同圆的半径相等65,由此可得结论【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质64,45B∠,PAsin120sin64PA A=,cos120cos64AC PA A=;PCB中,45B∠=,PC BC∴,12045=120cos64120sin641200.90+≈⨯所以BP的长为153海里,BA的长为161海里.数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷 第15页(共18页) 数学试卷 第16页(共18页))点A B OB '⊥90,在Rt A '△2OA OB '-∴点A '的坐标为P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45,(,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥,PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点⎝⎭⎝⎭60,求120,由120,1PA=,证出,得出四边形B OP=45,得出点330,OAM,由直角三角形的性质求出)抛物线2y x-=(2)①由点P'与点抛物线的顶点坐标为P(10)A-,,2( P A'∴=10 m>,∴∴m的值为数学试卷第17页(共18页)数学试卷第18页(共18页)。

天津数学(含答案) 2017年中考数学真题试卷

天津数学(含答案)   2017年中考数学真题试卷

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22D .213.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表: 一次复印页数(页) 510 20 30 … 甲复印店收费(元) 5.0 2… 乙复印店收费(元)6.04.2…(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( )A .2B .2-C .12 D .12-2.下列运算正确的是( )A .336a a a +=B .222()a b a b -=-C .326()a a -=D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A .圆锥B .长方体C .圆柱D .三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是( )A .4和3.5B .4和3.6C .5和3.5D .5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作AOC AOB ∠=∠的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是( )A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2DE AD CM =⋅;④点N 为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个). 13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB 两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.。

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试卷满分:120分版本:人教版第Ⅰ卷(选择题,共36分)一、选择题(第小题3分,共12小题,合计36分)1.(2017天津)计算(-3)+5的结果等于A.2 B.-2 C.8 D.-8答案:A,解析:根据有理数的加法法则“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

”可得,(-3)+5=+(5-3)=2,故选A.2.(2017天津)cos60°的值等于A B.1C.2D.12答案:D,解析:根据余弦的定义及特殊角度的三角函数值,可得cos60°=12,故选D.3.(2017天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是礼迎全运A.B.C.D.答案:C,解析:根据轴对称图形的定义“将一个图形沿着某条直线对折后,直线两旁的部分能够完全重合的图形叫做轴对称图形”,可知“全”是轴对称图形,故选C.4.(2017天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为A.0.1263×108B.1.263×107C.12.63×106D.126.3×105答案:B,解析:根据科学记数法的定义“将一个大于1的数表示成a×10n(其中1≤|a|<10,n为整数,且等于原数的整数位数减去1)的形式,可知12 630 000=1.263×107,故选B. 5.(2017天津)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.6.(2017天津)A.4和5之间B.5和6之间C.6和7之间D.7和8之间答案:C,解析:由36<38<49,可得67,故选C.7.(2017天津)计算111aa a+++的结果为A.1B.aC.a+1 D.11 a+答案:A,解析:根据同分母分式的加法法则“分母不变,分子相加”可得,原式=11 aa+ +=1,故选A.8.(2017天津)方程组2315y xx y=⎧⎨+=⎩的解是A.23xy=⎧⎨=⎩B.43xy=⎧⎨=⎩C.48xy=⎧⎨=⎩D.36xy=⎧⎨=⎩答案:D,解析:运用“代入消元法”,将方程①代入方程②可得:3x+2x=15,解得x=3,将x=3代入方程①中可得y=6,故选D.9.(2017天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点恰好落在AB的延长线上,连接A D.下列结论一定正确的是A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC第9题答案:C,解析:根据旋转的性质,可得AB=DB,CB=EB,∠ABD=∠CBE=60°,所以△ABD 是等边三角形,所以∠DAB=∠CBE=60°,根据“同位角相等,两直线平行”可得:AD∥BC,故选C.10.(2017天津)若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y= -3x的图象上,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3答案:B,解析:将x=-1,1,3分别代入函数解析式,可得y1=3,y2=-3,y3=-1,所以y2<y3<y1,故选B.11.(2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是A.BC B.CE C.AD D.AC第11题答案:B,解析:由AB=AC,可得△ABC是等腰三角形,根据“等腰三角形的三线合一性质”可知点B与点C关于直线AD对称,BP=CP,因此连接CE,BP+CP的最小值为CE,故选B. 12.(2017天津)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M’落在x轴上,点B平移后的对应点B’落在y轴上.则平移后的抛物线解析式为A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-1答案:A ,解析:令y =0可得x 2-4x +3=0,解得x 1=1,x 2=3,可得A (1,0),B (3,0),根据抛物线顶点坐标公式可得M (2,-1),由M 平移后的对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,可知抛物线分别向左平移3个单位,再向上平移1个单位,根据抛物线平移规律,可知平移后的抛物线为y =(x +1)2=x 2+2x +1,故选A .第Ⅱ卷(非选择题,共84分)二、填空题(每小题3分,共6小题,合计18分) 13.(2017天津)计算x 7÷x 4的结果等于________.答案:x 3,解析:根据同底数幂的除法法则“底数不变,指数相减”,可得x 7÷x 4=x 3.14.(2017天津)计算的结果等于________.答案:9,解析:根据平方差公式,可得2-2=16-7=9.15.(2017天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.答案:56,解析:依题意可知,共有6种等可能结题,其中取出1个球是红球的可能结果有5种,因此它是红球的概率是56.16.(2017天津)若正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、第四象限,则k 的值可以是________(写出一个即可).答案:-1(答案不唯一,只需小于0即可),解析:根据正比例函数的性质,若函数图象经过第二、第四象限,则k <0,因此k 的值可以是任意负数.17.(2017天津)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为________. 第17题G F A第17题GF BAD(如图),延长GE 交AB 于点N ,过点P 作PM ⊥GN 于M .由正方形的性质可知:AN =AB -BN =AB -EF =2,NE =GN -GE =BC -FC =2.根据点P 是AE 的中点及PM ∥AN ,可得PM 为△ANE的中位线,所以ME=12NE=1,PM=12AN=1,因此MG=2.根据勾股定理可得:PG18.(2017天津)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长等于________;(Ⅱ)在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2,请在如图所示的网格中,用无刻..度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)________.答案:(Ⅰ;(Ⅱ)解析:(Ⅰ)根据勾股定理可得=(Ⅱ)如图,AC与网络线相交,得点D、E,取格点F,连结FB并延长,与网格线相交,得点M、N,连结DN、EM,DN与EM相交于点P,点P即为所求.三、解答题(共7小题,合计66分)19.(2017天津)(本小题满分8分)解不等式组,.1≥2 ①5≤43②x x x +⎧⎨+⎩,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:12345(Ⅳ)原不等式组的解集为______________.答案:(Ⅰ)x ≥1;(Ⅱ)x ≤3;(Ⅲ)123450;(Ⅳ)1≤x ≤3.解析:(Ⅰ)移项,可得x ≥1;(Ⅱ)移项,可得5x -4x ≤3;合并同类项,可得x ≤3;(Ⅲ)根据解集在数轴上的表示方法“大于向右,小于向左;有等号实心点,无等号空心圈”,可表示,详图见答案;(Ⅳ)根据不等式解集的定义“不等式解集的公共部分”可得原不等式的解集为1≤x ≤3.20.(2017天津)(本小题8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:图②31211104人数年龄/岁12108642(Ⅰ)本次接受调查的跳水运动员人数为________;图①中m 的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案:(Ⅰ)40;30;(Ⅱ)15;16;15.解析:(Ⅰ)从两副统计图中可知:13岁的运动员共4人,占10%,因此接受调查的跳水运动员人数为4÷10%=40;由于16岁的运动员共12人,因此16岁运动员所占百分比为12÷40×100%=30%,故m =30;(Ⅱ)根据平均数的计算方法,可知13414101511161217340x ⨯+⨯+⨯+⨯+⨯==15,因此这组数据的平均数为15;由于在这组数据中,16出现了12次,出现的次数最多,故这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,根据中位数的定义,取中间两个数的平均数,可得这组数据的中位数为15.21.(2017天津)(本小题10分)已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.第21题图②图①(Ⅰ)如图①,求∠T 和∠CDB 的大小; (Ⅱ)如图②,当BE =BC 时,求∠CDO 的大小.思路分析: (Ⅰ)①根据切线的性质,可知∠BAT =90°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠T =40°; ②连接AC ,根据直径所对的圆周角是直角,可得∠BCA =50°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠BAC =40°,由同弧所对的圆周角相等,可得∠CDB 为40°.(Ⅱ)①连接AD ,根据BE =BC 及∠ABT =50°可计算出∠BCE ;②由同弧所对的圆周角相等,可计算出∠OAD 及∠ADC 的度数;③由OA=OD 可得∠ODA 的度数;④根据∠CDO =∠ODA -∠CDA 可得.解:(Ⅰ)如图,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线, ∴AT ⊥AB ,即∠TAB =90°. ∵∠ABT =50°,∴∠T=90°-∠ABT=40°∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=40°∴∠CDB=∠CAB=40°.图①(Ⅱ)如图,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°∵OA=OD∴∠ODA=∠OAD=65°∵∠ADC=∠ABC=50°∴∠CDO=∠ODA-∠ADC=15°.图②22.(2017天津)(本小题10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B片.求BP 和BA的长(结果取整数)参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05取1.414.思路分析:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120米,在Rt △APM 中利用三角函数可求得PM ,AM 的长;在Rt △BPM 中利用三角函数可求得BM 、PB 的长;根据线段之和求得AB 的长.M解:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120.在Rt △APM 中PM =P A ·sin ∠A =P A ·sin64°≈108,AM =P A ·cos ∠A =P A ·cos64°≈52.8. 在Rt△BPM 中∵∠B=45°∴BM =PM ≈108,PM ≈153 ∴BA =BM +AM ≈108+52.8≈161答: BP 长约为153海里,BA 长约为161海里.23.(2017天津)(本小题10分)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数).(Ⅰ)根据题意,填写下表:(Ⅱ)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(Ⅲ)当x>70时,顾客在哪家复印店复印花费少?请说明理由. 解:(Ⅰ)根据题意得:(Ⅱ)依题意得:y1与x的函数关系式为:y1=0.1x(x≥0).y2与x的函数关系式为:当0≤x≤20时,y2=0.12x;当x>20时,y2=0.12×20+0.09(x-20)=0.09x+0.6;综上所述,y2与x的函数关系式为:y2=0.12 (020) 0.090.6 (20)x xx x≤≤⎧⎨+>⎩.(Ⅲ)顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6∴y1- y2=0.1x-(0.09x+0.6)=0.01x-0.6记y= 0.01x-0.6由0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0∴y1>2y∴当x>70时,顾客在乙复印店复印花费少.24.(2017天津)(本小题10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A0),点B(0,1),点O(0,0).P是AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(Ⅰ)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(Ⅱ)如图②,当P为AB中点时,求A'B的长;(Ⅲ)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).x y x y第24题图②A'BA OA'B A O PP 解:(Ⅰ)∵A (3,0),点B (0,1),∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A'OP ≌△AOP . ∴OA'=OA =3,由A 'B ⊥OB ,得∠A 'BO =90°.在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A'21).(Ⅱ) 在Rt △AOB 中,OA 3,OB =1,∴22OA OB +∵当P 为AB 中点,∴AP =BP =1,OP =12AB =1.∴OP =OB =BP ,∴△BOP 是等边三角形∴∠BOP =∠BPO =60°,∴∠OP A =180°-∠BPO =120°.由(Ⅰ)知,△A'OP ≌△AOP ,∴∠OP A'=∠OP A =120°,P'A =P A =1,又OB =P A ’=1,∴四边形OP A ’B 是平行四边形.∴A 'B =OP =1. (Ⅲ)3333(,)22--或2333(,)22- . 25.(2017天津)(本小题10分)已知抛物线y =x 2+bx -3(b 是常数)经过点A (-1,0).(Ⅰ) 求该抛物线的解析式和顶点坐标;(Ⅱ) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为P '.①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,P 'A 2取得最小值时,求m 的值.解:(1)∵抛物线y =x 2+bx -3经过点A (-1,0),∴0=1-b -3,解得b =-2.∴抛物线的解析式为y =x 2-2x -3,∵y =x 2-2x -3=(x -1)2-4,∴顶点的坐标为(1,-4).(2)①由点P (m ,t )在抛物线y =x 2-2x -3上,有t =m 2-2m -3.∵P 关于原点的对称点为P ',有P ’(-m ,-t ).∴-t=(-m)2-2(-m)-3,即t =-m 2-2m +3∴m 2-2m -3=-m 2-2m +3.解得m 1=3,m 2=-3②由题意知,P '(-m ,-t )在第二象限,∴-m <0,-t >0,即m >0,t <0.又∵抛物线y =x 2-2x -3的顶点坐标为(1,-4),得-4≤t <0.过点P '作P 'H ⊥x 轴于H ,则H (-m ,0)又A (-1,0),t = m 2-2m -3则P 'H 2=t 2,AH 2= (-m +1)2=m 2-2m +1=t +4当点A 和H 不重合时,在Rt △P ’AH 中,P 'A 2= P 'H 2+AH 2当点A 和H 重合时,AH =0,P 'A 2= P 'H 2,符合上式.∴P 'A 2= P 'H 2+AH 2,即P 'A 2= t 2+t +4(-4≤t ≤0)记y '=t 2+t +4(-4≤t ≤0),则y '=(t +12)2+154, ∴当t =-12时,y '取得最小值.把t=-12代入t=m2-2m-3,得-12=m2-2m-3解得m1m2.由m>0,可知m不符合题意.∴m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.(3分)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+18.(3分)方程组{y =2x 3x +y =15的解是( )A .{x =2y =3B .{x =4y =3C .{x =4y =8D .{x =3y =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =−3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( )A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组{x +1≥2①5x ≤4x +3②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(10分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O 于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.22.(10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,√2取1.414.23.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.24.(10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(√3,0),点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).25.(10分)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.2017年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•天津)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣8【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:(﹣3)+5=5﹣3=2.故选:A .【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2.(3分)(2017•天津)cos60°的值等于( )A .√3B .1C .√22D .12【考点】T5:特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:cos60°=12, 故选:D .【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.(3分)(2017•天津)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12630000有8位,所以可以确定n=8﹣1=7.【解答】解:12630000=1.263×107.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)(2017•天津)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选D .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)(2017•天津)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间【考点】2B :估算无理数的大小.【分析】利用二次根式的性质,得出√36<√38<√49,进而得出答案.【解答】解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选C .【点评】此题主要考查了估计无理数的大小,得出√36<√38<√49是解题关键.7.(3分)(2017•天津)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+1【考点】6B :分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=a+1a+1=1, 故选(A )【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)(2017•天津)方程组{y =2x 3x +y =15的解是( ) A .{x =2y =3 B .{x =4y =3 C .{x =4y =8 D .{x =3y =6【考点】98:解二元一次方程组. 【分析】利用代入法求解即可.【解答】解:{y =2x①3x +y =15②,①代入②得,3x +2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是{x =3y =6.故选D .【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.9.(3分)(2017•天津)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC【考点】R2:旋转的性质.【分析】由旋转的性质得到∠ABD=∠CBE=60°,AB=BD ,推出△ABD 是等边三角形,得到∠DAB=∠CBE ,于是得到结论.【解答】解:∵△ABC 绕点B 顺时针旋转60°得△DBE ,∴∠ABD=∠CBE=60°,AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE ,∴AD ∥BC ,故选C .【点评】本题考查了旋转的性质,等边三角形的判定和性质,平行线的判定,熟练掌握旋转的性质是解题的关键.10.(3分)(2017•天津)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=−3x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选:B.【点评】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解题的关键.11.(3分)(2017•天津)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC【考点】PA:轴对称﹣最短路线问题;KH:等腰三角形的性质.【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.【解答】解:如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选B.【点评】本题考查轴对称﹣最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(3分)(2017•天津)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.【解答】解:当y=0,则0=x2﹣4x+3,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2﹣4x+3=(x﹣2)2﹣1,∴M点坐标为:(2,﹣1),∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选:A.【点评】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•天津)计算x7÷x4的结果等于x3.【考点】48:同底数幂的除法.【分析】根据同底数幂的除法即可求出答案.【解答】解:原式=x3,故答案为:x3【点评】本题考查同底数幂的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.14.(3分)(2017•天津)计算(4+√7)(4−√7)的结果等于9.【考点】79:二次根式的混合运算.【分析】根据平方差公式进行计算即可.【解答】解:(4+√7)(4−√7)=16﹣7=9.故答案为:9.【点评】本题考查了二次根式的混合运算,掌握平方差公式是解题的关键.15.(3分)(2017•天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是5.6【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为56. 故答案为:56. 【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.16.(3分)(2017•天津)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 ﹣2 (写出一个即可).【考点】F7:一次函数图象与系数的关系.【分析】据正比例函数的性质;当k <0时,正比例函数y=kx 的图象经过第二、四象限,可确定k 的取值范围,再根据k 的范围选出答案即可.【解答】解:∵若正比例函数y=kx 的图象经过第二、四象限,∴k <0,∴符合要求的k 的值是﹣2,故答案为:﹣2.【点评】本题主要考查了正比例函数的性质,关键是熟练掌握:在直线y=kx 中,当k >0时,y 随x 的增大而增大,直线经过第一、三象限;当k <0时,y 随x 的增大而减小,直线经过第二、四象限.17.(3分)(2017•天津)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 √5 .【考点】KX :三角形中位线定理;KQ :勾股定理;LE :正方形的性质.【分析】延长GE 交AB 于点O ,作PH ⊥OE 于点H ,则PH 是△OAE 的中位线,求得PH 的长和HG 的长,在Rt △PGH 中利用勾股定理求解.【解答】解:延长GE 交AB 于点O ,作PH ⊥OE 于点H .则PH ∥AB .∵P 是AE 的中点,∴PH 是△AOE 的中位线,∴PH=12OA=12(3﹣1)=1. ∵直角△AOE 中,∠OAE=45°,∴△AOE 是等腰直角三角形,即OA=OE=2,同理△PHE 中,HE=PH=1.∴HG=HE +EG=1+1=2.∴在Rt △PHG 中,PG=√PH 2+HG 2=√12+22=√5.故答案是:√5.【点评】本题考查了勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.18.(3分)(2017•天津)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 √17 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) 如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N .连接DN ,EM ,DN 与EM 相交于点P ,点P 即为所求. .【考点】N4:作图—应用与设计作图;KQ :勾股定理.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【解答】解:(1)AB=√12+42=√17.故答案为√17.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME 的面积:平行四边形CDNB 的面积:平行四边形DEMG 的面积=1:2:3,△PAB 的面积=12平行四边形ABME 的面积,△PBC 的面积=12平行四边形CDNB 的面积,△PAC 的面积=△PNG 的面积=12△DGN 的面积=12平行四边形DEMG 的面积,∴S △PAB :S △PBC :S △PCA =1:2:3.【点评】本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△PAB ,△PBC ,△PAC 的面积,属于中考常考题型.三、解答题(本大题共7小题,共66分。

相关文档
最新文档