(完整版)高等土力学部分知识总结,推荐文档

合集下载

高等土力学学习总结

高等土力学学习总结

高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。

在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。

在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。

第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。

第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。

下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。

1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。

1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。

通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。

(完整版)土力学地基基础复习知识点汇总

(完整版)土力学地基基础复习知识点汇总

第一章土的物理性质及工程分类1、土:是由岩石,经物理化学风化、剥蚀、搬运沉积,形成固体矿物、液体水和气体的一种集合体。

2 土的结构:土颗粒之间的相互排列和联接形式。

3、单粒结构:粗矿物颗粒在水或空气中在自重作用下沉落形成的结构。

4、蜂窝状结构:颗粒间点与点接触,由于彼此之间引力大于重力,接触后,不再继续下沉,形成链环单位,很多链环联结起来,形成孔隙较大的结构。

5、絮状结构:细微粘粒大都呈针状或片状,质量极轻,在水中处于悬浮状态。

悬液介质发生变化时,土粒表面的弱结合水厚度减薄,粘粒互相接近,凝聚成絮状物下沉,形成孔隙较大的结构。

6、土的构造:在同一土层中的物质成分和颗粒大小等都相近的各部分间的相互关系的特征。

7、土的工程特性:压缩性高、强度低(特指抗剪强度)、透水性大8、土的三相组成:固相(固体颗粒)、液相(土中水)、气相(土中气体)9、粒度:土粒的大小10 粒组:大小相近的土颗粒合并为一组11、土的粒径级配:土粒的大小及其组成情况,通常以土中各个粒组的相对含量,占土粒总质量的百分数来表示。

12、级配曲线形状:陡竣、土粒大小均匀、级配差;平缓、土粒大小不均匀、级配好。

13、不均匀系数:Cu=d 60/d10曲率系数:Cc= d 302/d 10* d 60d io (有效粒径)、d3o、d6o (限定粒径):小于某粒径的土粒含量为10%、30%和60%时所对应的粒径。

14、结合水:指受电分子吸引力作用而吸附于土粒表面成薄膜状的水。

15、自由水:土粒电场影响范围以外的水。

16、重力水:受重力作用或压力差作用能自由流动的水。

17、毛细水:受水与空气界面的表面张力作用而存在于土细孔隙中的自由水。

14、土的重度丫:土单位体积的质量。

15、土粒比重(土粒相对密度):土的固体颗粒质量与同体积的4C时纯水的质量之比。

16、含水率w :土中水的质量和土粒质量之比17、土的孔隙比e:土的孔隙体积与土的颗粒体积之比18、土的孔隙率n:土的孔隙体积与土的总体积之比19、饱和度Sr:土中被水充满的孔隙体积与孔隙总体积之比20、干密度d :单位土体体积干土中固体颗粒部分的质量21、土的饱和密度sat:土孔隙中充满水时的单位土体体积质量22、土的密实度:单位体积土中固体颗粒的含量。

土力学知识总结[大全]

土力学知识总结[大全]

土力学知识总结[大全]第一篇:土力学知识总结[大全]1、地基与基础设计必须满足三个基本条件: 1.作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力或地基承载力特征值,保证建筑物不因地基承载力不足造成整体破坏或影响正常使用,具有足够防止整体破坏的安全储备;2.基础沉降不得超过地基变形容许值,保证建筑物不因地基变形而损坏或影响其正常使用;3.挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。

2、土体三相:固相、液相、气相土中水:液态水(自由水和结合水)、固态水、气态水3、土的颗粒级配是否良好 Cu>5和Cu=1—3级配良好。

4、毛细水是受到水与空气交界面处表面张力的作用存在于地下水位以上的透水层中自由水。

5、颗粒分析试验:>0.75:筛分法,<0.75:水分法6、土的结构分类:絮凝结构(粘性土)、蜂窝结构(粉土)、单粒结构(无粘性土)。

7、土的物理性质指标:1.土的天然密度ρ2.土的含水量ω3.土的相对密实度d8、e<0.6的土是密实的,土的压缩性小;e>1.0的土是疏松的,压缩性高。

9、大小:ρsat>ρ>ρd>ρ°10、土的毛细现象是指土中水在表面张力作用下沿着细的孔隙向上及向其他地方移动的现象11、土的冻胀影响:土、水、温度的因素12、判断无粘性土密实度最简便的方法,是用孔隙比e来描述,e 大,土中孔隙大,土疏松13、指标:相对密实度Dr(标准贯入试验)14、液限与塑限之差值定义为塑性指数;Ip>17 粘土1015、Ip越大,土颗粒愈细,比表面积愈大,黏粒或亲水矿物愈高,可塑状态的含水量变化范围愈大。

塑性指标能综合反映土的矿物成分和颗粒大小的影响。

(是粘性土分类的依据)16、影响击实效果的因素:1.含水量的影响2.击实功的影响3.土类及级配的影响17、只有当含水量控制为某一适宜值即最优含水量时,土才能得到充分压实,得到土的最大干密度。

土力学知识点总结归纳

土力学知识点总结归纳

不均匀系数:反映土颗粒粒径分布均匀性的系数定义为限制粒径d60与有效粒径d10之比塑限:可塑状态与半固体状态间的分界含水量称为塑限。

液限:指粘性土从流塑状态过度到可塑状态时的界限含水量。

基底压力:建筑物荷载由基础传递给地基,基础底面传递给地基表面的压力。

基底附加应力:由于建筑物产生的基底压力与基础底面处原来的自重应力之差称为附加应力,也就是在原有的自重应力的基础上新增的应力。

渗透固结:饱和土在受到外荷载作用时,孔隙水从空隙中排除,同时土体中的孔隙水压减小,有效应力增大,土体发生压缩变形,这一时间过程称为渗透固结。

固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。

固结度:指地基在外荷载作用下,经历时间t产生的沉降量St与基础的最终沉降量S的比值。

库伦定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即τf=c+tanφ式中c,φ分别为土的粘聚力和内摩擦角。

粒径级配:各粒组的质量占土粒总质量的百分数。

静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背的侧限作用而处于弹性平衡状态时,墙背所受的土压力称为静止土压力。

主动土压力:若挡土墙受墙后填土作用离开土体方向偏移至土体达到极限平衡状态时,作用在墙背上的土压力称为主动土压力。

被动土压力:挡土墙在外力作用下向后移动或转动,达到一定位移时,墙后土体处于极限平衡状态,此时作用在墙背上的土压力。

土的颗粒级配:土中各粒组相对含量百分数。

土体抗剪强度:土体抵抗剪切破坏的极限能力。

液性指数:是粘性土的天然含水量和塑限的差值与塑性指数之比,用符号IL表示。

基础埋深:指从室外设计地坪至基础底面的垂直距离。

角点法:角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法压缩系数:表示土的压缩性大小的主要指标,压缩系数大,表明在某压力变化范围内孔隙比减少得越多,压缩性就越高。

土的极限状态:土体中的剪应力等于土的抗剪强度时的临界状态称之为土的极限平衡状态。

(完整word版)高等土力学

(完整word版)高等土力学

1.简述强度折减法的原理及分析过程抗剪强度折减系数法的理论2.1抗剪强度折减系数法的概念抗剪强度折减系数(SSRF:Shear Strength Reduction Factor)定义为:在外荷载保持不变的情况下,边坡内土体所发挥的最大抗剪强度与外荷载在边坡内所产生的实际剪应力之比。

这里定义的抗剪强度折减系数,与极限平衡分析中所定义的土坡稳定安全系数在本质上是一致的。

2.2抗剪强度折减系数法的具体内容折减系数sF的初始值取得足够小,以保证开始时是一个近乎弹性的问题。

然后不断增加sF的值,折减后的抗剪强度指标逐步减小,直到某一个折减抗剪强度下整个土坡发生失稳,那么在发生整体失稳之前的那个折减系数值,即土体的实际抗剪强度指标与发生虚拟破坏时折减强度指标的比值,就是这个土坡的稳定安全系数。

2.3抗剪强度折减系数法的优点结合有限差分法的抗剪强度折减系数法较传统的方法具有如下优点:(1)能够对具有复杂地貌、地质的边坡进行计算;(2)考虑了土体的本构关系,以及变形对应力的影响;(3)能够模拟土坡的边坡过程及其滑移面形状(通常由剪应变增量或者位移增量确定滑移面的形状和位置);(4)能够模拟土体与支护结构(超前支护、土钉、面层等)的共同作用;(5)求解安全系数时,可以不需要假定滑移面的形状,也无需进行条分。

2.简述确定土体临界失稳模式最优化方法的数学模型及其分析过程3.结合塑性力学上限定理,简述斜条分法作为土体稳定上限解的理论依据4.如何理解垂直条分法作为土体稳定分析的下限解5.边坡稳定、土压力和地基承载力的联系和区别?P323-324什么是加工硬化?什么是加工软化?金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象,称加工硬化或冷作硬化。

岩土中什么是压硬性?剪胀性?压硬性随着压缩过程的进行,岩土的压缩模量逐步提高的现象,如应力应变曲线逐步变缓,就是压硬性的表现。

高等土力学-复习大纲-Word-..

高等土力学-复习大纲-Word-..

高等土力学考纲一、土质学 (1)知识点: (1)题目: (3)二、土的强度 (5)知识点: (5)题目: (8)三、本构理论 (9)知识点: (9)题目: (10)四、固结与流变 (12)知识点: (12)题目: (13)五、边坡稳定 (14)知识点: (14)题目: (15)一、土质学知识点:土的来源:土是母岩经过风化作用、搬运作用、沉积作用形成的松散堆积物质。

因此,土是由岩石风化而来的。

沉积岩是土经过成岩作用形成的岩石,因此,土和岩石实际上是互为物质来源,在地质历史时期是相互转化的。

举例:花岗岩风化作用,风力侵蚀(海蚀风、风蚀城堡、风蚀柱、风蚀蘑菇、风蚀洼地、戈壁滩),流水侵蚀(V形谷、沟谷、峡谷、瀑布),冰川侵蚀,海浪侵蚀。

成土作用:冰川堆积,风沙堆积,风力堆积(带有大量沙粒的气流,如果遇到灌丛或石块,风沙受阻堆积下来,就形成沙丘。

需利用植被阻滞),流水沉积。

土中矿物:原生矿物,次生矿物,水溶盐,有机质,次生氧化物和难容盐。

土的分类:按土堆积的地点与母岩关系分为残积土(母岩风化后未经搬运而与母岩处于同一地点的土叫残积土)、坡积土(母岩风化后经过重力短距离搬运的土)、运积土(岩石风化后经过搬运作用而存在于与母岩有一定距离的土),运积土按搬运力不同分为洪积土、冰渍土、冲积土、风积土;按土的沉积环境分残积土、动水沉积土(坡积土,洪积土,冲积土)、静水沉积土(湖相沉积土,海相沉积土)、风积土、冰渍土。

土的三相:指土矿物颗粒组成的固相,土孔隙中的水组成的液相和土孔隙中的气体组成的气相。

(三相之间的相互作用和三相比例的变化及各相的物质组成变化是土的性质变化的内因)土壤中的晶体粘土矿物是母岩在经受化学风化而成土过程中形成的层状硅酸盐晶体矿物粘土矿物具有可塑性、粘结性、膨胀性、阳离子交换与吸附特性等特殊性质,是土壤中最活跃的成分之一,因此成为土质学的主要研究对象(粘土矿物内部电荷经常处于不平衡状态,因此表面可吸附阳离子和水分子,在水中能分散成胶体悬浮状态)。

高等土力学知识点

高等土力学知识点

一、影响土的强度因素影响土强度的因素很多,土的抗剪强度及其影响因素的关系可以定性地用以下公式表示τf=f(e,ψ,C,σ’,c,H,T,ε,ε’,S)其中e为土的孔隙比,C为土的组成,H为应力历史,T为温度,ε和ε’分别为应变和应变率,S为土的结构,c和ψ分别为粘聚力和内摩擦角。

可分为两大类:内部因素(物理性质),外部因素(外界条件主要是应力应变条件)。

1、内部因素(1)影响土强度的一般物理性质:①颗粒矿物成分的影响。

不同矿物之间的滑动摩擦角是不同的②粗粒土颗粒的几何性质,当孔隙比相同及级配相似时,一方面大尺寸颗粒具有较强的咬合能力,可能增加土的剪胀,从而提高强度;另一方面,在单位体积中大尺寸颗粒间接触点少,接触点上应力加大,颗粒更容易破裂,从而减少剪胀,降低土的强度。

③土的组成的其他因素。

粗粒土的级配对于抗剪强度有较大影响,级配较好的砂,咬合作用也比较强,另一方面,单位体积中颗粒接触点多,接触应力小,颗粒破碎少,剪胀量加大,所以抗剪强度高④土的状态。

砂土的孔隙比和相对密度可能是影响其强度的最重要因素。

孔隙比小或者相对密度大的砂土有较高的抗剪强度。

孔隙比对黏土的影响通常变现为其应力历史的影响。

⑤土的结构。

土的结构对土的抗剪强度有很大影响,有时对于某些粘性土如区域土或特殊土,可以说是控制因素。

原状土的结构性使其强度高于重塑土或扰动土。

⑥剪切带的存在对土强度的影响。

剪切带处局部孔隙比很大,并且有很强烈的颗粒定向作用。

剪切带的生成会使土的强度降低。

(2)孔隙比与砂土抗剪强度的关系------临界孔隙比随着孔隙比减小,砂土的ψ将明显提高。

松砂与密砂在试验中的应力应变关系也有很大区别,松砂的应力应变曲线是应变硬化的,剪缩,孔隙比减小;密砂的应力应变曲线是应变软化的,剪胀,e增加。

两个式样加载到最后,其e接近相同,都达到临界孔隙比еcr,еcr是指在三轴试验加载过程中,轴向应力差几乎不变,轴向应变连续增加,最终式样体积几乎不变时的e。

高等土力学主要知识点整理(李广信版)

高等土力学主要知识点整理(李广信版)

第二章 土的本构关系(一)概述材料的本构关系是反映其力学性能的数学表达式,一般为应力-应变时间-强度的关系,也称本构定律、本构方程。

土的强度是土受力变形的一个阶段,即微小应力增量小,发生无限大(或不可控制)应变增量,实际是本构关系一个组成部分,是土受力变形的最后阶段。

第一应力不变量kk z y x I σσσσ=++=1第二应力不变量kk yz xz xy z y z x y x I στττσσσσσσ=---++=2222第三应力不变量22232xyz xz y yz x yz xz xy z y x I τστστστττσσσ---+= 坐标系选择使剪应力为零 3211σσσ++=I ,3231212σσσσσσ++=I 3213σσσ=I 球应力张量)(31)(3131321332211σσσσσσσσ++=++==kk m 偏应力张量ii kk ij ij s δσσ31-=,其中⎩⎨⎧=≠=j i j i ii 10δ,克罗内克解第一偏应力不变量01≡=kk s J 第二偏应力不变量()()()[]23123222126121σσσσσσ-+-+-==ji ij s s J 第二偏应力不变量()()()213312321322227131σσσσσσσσσ------==ki jk ij s s s J 1.土的应力应变特性:非线性(应变/加工硬化、应变/加工软化)、剪胀性、弹塑性、各向异性、结构性、流变性(蠕变、应力松弛)。

加工硬化:应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定(正常固结黏土、松砂)加工软化:应力一开始随应变增加而增加,超过一个峰值后,应力随应变增加而减小,最后趋于稳定(超固结黏土、松砂)剪胀性:剪应力引起的体积变化,含剪胀和剪缩土的结构性:由土颗粒空间排列集合、土中各相和颗粒间作用力造成,可明显提高土的强度和刚度。

灵敏度:原状黏性土与重塑土的无侧限抗压强度之比土的蠕变:应力状态不变条件下,应变随时间逐渐增长的现象,随土的塑性、活动性、含水量增加而加剧土的应力松弛:维持应变不变,材料内应力随时间逐渐减小的现象压硬性:土的变形模量(指无侧限,压缩模指完全侧限)随围压而提高的现象。

完整word版土力学知识点总结,文档

完整word版土力学知识点总结,文档

19.土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。

2.任何建筑都建造在一定的地层上。

通常把支撑根底的土体或岩体成为地基〔天然地基、人工地基〕。

根底是将结构承受的各种作用传递到地基上的结构组成局部,一般应埋入地下一定深度,进入较好的地基。

地基和根底设计必须满足的三个根本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②根底沉降不得超过地基变形容许值;③挡土墙、边坡以及地基根底保证具有足够防止失稳破坏的平安储藏。

地基和根底是建筑物的根本,统称为根底工程。

土是连续、巩固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。

7.土的三相组成:固相〔固体颗粒〕、液相〔水〕、气相〔气体〕。

8. 土的矿物成分:原生矿物、次生矿物。

黏土矿物是一种复合的铝—硅酸盐晶体。

可分为:蒙脱石、伊利石和高岭石。

土力的大小称为粒度。

工程上常把大小、性质相近的土粒合并为一组,称为粒组。

划分粒组的分界尺寸称为界限粒径。

土粒粒组分为巨粒、粗粒和细粒。

土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。

级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标那么是用对数值表示土的粒径。

颗粒分析实验:筛分法和沉降分析法。

土中水按存在形态分为液态水、固态水和气态水。

固态水又称矿物内部结晶水或内部结合水。

液态水分为结合水和自由水。

自由水分为重力水和毛细水。

重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。

毛细水是受到水与空气交界面处外表张力的作用、存在于地下水位以下的透水层中自由水。

土的毛细现象是指土中水在外表张力作用下,沿着细的孔隙向上及向其他方向移动的现象。

影响冻胀的因素:土的因素、水的因素、温度的因素。

土的结构是指土颗粒或集合体的大小和形状、外表特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构。

高等土力学(李广信)-期末总结

高等土力学(李广信)-期末总结

一般弹塑性模型
屈服与屈服准则 硬化规律 正交性(流动法则:相适应与不相适应) 刚塑性、弹性-理想(完全)塑性 (perfectly plastic)和增量弹塑性模型。

剑桥模型



物态边界面概念:正 常固结线、临界状态 f p 线、固结不排水试验 d ij d 有效应力路径。 ij q 剑桥模型与修正剑桥 M 模型的屈服面:物理 意义、公式推导、曲 线形式。 剑桥模型的硬化参数、 流动规则、增量应力 p0 应变关系式。 p0 /2 图1 剑桥模型的屈服面
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用情况

第四章 土中水与土的 渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算

渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用Leabharlann 有关渗流的工程问题p
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论

土的强度机理
土的强度-抗剪强度: 粘聚强度与摩擦强度: 粘聚力:机理,粘性土的微观结构; 假粘聚力:吸力、冰冻、机械咬和; 内摩擦角:表面摩擦与咬和-剪胀、破 碎与颗粒的重排列。

强度的影响因素
固结


(1)单向固结的普遍方程及一般条件下的单向 固结问题: 加载时间 分层土 厚度随时间变化 (2)砂井固结问题:井阻、涂抹、加载时间 (3)比奥固结理论与太沙基(Terzaghi)—伦杜 立克(Rendulic)准三维固结理论(扩散方程)
固结问题的简化计算
均匀加载、分期加载 不均匀土层与分层土 砂井:井阻与涂抹影响

2024年土力学与基础工程重点概念总结范本(三篇)

2024年土力学与基础工程重点概念总结范本(三篇)

2024年土力学与基础工程重点概念总结范本土力学与基础工程是土木工程的核心学科之一, 研究土壤和岩石的力学性质及其在基础工程中的应用。

以下是____年土力学与基础工程的重点概念总结:1.土壤力学性质:- 土壤颗粒大小和组成: 土壤颗粒的大小和组成直接影响土壤的力学性质, 包括颗粒间的摩擦和颗粒间的粘聚力。

- 土壤孔隙度和含水量:土壤孔隙度和含水量可以影响土壤的承载能力和变形特性, 需要进行合理的调控和控制。

- 土壤湿度变化引起的体积变化: 土壤的湿度变化会导致土壤的体积变化, 引起土体的收缩和膨胀。

2.土壤力学参数:- 孔隙比和有效应力:孔隙比是土壤中孔隙体积与全体积之比, 有效应力是土壤颗粒间的摩擦力和粘聚力产生的有效力。

- 剪切强度和孔隙水压力:土壤的剪切强度是指土壤抵抗剪切变形的能力, 孔隙水压力是孔隙水对土体产生的压力。

- 孔隙比和压缩性指数: 孔隙比和压缩性指数可以用来描述土壤的压缩性和膨胀性。

3.岩石力学性质:- 岩石的强度和变形特性:岩石的强度和变形特性对基础工程的稳定性和安全性至关重要, 需要进行岩石力学参数的实验与理论研究。

- 岩石的断裂和破坏机理:岩石在外力作用下会发生断裂和破坏, 需要研究岩石的断裂和破坏机理以及相应的预测和控制方法。

- 岩石的工程特性和评价指标: 岩石的工程特性和评价指标可以用来评估岩石在工程中的稳定性和可靠性。

4.基础工程分析与设计:- 地基基本类型和选择: 根据地质情况和工程要求, 选择适合的地基基本类型, 如浅基础、深基础、地下连续墙等。

- 地基稳定性和承载力分析:对地基的稳定性和承载力进行分析, 确定合理的地基设计方案, 包括承载力的计算与设计、地基的安全系数评估等。

- 基础的施工技术和质量控制: 基础工程的施工技术和质量控制对于工程的稳定性和安全性具有重要作用, 需要进行合理的施工规划和质量控制措施。

5.地震工程与地下结构:- 地震波传播和地震反应分析:研究地震波在地下结构中的传播规律和地震反应特性, 包括应力、变形和振动等。

(完整word版)高等土力学部分知识总结,推荐文档

(完整word版)高等土力学部分知识总结,推荐文档

第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。

更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。

(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。

次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。

3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。

固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。

C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。

初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。

任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。

U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。

5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。

《土力学》知识点总结

《土力学》知识点总结

《土力学》知识点总结土力学(土木工程力学)是土木工程学中的一个重要分支,研究土体的力学性质和行为,为工程结构的设计、施工和维护提供依据。

下面是对土力学的知识点进行总结:一、土体的力学性质1.基本物理性质:包括土体的密度、含水量和孔隙度等。

2.英特尔以太网卡性质:包括土体的强度、变形特性和渗透性等。

3.变形特性:主要包括固结、压缩、膨胀和剪切等。

4.渗透特性:土体的渗透性是指水或气体通过土体的能力,主要影响土体的稳定性和渗透阻力。

5.特殊性质:热力学性质(热膨胀、热传导性等)、电性能(电阻率、电解质迁移等)和化学性能(酸碱性、腐蚀性等)等。

二、土体力学理论1.应力分布:土体中的应力分布受到多因素的影响,包括重力、土体的密度和孔隙度等。

2.应变特性:包括线弹性、松弛、蠕变和塑性等。

3.孔隙水力学:研究土体中的水分运动和水力特性,包括渗流、孔隙水压和渗透系数等。

4.孔隙水力固结和蠕变:研究土体中孔隙水位置和压力的变化对土体力学性质的影响。

5.刚性塑性力学:研究土体的强度和变形特性,包括内摩擦角、剪切强度和塑性指数等。

三、地基与基础工程1.增加地基承载力:通过加固地基、挖掘或替换土体等方法来提高土体的承载能力。

2.土的膨胀性:研究土体在含水量变化时的膨胀和收缩特性,对地基设计和施工起到重要作用。

3.土的稳定性:包括坡面稳定、边坡稳定和基坑的支护设计等。

4.地基沉降:研究地基在荷载作用下的沉降和沉降速度,对基础设计和施工起到重要作用。

四、土的试验与仪器设备1.土体取样与制样:包括岩土样品的卸样、取样和标本制作等。

2.土体力学试验:包括直剪试验、压缩试验和固结试验等,用于分析土体的强度和变形特性。

3.土体渗透性试验:包括渗透试验和渗透系数试验等,用于分析土体的渗透性和渗透阻力。

4.土体稳定性试验:包括坡度稳定试验和抗剪试验等,用于分析土体的稳定性和抗剪强度。

5.仪器设备:包括直剪仪、压实仪、渗透仪和测角仪等,用于方便进行土体力学试验。

高等土力学一二三章整理总结

高等土力学一二三章整理总结

高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。

二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。

在力学中,本构关系泛指普遍的应力—应变关系。

因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。

因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。

例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。

因此应力和应变之间存在着唯一对应的关系。

当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。

塑性本构关系要比弹性本构关系复杂得多。

如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。

本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。

各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。

非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。

弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。

即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。

土力学复习资料(整理)知识讲解

土力学复习资料(整理)知识讲解

土力学复习资料第一章绪论1.土力学的概念是什么?土力学是工程力学的一个分支,利用力学的一般原理及土工试验,研究土体的应力变形、强度、渗流和长期稳定性、物理性质的一门学科。

2.土力学里的"两个理论,一个原理"是什么?强度理论、变形理论和有效应力原理3.土力学中的基本物理性质有哪四个?应力、变形、强度、渗流。

4. 什么是地基和基础?它们的分类是什么?地基:支撑基础的土体或岩体。

分类:天然地基、人工地基基础:结构的各种作用传递到地基上的结构组成部分。

根据基础埋深分为:深基础、浅基础5.★地基与基础设计必须满足的三个条件★①作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力特征值,挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。

即满足土地稳定性、承载力要求。

②基础沉降不得超过地基变形容许值。

即满足变形要求。

③基础要有足够的强度、刚度、耐久性。

6.若地基软弱、承载力不满足设计要求如何处理?需对地基进行基础加固处理,例如采用换土垫层、深层密实、排水固结、化学加固、加筋土技术等方法进行处理,称为人工地基。

7.深基础和浅基础的区别?通常把埋置深度不大(3~5m),只需经过挖槽、排水等普通施工程序就可以建造起来的基础称为浅基础;反之,若浅层土质不良,须把基础埋置于深处的好地层时,就得借助于特殊的施工方法,建造各种类型的深基础(如桩基、墩基、沉井和地下连续墙等。

)8.为什么基础工程在土木工程中具有很重要的作用?地基与基础是建筑物的根本,统称为基础工程,其勘察、设计、施工质量的好坏直接影响到建筑物的安危、经济和正常使用。

基础工程的特点主要有:①由于基础工程是在地下或水下进行,施工难度大②在一般高层建筑中,占总造价25%,占工期25%~30%③隐蔽工程,一旦出事,损失巨大且补救困难,因此基础工程在土木工程中具有十分重要的作用。

第二章土的性质与工程分类1.土:连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。

2024年土力学与基础工程重点概念总结范本(3篇)

2024年土力学与基础工程重点概念总结范本(3篇)

2024年土力学与基础工程重点概念总结范本,____字土力学与基础工程是土木工程领域中的重要学科,涉及到地基基础的设计与施工,土体力学性质的研究以及地震工程等内容。

以下是2024年土力学与基础工程的重点概念总结:一、土体力学性质1. 土体分类:根据颗粒粒径、颗粒形状和颗粒成分等因素,将土体分为砾土、砂土、粉土和黏土四大类。

2. 强度理论:包括密实理论、塑性理论和强度计算等,用于描述土体的强度特性和变形行为。

3. 土体应力与应变关系:研究土体在不同受力状态下的应力与应变的关系,常用的应力应变关系模型有弹性模型、塑性模型和弹塑性模型。

4. 孔隙水压力:研究土体中存在的孔隙水的压力分布和变化规律,包括渗流场理论和地下水流动规律等。

二、地基基础设计与施工1. 地基基础设计方法:包括传统的承载力设计和变形设计方法,以及近年来发展起来的可靠性设计和现代结构工程设计方法。

2. 基坑支护结构:包括开挖方法、支护措施、支护结构的稳定性分析和设计等内容,常见的基坑支护结构有明挖基坑和暗挖基坑等。

3. 地基处理技术:通过改变土体的力学性质和水文特性,提高地基的承载力和抗变形能力,常用的地基处理技术包括加固处理、加压处理和振动加固等。

4. 浅基础与深基础设计:浅基础包括板基、筏基和地基桩等,深基础包括钢筋混凝土桩、灌注桩和螺旋桩等。

三、地震工程1. 地震波传播与地震动评估:研究地震波在地壳中的传播规律和地震动特性,包括地震动参数的计算与评估方法。

2. 地震反应分析:研究结构在地震作用下的动力响应,包括地表反应、地下结构响应和土体动力特性等。

3. 地震加速度记录与谱分析:分析地震加速度记录的特点和谱特性,通过谱分析技术获取地震动的频谱信息。

4. 抗震设计与抗震设防要求:根据地震破坏机理和工程抗震理论,制定抗震设计规范和抗震设防要求,确保工程结构在地震中的安全可靠性。

以上内容仅为2024年土力学与基础工程的重点概念总结范本,具体学习还需结合教材和课堂授课内容进行深入学习和理解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档