初高中数学衔接教材-§3.2-三角形(含答案)
2024年新高一数学初升高衔接《三角函数的概念》含答案解析
![2024年新高一数学初升高衔接《三角函数的概念》含答案解析](https://img.taocdn.com/s3/m/ea36ebe403d276a20029bd64783e0912a2167c3b.png)
第23讲 三角函数的概念模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.借助单位圆理解三角函数(正弦、余弦、正切)的定义;2.掌握任意角的三角函数值在各象限的符号;3.会利用任意角的三角函数的定义求值;4.掌握公式一并会应用.知识点 1 任意角的三角函数的定义1、利用单位圆定义任意角的三角函数设α是一个任意角,它的终边OP 与单位圆交于点()y x P ,.三角函数定义记作符号表示正弦函数点P 的纵坐标sin αsin y α=余弦函数点P的横坐标cosαcos x α=正切函数点P 的纵坐标与横坐标的比值tan αtan (0)yx xα=≠我们将正弦函数、余弦函数、和正切函数统称为三角函数,通常将它们记为:正弦函数sin ,y x x R=∈余弦函数cos ,y x x R=∈正切函数()tan ,2y x x k k Z ππ=≠+∈2、用角的终边上点的坐标表示三角函数如图,设若α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(),x y ,点P 到原点的距离为(r r =,则sin y rα=,cos x r α=,tan y x α=.【注意】三角函数值的大小只与角的大小有关,与终边上点P 的位置无关.知识点 2 三角函数的定义域和函数值的符号1、三角函数的定义域三角函数定义域sin α{}R αα∈cos α{}R αα∈tan α,2k k Z πααπ⎧⎫≠+∈⎨⎬⎩⎭【说明】单位圆上,x y 的取值范围是[1,1]-,根据正弦函数、余弦函数的定义,我们可以得到正弦函数、余弦函数的值域.2、三角函数值在各象限的符号根据三角函数的定义以及单位圆上点的位置(在哪个象限),可以得到正弦函数、余弦函数、正切函数的值在各个象限的符号,如下图.由于原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,值(1)正弦函数值的符号取决于纵坐标y 的符号;(2)余弦函数值的符号取决于横坐标x 的符号;(3)正切函数值的符号取决于由,x y 的符号共同决定,即,x y 同号为正,异号为负.【三角函数值的符号记忆】“一全正,二正弦,三正切,四余弦”.其含义是:第一象限中各三角函数值全是正数,第二象限中只有正弦值为正数,第三象限中只有正切值为正,第四象限中只有余弦值为正.知识点 3 终边相同的角的三角函数值1、公式一:由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Zk ∈注意:(1)利用诱导公式一,可以把求任意角的三角函数值,转化为求0~2π(或0°~360°)范围内角的三角函数值.(2公式一统一概括为f (k ·2π+α)=f (α)(k ∈Z),或f (k ·360°+α)=f (α)(k ∈Z).其特征是:等号两边是同名函数,且符号相同,即同名同号.2、特殊角的三角函数值0°30°45°60°90°120°135°150°180°270°6π4π3π2π32π43π65ππ23πsin α21222312322210-1cos α12322210-21-22-23-10tan α33133--133-知识点 4 三角函数定义的应用1、已知角α的终边上一点P 的坐标,求角α的三角函数值方法:先求出点P 到原点的距离,再利用三角函数的定义求解;2、已知角α的一个三角函数值和终边上的点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题;3、已知角α的终边所在的直线方程(y kx =,0k ≠),求角α的三角函数值方法:先设出终边上的一点()(),0P a ka a ≠,求出点P 到原点的距离,再利用三角函数的定义求解(注意α的符号,对α分类讨论)考点一:由终边上的点求三角函数值例1.(23-24高一下·河南洛阳·期末)已知角α的顶点在坐标原点,始边在x 轴非负半轴上,点()6,8P --为角α终边上一点,则cos α=( )A .45B .45-C .35D .35-【变式1-1】(23-24高一下·辽宁·月考)若角α的终边经过点()1,2-,则3232sin 3cos sin 6cos 2sin cos αααααα++=-( )A .BC .12D .110【变式1-2】(23-24高一下·上海奉贤·期中)已知钝角α的终边上的一点()4,3k k -,则sin α=.【变式1-3】(23-24高一下·河北张家口·月考)已知角α的终边落在直线12y x =-上,求sin α,cos α,tan α的值.考点二:由三角函数值求终边上点的参数例2.(23-24高一上·广东揭阳·月考)在平面直角坐标系中,点M (3,)m 在角α的终边上,若sin α=m =( )A .6-或1B .1-或6C .6D .1【变式2-1】(23-24高一下·河南南阳·期中)已知角θ的终边经过点(,1)P m -,且3cos 5θ=-,则m =( )A .43-B .34-C .43±D .34±【变式2-2】(23-24高一下·江西抚州·期中)已知角α的终边经过点()3,m -,若2tan 3α=,则sin α=( )A .BC .D 【变式2-3】(23-24高一上·广东肇庆·期末)已知角α的终边经过点(5,)P t ,且12sin 13α=-,则tan α=.考点三:判断三角函数值的符号例3.(23-24高一下·云南保山·期中)(多选)下列选项中,符号为负的是( )A .3πsin2B .3πcos2C .tan 2D .cos2【变式3-1】(23-24高一下·辽宁大连·月考)已知()cos2,tan1P ,则点P 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【变式3-2】(23-24高一下·江西南昌·月考)已知角,A B 是三角形ABC 的两个内角,则点()cos ,cos P A B ( )A .不可能在第一象限B .不可能在第二象限C .不可能在第三象限D .不可能在第四象限【变式3-3】(23-24高一下·贵州遵义·月考)(多选)若角α的终边在第三象限,则sin 2cos 3tan 222sincostan222αααααα+-的值可能为( )A .0B .2C .4D .4-考点四:由符号确定角所在的象限例4.(23-24高一上·宁夏吴忠·期末)若cos tan 0θθ<,则θ是第象限角.【变式4-1】(23-24高一下·北京·期中)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【变式4-2】(22-23高一下·山西大同·月考)已知 sin cos 0αα<,且cos 0α>,则角α的终边位于( )A .第一象限B .第二象限C .第三象限D .第四象限【变式4-3】(23-24高一下·上海·月考)若θ终边不在坐标轴上,且cos cos sin sin 1θθθθ+=-,则θ在( )A .第一象限B .第二象限C .第三象限D .第四象限考点五:圆上的动点与旋转点例5.(23-24高一上·安徽六安·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第4次相遇时,点P 的坐标是()A .1,2⎛ ⎝B .12⎛ ⎝C .12⎛- ⎝D .12⎛- ⎝【变式5-1】(23-24高一上·湖北荆州·期末)单位圆上一点P 从()0,1出发,逆时针方向运动π6弧长到达Q 点,则Q 点的坐标为( )A .12⎛- ⎝B .12⎫⎪⎪⎭C .21⎫-⎪⎪⎭D .21⎛⎫⎪ ⎪⎝⎭【变式5-2】(23-24高一上·福建莆田·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第1804次相遇时,点P 的坐标是 .【变式5-3】(22-23高一下·山西忻州·开学考试)在直角坐标系xOy 中,若点P 从点()3,0出发,沿圆心在原点,半径为3的圆按逆时针方向运动11π6到达点Q ,则点Q 的坐标为( )A .32⎛⎫⎪⎝⎭B .32⎛- ⎝C .32⎫-⎪⎪⎭D .3,2⎛ ⎝考点六:诱导公式一的应用例6.(23-24高一下·江西吉安·月考)sin300cos0︒︒的值为( )A .0B .12C .12-D .【变式6-1】(23-24高一下·黑龙江绥化·月考)()sin 1050-︒=( )A .12B C .12-D .【变式6-2】(22-23高一下·辽宁葫芦岛·期末)17sin4π的值为( )A .BC .D 【变式6-3】(23-24高一下·河南南阳·月考)29πsin 3⎛⎫-= ⎪⎝⎭( )A .B .12-C D .12一、单选题1.(23-24高一下·河南·月考)若角α的终边经过点(P -,则sin α=( )A B .C D .2.(23-24高一下·贵州仁怀·月考)()cos 300-︒的值( )A .12-B .CD .123.(23-24高一下·河南南阳·期末)已知角α的终边经过点()()4,0m m ≠,且sin 5mα=,则m =( )A .3B .3±C .5D .5±4.(23-24高一下·广西桂林·月考)若角α的终边经过点()1,2sin A α-,且()0,πα∈,则α=( )A .π6B .π3C .5π6D .2π35.(23-24高一下·北京·月考)已知角α终边上有一点(2sin 3,2cos3)P -,则α为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角6.(23-24高一上·浙江杭州·月考)点P 从()0,1-出发,沿着单位圆的边界顺时针运动8π3弧长到达点Q ,则点Q 的坐标为( )A .12⎫⎪⎪⎭B .12⎛ ⎝C .12⎛- ⎝D .21⎛⎫⎪ ⎪⎝⎭二、多选题7.(23-24高一下·江西吉安·月考)下列函数值中,符号为负的为( )A .7sin π3B .πcos 4⎛⎫- ⎪⎝⎭C .2π2πsincos 33D .tan28.(23-24高一上·福建泉州·月考)若角α的终边经过点()3,4(0)P t t t ->,则下列结论正确的是( )A .α是第二象限角B .α是钝角C .4tan 3α=-D .点()cos ,sin αα在第二象限三、填空题9.(23-24高一上·陕西咸阳·月考)已知角α的顶点在坐标原点,始边在x 轴的正半轴上,终边与单位圆交于第四象限的点P ,且点P 的横坐标为12,则sin α= .10.(23-24高一下·河南·月考)已知角θ的终边经过点(4,)P m ,若sin θ=,则实数m =.11.(23-24高一上·内蒙古兴安盟·期末)已知tan 0x <且cos 0x <,则x 的终边在第 象限.四、解答题12.(23-24高一下·江西宜春·月考)已知角α的终边在直线y x =上,求sin cos αα+的值.13.(23-24高一上·云南昆明·月考)在平面直角坐标系xOy 中,单位圆221x y +=与x 轴的正半轴及负半轴分别交于点A ,B ,角α的始边为x 轴的非负半轴,终边与单位圆交于x 轴下方一点P .(1)如图,若120POB ∠=︒,求点P 的坐标;(2)若点P 的横坐标为sin α的值.第23讲 三角函数的概念模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.借助单位圆理解三角函数(正弦、余弦、正切)的定义;2.掌握任意角的三角函数值在各象限的符号;3.会利用任意角的三角函数的定义求值;4.掌握公式一并会应用.知识点 1 任意角的三角函数的定义1、利用单位圆定义任意角的三角函数设α是一个任意角,它的终边OP 与单位圆交于点()y x P ,.三角函数定义记作符号表示正弦函数点P 的纵坐标sin αsin y α=余弦函数点P 的横坐标cos αcos x α=正切函数点P 的纵坐标与横坐标的比值tan αtan (0)yx xα=≠我们将正弦函数、余弦函数、和正切函数统称为三角函数,通常将它们记为:正弦函数sin ,y x x R=∈余弦函数cos ,y x x R=∈正切函数()tan ,2y x x k k Z ππ=≠+∈2、用角的终边上点的坐标表示三角函数如图,设若α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(),x y ,点P 到原点的距离为(r r =,则sin y rα=,cos x r α=,tan y x α=.【注意】三角函数值的大小只与角的大小有关,与终边上点P 的位置无关.知识点 2 三角函数的定义域和函数值的符号1、三角函数的定义域三角函数定义域sin α{}R αα∈cos α{}R αα∈tan α,2k k Z πααπ⎧⎫≠+∈⎨⎬⎩⎭【说明】单位圆上,x y 的取值范围是[1,1]-,根据正弦函数、余弦函数的定义,我们可以得到正弦函数、余弦函数的值域.2、三角函数值在各象限的符号根据三角函数的定义以及单位圆上点的位置(在哪个象限),可以得到正弦函数、余弦函数、正切函数的值在各个象限的符号,如下图.由于原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,值(1)正弦函数值的符号取决于纵坐标y 的符号;(2)余弦函数值的符号取决于横坐标x 的符号;(3)正切函数值的符号取决于由,x y 的符号共同决定,即,x y 同号为正,异号为负.【三角函数值的符号记忆】“一全正,二正弦,三正切,四余弦”.其含义是:第一象限中各三角函数值全是正数,第二象限中只有正弦值为正数,第三象限中只有正切值为正,第四象限中只有余弦值为正.知识点 3 终边相同的角的三角函数值1、公式一:由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Zk ∈注意:(1)利用诱导公式一,可以把求任意角的三角函数值,转化为求0~2π(或0°~360°)范围内角的三角函数值.(2公式一统一概括为f (k ·2π+α)=f (α)(k ∈Z),或f (k ·360°+α)=f (α)(k ∈Z).其特征是:等号两边是同名函数,且符号相同,即同名同号.2、特殊角的三角函数值0°30°45°60°90°120°135°150°180°270°6π4π3π2π32π43π65ππ23πsin α021222312322210-1cos α12322210-21-22-23-10tan α33133--133-知识点 4 三角函数定义的应用1、已知角α的终边上一点P 的坐标,求角α的三角函数值方法:先求出点P 到原点的距离,再利用三角函数的定义求解;2、已知角α的一个三角函数值和终边上的点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题;3、已知角α的终边所在的直线方程(y kx =,0k ≠),求角α的三角函数值方法:先设出终边上的一点()(),0P a ka a ≠,求出点P 到原点的距离,再利用三角函数的定义求解(注意α的符号,对α分类讨论)考点一:由终边上的点求三角函数值例1.(23-24高一下·河南洛阳·期末)已知角α的顶点在坐标原点,始边在x 轴非负半轴上,点()6,8P --为角α终边上一点,则cos α=( )A .45B .45-C .35D .35-【答案】D【解析】因为点()6,8P --为角α终边上,故3cos 5α==-,故选:D.【变式1-1】(23-24高一下·辽宁·月考)若角α的终边经过点()1,2-,则3232sin 3cos sin 6cos 2sin cos αααααα++=-( )A.BC .12D .110【答案】D【解析】因为角α的终边经过点()1,2-,所以sin α==cos α==所以3232sin 3cos sin 6cos 2sin cos αααααα++-3232311065525⎛⎝⎭=+ ⎛⎫⎝⎭-⨯ ⎪⎝⎭⎝⎝⎭=-⎭.故选:D【变式1-2】(23-24高一下·上海奉贤·期中)已知钝角α的终边上的一点()4,3k k -,则sin α= .【答案】35/0.6【解析】因为钝角α的终边上的一点()4,3P k k -,所以0k <,则5OP k =-,故33sin 55k k α-==-,故答案为:35【变式1-3】(23-24高一下·河北张家口·月考)已知角α的终边落在直线12y x =-上,求sin α,cos α,tan α的值.【答案】答案见解析【解析】因为角α的终边落在直线12y x =-上,而直线即过第二象限也过第四象限,当角α的终边在第二象限时,在直线上取一点()2,1-,则11sin tan 22ααα======--,当角α的终边在第四象限时,在直线上取一点()2,1-,则11sin tan22ααα-======-.考点二:由三角函数值求终边上点的参数例2.(23-24高一上·广东揭阳·月考)在平面直角坐标系中,点M (3,)m 在角α的终边上,若sin α=m =( )A .6-或1B .1-或6C .6D .1【答案】C【解析】因点M (3,)m 在角α的终边上,则sin α==0m >,解得,6m =.故选:C.【变式2-1】(23-24高一下·河南南阳·期中)已知角θ的终边经过点(,1)P m -,且3cos 5θ=-,则m =( )A .43-B .34-C .43±D .34±【答案】B【解析】由题知3cos 5θ==-,解得34m =-.故选:B.【变式2-2】(23-24高一下·江西抚州·期中)已知角α的终边经过点()3,m -,若2tan 3α=,则sin α=( )A .BC .D 【答案】A【解析】因为角α的终边经过点()3,m -,且2tan 3α=,所以2tan 33m α=-=,解得2m =-,所以sin α=故选:A.【变式2-3】(23-24高一上·广东肇庆·期末)已知角α的终边经过点(5,)P t ,且12sin 13α=-,则tan α= .【答案】125-【解析】由角α的终边经过点(5,)P t ,可得r OP ==因为12sin 13α=-1213=-,所以12t =-,所以12tan 5α=-.故答案为:125-.考点三:判断三角函数值的符号例3.(23-24高一下·云南保山·期中)(多选)下列选项中,符号为负的是( )A .3πsin2B .3πcos2C .tan 2D .cos2【答案】ACD 【解析】3πsin12=-,3πcos 02=,故A 正确,B 错误;因为π2π2<<,是第二象限角,所以tan 20<,cos 20<,故C 、D 正确.故选:ACD .【变式3-1】(23-24高一下·辽宁大连·月考)已知()cos2,tan1P ,则点P 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】180157.3π=≈,故tan10>;18022114.6π=⨯≈,故cos2<0.故点P 在第二象限.故选:B【变式3-2】(23-24高一下·江西南昌·月考)已知角,A B 是三角形ABC 的两个内角,则点()cos ,cos P A B ( )A .不可能在第一象限B .不可能在第二象限C .不可能在第三象限D .不可能在第四象限【答案】C【解析】对于A ,当角,A B 是锐角时,cos 0,cos 0A B >>,点P 在第一象限,错误;对于B ,当角A 是钝角,角B 是锐角时,cos 0,cos 0A B <>,点P 在第二象限,错误;对于C ,因三角形最多有一个钝角,故cos A 与cos B 不可能同时小于0,即点P 不可能在第三象限,正确;对于D ,当角A 是锐角,角B 是钝角时,cos 0,cos 0A B ><,点P 在第四象限,错误.故选:C【变式3-3】(23-24高一下·贵州遵义·月考)(多选)若角α的终边在第三象限,则sin 2cos 3tan 222sincostan222αααααα+-的值可能为( )A .0B .2C .4D .4-【答案】BC【解析】由角α的终边在第三象限,得ππ2π2π,Z 2k k k α-+<<-+∈,则ππππ,Z 224k k k α-+<<-+∈,因此2α是第二象限角或第四象限角,当2α是第二象限角时,sin2cos 3tan 22212(3)2sincostan222αααααα+-=---=,当2α是第四象限角时,sin2cos 3tan 22212(3)4sincostan222αααααα+-=-+--=.故选:BC考点四:由符号确定角所在的象限例4.(23-24高一上·宁夏吴忠·期末)若cos tan 0θθ<,则θ是第象限角.【答案】三或四【解析】由于cos tan 0θθ<,所以cos tan θθ,一正一负,当θ是第一象限角时,cos tan θθ,均为正数,不符合,当θ是第二象限角时,cos tan θθ,均为负数,不符合,当θ是第三,或者第四象限角时,cos tan θθ,一正一负,符合,故答案为:三或四【变式4-1】(23-24高一下·北京·期中)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】由sin 0θ<可知θ的终边在第三象限或第四象限或y 轴负半轴上,由tan 0θ>,可知θ的终边在第一象限或在第三象限,则θ的终边在第三象限,故选:C.【变式4-2】(22-23高一下·山西大同·月考)已知 sin cos 0αα<,且cos 0α>,则角α的终边位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】因为sin cos 0αα<,且cos 0α>,所以sin 0α<,即角α的终边位于第四象限.故选:D.【变式4-3】(23-24高一下·上海·月考)若θ终边不在坐标轴上,且cos cos sin sin 1θθθθ+=-,则θ在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】因为()22cos cos sin sin 1sin cos θθθθθθ+=-=-+,所以sin sin cos cos ,θθθθ=--=,所以cos 0,sin 0θθθ≤≤,终边不在坐标轴上所以θ在第三象限.故选:C.考点五:圆上的动点与旋转点例5.(23-24高一上·安徽六安·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第4次相遇时,点P 的坐标是( )A .1,2⎛ ⎝B .12⎛ ⎝C .12⎛- ⎝D .12⎛- ⎝【答案】C【解析】相遇时间为π11π42π81212t ⎛⎫=⨯÷+= ⎪⎝⎭秒,故P 转过的角度为π2π8123⨯=,其对应的坐标为2π2πcos ,sin 33⎛⎫ ⎪⎝⎭,即12⎛- ⎝.故选:C【变式5-1】(23-24高一上·湖北荆州·期末)单位圆上一点P 从()0,1出发,逆时针方向运动π6弧长到达Q 点,则Q 点的坐标为( )A .12⎛- ⎝B .12⎫⎪⎪⎭C .21⎫-⎪⎪⎭D .21⎛⎫⎪ ⎪⎝⎭【答案】A【解析】点P 从()0,1出发,沿单位圆逆时针方向运动π6弧长到达Q 点,所以π23π2π6QOx ∠=+=, 所以cos ,sin 32π32πQ ⎛⎫ ⎪⎝⎭,其中1cos,sin 3232π2π=-=Q 点的坐标为12⎛- ⎝.故选:A.【变式5-2】(23-24高一上·福建莆田·期末)如图所示,在平面直角坐标系xOy 中,动点P 、Q 从点()1,0A 出发在单位圆上运动,点P 按逆时针方向每秒钟转π12弧度,点Q 按顺时针方向每秒钟转11π12弧度,则P 、Q 两点在第1804次相遇时,点P 的坐标是 .【答案】12⎛- ⎝【解析】相遇时间为π11π18042π36081212t ⎛⎫=⨯÷+= ⎪⎝⎭秒,故P 转过的角度为π2π3608300π123⨯=+,故对应坐标为2π2πcos ,sin 33⎛⎫ ⎪⎝⎭,即12⎛- ⎝.故答案为:12⎛- ⎝【变式5-3】(22-23高一下·山西忻州·开学考试)在直角坐标系xOy 中,若点P 从点()3,0出发,沿圆心在原点,半径为3的圆按逆时针方向运动11π6到达点Q ,则点Q 的坐标为( )A .32⎛⎫⎪⎝⎭B .32⎛- ⎝C .32⎫-⎪⎪⎭D .3,2⎛ ⎝【答案】C【解析】根据题意可知,作出图示如下:根据题意可得3OP =,π6POQ ∠=,作1Q Q x ⊥轴且垂足为1Q ;利用三角函数定义可得13cos OQ POQ =⨯∠=133sin 2QQ POQ =⨯∠=;又Q 点在第四象限,所以点Q 的坐标为32⎫-⎪⎪⎭.故选:C考点六:诱导公式一的应用例6.(23-24高一下·江西吉安·月考)sin300cos0︒︒的值为( )A .0B .12C .12-D .【答案】D【解析】()()sin300cos0sin 300360sin 60sin60︒︒=︒-︒=-︒=-︒=.故选:D .【变式6-1】(23-24高一下·黑龙江绥化·月考)()sin 1050-︒=( )A .12B C .12-D .【答案】A【解析】()()1sin 1050sin1050sin 336030sin 302-︒=-︒=-⨯︒-︒=︒=.故选:A 【变式6-2】(22-23高一下·辽宁葫芦岛·期末)17sin4π的值为( )A .BC .D 【答案】D【解析】17ππsinsin 4πsin 444π⎛⎫=+= ⎪⎝⎭故选:D.【变式6-3】(23-24高一下·河南南阳·月考)29πsin 3⎛⎫-= ⎪⎝⎭( )A .B .12-C D .12【答案】C【解析】29πππsin sin 10πsin 333⎛⎫⎛⎫-=-+==⎪ ⎪⎝⎭⎝⎭故选:C一、单选题1.(23-24高一下·河南·月考)若角α的终边经过点(P -,则sin α=( )A B .C D .【答案】C【解析】因为角α的终边经过点(P -,所以sin y r α===.故选:C .2.(23-24高一下·贵州仁怀·月考)()cos 300-︒的值( )A .12-B .CD .12【答案】D【解析】()()1cos 300cos 36060cos 602-︒=-︒+︒=︒=,故选:D 3.(23-24高一下·河南南阳·期末)已知角α的终边经过点()()4,0m m ≠,且sin 5m α=,则m =( )A .3B .3±C .5D .5±【答案】B【解析】因为已知角α的终边经过点()()4,0m m ≠,且sin 5m α=,所以sin 5mα==,解得3m =±,故选:B.4.(23-24高一下·广西桂林·月考)若角α的终边经过点()1,2sin A α-,且()0,πα∈,则α=( )A .π6B .π3C .5π6D .2π3【答案】D【解析】由三角函数定义可得sin α=因为()0,π,sin 0αα∈>,所以1=sin α=,易知,点A 在第二象限,所以2π3α=.故选:D 5.(23-24高一下·北京·月考)已知角α终边上有一点(2sin 3,2cos3)P -,则α为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】A 【解析】依题意,π3π2<<,则sin 30,cos30><,即2sin 30,2cos30>->,所以点P 在第一象限,即α为第一象限角.故选:A6.(23-24高一上·浙江杭州·月考)点P 从()0,1-出发,沿着单位圆的边界顺时针运动8π3弧长到达点Q ,则点Q 的坐标为( )A .12⎫⎪⎪⎭B .12⎛ ⎝C .12⎛- ⎝D .21⎛⎫⎪ ⎪⎝⎭【答案】D【解析】由题意,以x 轴的非负半轴为始边,以Q 所在的射线OQ 为终边的最小正角为5π6,由任意角的三角函数的定义可得,Q 的坐标为5π5π(cos,sin )66,即1()2,故选:D.二、多选题7.(23-24高一下·江西吉安·月考)下列函数值中,符号为负的为( )A .7sin π3B .πcos 4⎛⎫- ⎪⎝⎭C .2π2πsincos 33D .tan2【答案】CD【解析】7ππ2π33=+ ,7π3∴是第一象限角,7sin π03>∴,∵π4-是第四象限角,∴πcos 04⎛⎫-> ⎪⎝⎭;∵2π3是第二象限角,∴2π2πsin0,cos 033><,∴2π2πsin cos 033<;∵π2π2<<,∴2是第二象限角,∴tan20<.故选:CD.8.(23-24高一上·福建泉州·月考)若角α的终边经过点()3,4(0)P t t t ->,则下列结论正确的是( )A .α是第二象限角B .α是钝角C .4tan 3α=-D .点()cos ,sin αα在第二象限【答案】ACD【解析】由点()3,4(0)P t t t ->在第二象限,可得α是第二象限角,但不一定是钝角,A 正确,B 错误;44tan 33t t α==--,C 正确;由sin 0α>,cos 0α<,则点()cos ,sin αα在第二象限,D 正确.故选:ACD.三、填空题9.(23-24高一上·陕西咸阳·月考)已知角α的顶点在坐标原点,始边在x 轴的正半轴上,终边与单位圆交于第四象限的点P ,且点P 的横坐标为12,则sin α= .【答案】【解析】依题意,设点1(,),02P y y <,由221(12y +=,得y =sin α=故答案为:10.(23-24高一下·河南·月考)已知角θ的终边经过点(4,)P m ,若sin θ=,则实数m =.【答案】2-【解析】由于角θ的终边经过点(4,)P m ,由角θ正弦的定义得:sin θ=sin θ=,=,解方程得:2254m m =+,即24m =,得2m =±,0=<,则0m <,所以2m =-.故答案是:2-.11.(23-24高一上·内蒙古兴安盟·期末)已知tan 0x <且cos 0x <,则x 的终边在第 象限.【答案】二【解析】由tan 0x <,得角x 的终边所在的象限是第二、四象限,因为cos 0x <,所以角x 的终边在第二、三象限或x 轴非正半轴上,由于上述条件要同时成立,所以x 的终边在第二象限;故答案为:二四、解答题12.(23-24高一下·江西宜春·月考)已知角α的终边在直线y x =上,求sin cos αα+的值.【解析】由题意可设角α的终边上任意一点(),A x x ,则由三角函数的定义有sin cos αα===,当0x >时,sin cosαα+==当0x <时,sin cosαα⎛+=+= ⎝.故sin cos αα+=13.(23-24高一上·云南昆明·月考)在平面直角坐标系xOy 中,单位圆221x y +=与x 轴的正半轴及负半轴分别交于点A ,B ,角α的始边为x 轴的非负半轴,终边与单位圆交于x 轴下方一点P .(1)如图,若120POB ∠=︒,求点P 的坐标;(2)若点P 的横坐标为sin α的值.【答案】(1)1,2⎛ ⎝;(2)【解析】(1)过P 点作PC OA ⊥于C 点,若120POB ∠=︒,则60POC ∠=︒,又1OP =,则1,2OC CP ==由题意点P 在第四象限,所以P 的坐标为1,2⎛ ⎝.(2)由题意设P y ⎛⎫⎪ ⎪⎝⎭,∵点P 在单位圆221x y +=上,且在x 轴下方,∴221y ⎛+= ⎝,且0y <,解得y =∴sin y α==。
高一数学 初高中衔接教材 三角形内角和外角平分线定理名师课件
![高一数学 初高中衔接教材 三角形内角和外角平分线定理名师课件](https://img.taocdn.com/s3/m/f2a6d71c3b3567ec112d8a29.png)
1gABgADgsin BAD 2
SVDAC
1 gCDgh 2
1gDAgACgsin DAC 2
SVABD BDgh ABgADgsin BAD SVDAC DCgh ACgADgsin DAC
Q AD为BAC的平分线 BAC DAC
AB BD
B
AC DC
1.在VABC中,AD是ABC的平分线,35AB=5cm, AC=4cm,BC=7cm,则BD=___9____
2.在VABC中,AD是ABC的平分线, 55 AB-AC=5, BD-CD=3, DC=8,则AB=____3___
3.RtVABC中,B 90, AB 12, BC 5, DE AC于E,
A
D
C
证明: 过C作AD的平行线交AB于点E。 ∴BD︰CD=AB︰AE,∠1=∠AEC ∠CAD=∠ACE ∵∠1=∠CAD ∴∠AEC=∠ACE
∴AE=AC ∴BD︰CD=AB︰AC
直角三角形中的比例(射影定理):
C
A
DB
在直角三角形ABC中,CD为斜边AB边上的高, 则:
CD2 ADgDB; AC2 ADgAB; BC2 BDgAB
F
CD PAB,AD PBC
A
B
DE EF(平行于三角形一边的直线截其他两边,
AE EB 所得的对应线段成比例)
同理可得 : EF DF
EB DC
DE DF AE DC
例2:如图,
在VABC中,E为中线AD上的一点,DE AE
1 2
, 连结BE,
延长BE交AC于点F.求证 : AF=CF
1 1 1 AB CD OE
2020年初升高数学衔接辅导之三角形(含答案)
![2020年初升高数学衔接辅导之三角形(含答案)](https://img.taocdn.com/s3/m/a936bfee27284b73f24250b6.png)
09三角形高中必备知识点1:三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.如图3.2-1 ,在三角形ABC V 中,有三条边,,AB BC CA ,三个角,,A B C 行?,三个顶点,,A B C ,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段.三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.过不共线的三点A 、B 、C 有且只有一个圆,该圆是三角形ABC 的外接圆,圆心O 为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.典型考题【典型例题】如图,在⊙O中,AB是的直径,P A与⊙O相切于点A,点C在⊙O 上,且PC=P A,(1)求证PC是⊙O的切线;(2)过点C作CD⊥AB于点E,交⊙O于点D,若CD=P A=2,①求图中阴影部分面积;②连接AC,若△P AC的内切圆圆心为I,则线段IE的长为.【变式训练】已知菱形ABCD的边长为2.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
(1)特殊发现:如图①,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图②.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图③,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
初高中衔接教材含答案
![初高中衔接教材含答案](https://img.taocdn.com/s3/m/46042a69783e0912a2162a3f.png)
黄冈中学初高中数学衔接教材{新课标人教A版}100页超权威超容量完整版典型试题举一反三理解记忆成功衔接{黄冈中学教材系列}第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
1确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
(完整版)初高中数学衔接教材(已整理)
![(完整版)初高中数学衔接教材(已整理)](https://img.taocdn.com/s3/m/873197e7c77da26924c5b04a.png)
目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。
2024年新高一数学初升高衔接《同角三角函数的基本关系》含答案解析
![2024年新高一数学初升高衔接《同角三角函数的基本关系》含答案解析](https://img.taocdn.com/s3/m/7a84b3b777a20029bd64783e0912a21614797f3b.png)
第24讲同角三角函数的基本关系模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解并掌握同角三角函数基本关系式的推导及应用;2.会利用同角三角函数的基本关系进行化简、求值与恒等式证明.知识点1同角三角函数的基本关系1、同角三角函数的基本关系基本关系基本关系式语言描述平方关系22sin cos 1αα+=同一个角的正弦、余弦的平方和等于1商数关系sin tan cos ααα=同一个角的正弦、余弦的商等于角的正切2、基本关系式的要点剖析(1)“同角”有两层含义,一是“角相同”;二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如22sin 3cos 31αα+=成立,但是22sin cos 1αβ+=就不一定成立.(2)2sin α是2(sin )α的简写,读作“sin α的平方”,不能将2sin α写成2sin α,前者是α的正弦的平方,后者是2α的正弦,两者是不同的,要弄清它们的区别,并能正确书写.(3)注意同角三角函数的基本关系式都是对于使它们有意义的角而言的,22sin cos 1αα+=对一切R α∈恒成立,而sin tan cos ααα=仅对()2k k Z παπ≠+∈成立.知识点2关系式的常用等价变形1、2222222sin 1cos cos 1sin sin cos 1sin cos (sin cos )12sin cos αααααααααααα⎧=-⎪=-⎪⎪+=⇒=⎨⎪=⎪⎪+=±⎩2、sin tan cos sin tan sin cos cos tan ααααααααα=⎧⎪=⇒⎨=⎪⎩【注意】使用变形公式sin α=,cos α=时,“±”由α的终边所在的象限来确定,而对于其他形式的变形公式则不必考虑符号问题.知识点3基本关系式常用解题方法1、已知某个三角函数值求其余三角函数值的步骤第一步:由已知三角函数的符号,确定其角终边所在的象限;第二步:依据角的终边所在象限分类讨论;第三步:利用同角三角函数关系及其变形公式,求出其余三角函数值。
初高中数学衔接教材 §3.2 三角形(含答案)
![初高中数学衔接教材 §3.2 三角形(含答案)](https://img.taocdn.com/s3/m/ed562d4bfc4ffe473368ab97.png)
2.三角形三边长分别是 6、8、10,那么它最短边上的高为( )
A.6 B.4.5 C.2.4 D.8
3.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________。
4.已知: a,b, c 是 ABC 的三条边, a 7,b 10 ,那么 c 的取值范围是_________。
图 3.2-14
BD DP CD DP PC 。 AP 2 AB 2 PB PC 。
正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)合一,该点 称为正三角形的中心。
例 7 已知等边 ABC 和点 P,设点 P 到三边 AB,AC,BC 的距离分别为 h1, h2 , h3 ,ABC 的高为 h ,“若点 P 在一边 BC 上,此时 h3 = 0 ,可得结论: h1 + h2 + h3 = h 。”
A.等边三角形 B.等腰三角形 C.直角三角形 D.形状无法确定
2.如图 3.2-24,把 ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,则 A 与 1 2
之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )。
A. A 1 2
B. 2A 1 2
C. 3A 1 2 D. 3A 2(1 2)
_________。
3.满足下列条件的 ABC ,不是直角三角形的是( )
A. b2 = a2 - c2
B. A B C
C. A : B : C : 3 : 4 : 5 D. a : b : c = 12 :13 : 5
-6-
图 3.2-18
4.已知直角三角形的周长为 3 3 ,斜边上的中线的长为 1,求这个三角形的面积。
初高中数学衔接教材12讲word版配答案
![初高中数学衔接教材12讲word版配答案](https://img.taocdn.com/s3/m/fb84cae66c85ec3a86c2c5a4.png)
初高中数学衔接教材编者的话高中数学难学,难就难在初中教材与高中教材之间剃度过大,因此我们要认真搞好初高中数学教学的衔接,使初高中的数学教学具有连续性和统一性。
现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的四心:重心、内心、外心、垂心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。
高中则在使用。
另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。
高一数学相对于初中数学而言,逻辑推理强,抽象程度高,知识难度大。
完美衔接初升高教材答案
![完美衔接初升高教材答案](https://img.taocdn.com/s3/m/e2298d257ed5360cba1aa8114431b90d6c85898c.png)
完美衔接初升高教材答案初升高是一个重要的过渡阶段,学生需要适应新的学习环境和学习方式。
为了帮助学生更好地衔接初升高的学习,以下是一份完美衔接初升高教材的答案,供学生和教师参考。
一、数学1. 代数部分- 多项式运算:将两个多项式相加或相乘,合并同类项,简化表达式。
- 一元一次方程:通过移项和合并同类项,找到解的值。
- 二次方程:使用公式法、因式分解法或配方法求解。
2. 几何部分- 三角形的性质:根据三角形的边长和角度,推导出其他边长和角度。
- 圆的性质:理解圆的半径、直径、周长和面积的关系。
3. 函数部分- 一次函数:理解函数的斜率和截距,以及图像的平移。
- 二次函数:掌握顶点式和标准式,理解图像的对称轴和顶点。
二、语文1. 文言文阅读- 理解文言文中的生僻字词,翻译成现代汉语。
- 分析文言文中的人物形象和故事情节。
2. 现代文阅读- 把握文章的主旨大意,理解作者的写作意图。
- 分析文章的结构和语言特点。
3. 写作技巧- 学习如何写议论文、记叙文和说明文。
- 掌握文章的开头、发展和结尾的写作技巧。
三、英语1. 词汇- 学习新词汇,掌握单词的拼写、发音和基本用法。
- 通过例句加深对词汇的理解和记忆。
2. 语法- 学习并掌握各种时态、语态和句子结构。
- 通过练习题巩固语法知识。
3. 阅读理解- 阅读英文文章,理解文章的主旨和细节。
- 学习如何快速找到文章中的关键信息。
四、物理1. 力学- 理解力的基本概念,如重力、摩擦力和弹力。
- 学习牛顿运动定律和动量守恒定律。
2. 热学- 学习温度、热量和能量的概念。
- 理解热传递的三种方式:传导、对流和辐射。
3. 光学- 理解光的反射、折射和干涉现象。
- 学习光的直线传播和光的色散。
五、化学1. 元素周期表- 熟悉元素周期表的布局,了解元素的分类。
- 学习元素的性质和它们之间的反应。
2. 化学反应- 理解化学反应的基本概念,如反应物、生成物和化学方程式。
- 学习如何平衡化学方程式。
初升高衔接教程及答案
![初升高衔接教程及答案](https://img.taocdn.com/s3/m/d12d228dac51f01dc281e53a580216fc700a53ce.png)
初升高衔接教程及答案# 一、数学部分1. 代数基础题目:解一元二次方程 \( ax^2 + bx + c = 0 \)。
答案:使用求根公式 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) 来解方程。
2. 几何基础题目:证明直角三角形的斜边是最长边。
答案:根据勾股定理,设直角三角形的直角边分别为 \( a \) 和 \( b \),斜边为 \( c \),有 \( a^2 + b^2 = c^2 \)。
由于平方和总是非负的,所以 \( c \) 必须大于 \( a \) 和 \( b \) 中的任何一个,因此斜边是最长边。
# 二、物理部分1. 力学基础题目:解释牛顿第一定律。
答案:牛顿第一定律,也称为惯性定律,表明一个物体会保持静止状态或匀速直线运动状态,除非受到外力的作用。
2. 电学基础题目:解释欧姆定律。
答案:欧姆定律表明,通过导体的电流 \( I \) 与导体两端的电压 \( V \) 成正比,与导体的电阻 \( R \) 成反比,即 \( I = \frac{V}{R} \)。
# 三、化学部分1. 原子结构题目:描述原子的基本结构。
答案:原子由位于中心的原子核和绕核运动的电子组成。
原子核由质子和中子组成,电子在核外的电子云中运动。
2. 化学反应题目:解释什么是化学平衡。
答案:化学平衡是指在一定条件下,正反应和逆反应的速率相等,反应物和生成物的浓度保持不变的状态。
# 四、生物部分1. 细胞结构题目:简述细胞的基本结构。
答案:细胞是生命的基本单位,由细胞膜、细胞质和细胞核组成。
细胞膜控制物质的进出,细胞质含有各种细胞器,细胞核包含遗传物质。
2. 遗传与进化题目:解释达尔文的自然选择理论。
答案:达尔文的自然选择理论认为,在生存竞争中,适应环境的个体更有可能生存并繁衍后代,从而使得有利特征在种群中逐渐积累,导致物种的进化。
以上内容为初升高衔接教程及答案的示例,旨在帮助学生在进入高中前对基础知识进行复习和巩固。
河南省郑州外国语学校初高中数学衔接知识分章节讲解:3.2 三角形 习题3.2 Word版含答案
![河南省郑州外国语学校初高中数学衔接知识分章节讲解:3.2 三角形 习题3.2 Word版含答案](https://img.taocdn.com/s3/m/945ab7c6102de2bd9605889f.png)
习题3.2A 组1. 已知:在ABC 中,AB =AC ,120,o BAC AD ∠=为BC 边上的高,则下列结论中,正确的是()A.2AD AB =B .12AD AB =C .AD BD = D.2AD BD =2. 三角形三边长分别是6、8、10,那么它最短边上的高为( )A .6B .4.5C .2.4D .83. 如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________.4. 已知:,,a b c 是ABC 的三条边,7,10a b ==,那么c 的取值范围是_________。
5. 若三角形的三边长分别为18a 、、,且a 是整数,则a 的值是_________。
B 组1. 如图3.2-19,等边ABC 的周长为12,CD 是边AB 上的中线,E 是CB 延长线上一点,且BD =BE ,则CDE 的周长为()A.6+ B.18+C.6+ D.18+2. 如图3.2-20,在ABC 中,2C ABC A ∠=∠=∠,BD 是边AC上图3.2-19的高,求DBC∠的度数。
3.如图3.2-21,,90,oRt ABC C M∠=是AB的中点,AM=AN,MN//AC,求证:MN=AC。
4.如图3.2-22,在ABC中,AD平分BAC∠,AB+BD=AC.求:B C∠∠的值。
5.如图3.2-23,在正方形ABCD中,F为DC的中点,E为BC上一点,且14EC BC=,求证:90oEFA?.C组图3.2-20图3.2-2图3.2-22图3.2-231. 已知241,2,2,1k b k a c k ac k >=+==-,则以a b c 、、为边的三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .形状无法确定2. 如图3.2-24,把ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A .12A ∠=∠+∠B .212A ∠=∠+∠C .312A ∠=∠+∠D .32(12)A ∠=∠+∠3. 如图3.2-25,已知BD 是等腰三角形ABC 底角平分线,且AB =BC +CD ,求证:90o C ?.4. 如图3.2-26,在等腰Rt ABC 中90o C ∠=,D 是斜边AB 上任一点,AE CD ⊥于E ,BF CD ⊥交CD 的延长线于F ,CH AB ⊥于H ,交AE 于G .求证:BD =CG .习题3.2A 组图3.2-25图3.2-26图3.2-241.B 2. D 3.120o4.317c <<5.8 B 组1.A 2.18o3.连BM ,证MAB AMN ≅.4.在AC 上取点E ,使AE=AB ,则ABD AED ≅, B AED ∠=∠.又BD=DE=EC ,,:2:1.C EDC B C ∴∠=∠∴∠∠=5.可证ADF FCE ,因而AFD ∠与CFE ∠互余,得90o EFA ∠=.C 组1.C .不妨设a c ≥,可得222221,1,a k c k a b c =+=-=+,为直角三角形.2.B3.在AB 上取E 使BE=BC ,则B C D B E ≅,且AE=ED=DC ,2180,90.o o C BED A A B C C ∠=∠=∠=∠+∠=-∠∴∠=4.先证明ACE CBF ≅,得CE=BF ,再证CGE BDF ≅,得BD=CG .。
初中升高中数学衔接:教材18讲word版配答案(精品版)
![初中升高中数学衔接:教材18讲word版配答案(精品版)](https://img.taocdn.com/s3/m/58bc653308a1284ac950435a.png)
Qq 初高中数学衔接教材现有初高中数学知识存在以下“脱节〞1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1〞的分解,对系数不为“1〞的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基此题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系〔韦达定理〕在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这局部内容视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何局部很多概念〔如重心、垂心等〕和定理〔如平行线分线段比例定理,射影定理,相交弦定理等〕初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
目录1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4分式1.2 分解因式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系〔韦达定理〕2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程与不等式2.3.1 二元二次方程组解法2.3.2 一元二次不等式解法3.1 相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2 三角形3.2.1 三角形的“四心〞3.2.2 几种特殊的三角形3.3圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①假设1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②假设12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③假设3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,\点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式 ‘由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 练 习 1.填空:〔1〕假设5=x ,那么x =_________;假设4-=x ,那么x =_________.〔2〕如果5=+b a ,且1-=a ,那么b =________;假设21=-c ,那么c =________.2.选择题:以下表达正确的选项是 〔 〕〔A 〕假设a b =,那么a b = 〔B 〕假设a b >,那么a b > 〔C 〕假设a b <,那么a b < 〔D 〕假设a b =,那么a b =± 3.化简:|x -5|-|2x -13|〔x >5〕.1.1.2. 乘法公式我们在初中已经学习过了以下一些乘法公式: 〔1〕平方差公式 22()()a b a b a b +-=-; 〔2〕完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到以下一些乘法公式:〔1〕立方和公式 2233()()a b a ab b a b +-+=+; 〔2〕立方差公式 2233()()a b a ab b a b -++=-;〔3〕三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; 〔4〕两数和立方公式 33223()33a b a a b ab b +=+++; 〔5〕两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解: 2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:〔1〕221111()9423a b b a -=+〔 〕; 〔2〕(4m + 22)164(m m =++ );〔3〕2222(2)4(a b c a b c +-=+++ ).2.选择题:〔1〕假设212x mx k ++是一个完全平方式,那么k 等于 〔 〕 〔A 〕2m 〔B 〕214m 〔C 〕213m 〔D 〕2116m〔2〕不管a ,b 为何实数,22248a b a b +--+的值 〔 〕〔A 〕总是正数 〔B 〕总是负数〔C 〕可以是零 〔D 〕可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y ++等是有理式.1.分母〔子〕有理化把分母〔子〕中的根号化去,叫做分母〔子〕有理化.为了进行分母〔子〕有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,等等. 一般地,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化那么是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的根底上去括号与合并同类二次根式.2的意义a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将以下式子化为最简二次根式:〔1〔20)a ≥; 〔30)x <.解: 〔1= 〔20)a ==≥;〔3220)xx x ==-<.例2(3-.解法一:(3-=393-=1)6=12.解法二:(3-=12. 例3 试比拟以下各组数的大小:〔1; 〔2解: 〔11===,===,>,〔2〕∵=== 又 4>22,∴6+4>6+22,例4化简:20042005⋅-.解:20042005⋅-=20042004⋅-⋅=2004⎡⎤⋅-⋅-⎣⎦=20041⋅ .例 5 化简:〔1〔21)x <<.解:〔1〕原式===2=2=.〔2〕原式1x x=-, ∵01x <<,∴11x x>>, 所以,原式=1x x-.例 6x y ==22353x xy y -+的值 . 解:∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空: 〔1=__ ___;〔2(x =-x 的取值范围是_ _ ___; 〔3〕=__ ___; 〔4〕假设2x ==______ __. 2.选择题:=QQ 群416652117的条件是 〔 〕 〔A 〕2x ≠ 〔B 〕0x > 〔C 〕2x > 〔D 〕02x <<3.假设b =a b +的值.4.比拟大小:2-4〔填“>〞,或“<〞〕.1.1.4.分式1.分式的意义形如A B 的式子,假设B 中含有字母,且0B ≠,那么称A B 为分式.当M ≠0时,分式AB具有以下性质: A A M B B M⨯=⨯;A A MB B M÷=÷. 上述性质被称为分式的根本性质. 2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 假设54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 〔1〕试证:111(1)1n n n n =-++〔其中n 是正整数〕;〔2〕计算:1111223910+++⨯⨯⨯; 〔3〕证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. 〔1〕证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++〔其中n 是正整数〕成立QQ 群416652117.〔2〕解:由〔1〕可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.〔3〕证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+ =1121n -+,又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2. 练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:假设223x y x y -=+,那么xy= 〔 〕 〔A 〕1 〔B 〕54 〔C 〕45〔D 〕653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.1x y +=,求333x y xy ++的值. 3.填空:〔1〕1819(2(2+-=________;〔22=,那么a 的取值范围是________; 〔3=________.B 组1.填空:〔1〕12a =,13b =,那么2223352a ab a ab b -=+-____ ____; 〔2〕假设2220x xy y +-=,那么22223x xy y x y++=+__ __;2.:11,23x y ==的值. C 组1.选择题:〔1= 〔 〕 〔A 〕a b < 〔B 〕a b > 〔C 〕0a b << 〔D 〕0b a <<〔2〕计算 〔 〕〔A 〔B 〔C 〕 〔D 〕2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.1.1.绝对值1.〔1〕5±;4± 〔2〕4±;1-或3 2.D 3.3x -181.1.2.乘法公式 1.〔1〕1132a b -〔2〕11,24 〔3〕424ab ac bc --2.〔1〕D 〔2〕A1.1.3.二次根式1. 〔12 〔2〕35x ≤≤ 〔3〕- 〔42.C 3.1 4.>1.1.4.分式1.12 2.B 3. 1- 4.99100 习题1.1A 组1.〔1〕2x <-或4x > 〔2〕-4<x <3 〔3〕x <-3,或x >32.1 3.〔1〕2-〔2〕11a -≤≤ 〔31-B 组1.〔1〕37 〔2〕52,或-15 2.4.C 组1.〔1〕C 〔2〕C 2.121,22x x == 3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:〔1〕x 2-3x +2; 〔2〕x 2+4x -12; 〔3〕22()x a b xy aby -++; 〔4〕1xy x y -+-.解:〔1〕如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示〔如图1.2-2所示〕.〔2〕由图1.2-3,得x 2+4x -12=(x -2)(x +6). 〔3〕由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- 〔4〕1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) 〔如图1.2-5所示〕. 2.提取公因式法与分组分解法 例2 分解因式:〔1〕32933x x x +++; 〔2〕222456x xy y x y +--+-. 解: 〔1〕32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.〔2〕222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.假设关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,那么二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把以下关于x 的二次多项式分解因式:-1 -2 x x 图1.2-1 -1 -21 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5〔1〕221x x +-; 〔2〕2244x xy y +-.解: 〔1〕令221x x +-=0,那么解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x +-++.〔2〕令2244x xy y +-=0,那么解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练 习 1.选择题:多项式22215x xy y --的一个因式为 〔 〕 〔A 〕25x y - 〔B 〕3x y - 〔C 〕3x y + 〔D 〕5x y - 2.分解因式:〔1〕x 2+6x +8; 〔2〕8a 3-b 3;〔3〕x 2-2x -1; 〔4〕4(1)(2)x y y y x -++-.习题1.21.分解因式:〔1〕 31a +; 〔2〕424139x x -+;〔3〕22222b c ab ac bc ++++; 〔4〕2235294x xy y x y +-++-.2.在实数范围内因式分解:〔1〕253x x -+ ; 〔2〕23x --;〔3〕2234x xy y +-; 〔4〕222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).1.2分解因式1. B2.〔1〕(x +2)(x +4) 〔2〕22(2)(42)a b a ab b -++〔3〕(11x x --- 〔4〕(2)(22)y x y --+.习题1.2 1.〔1〕()()211a a a +-+ 〔2〕()()()()232311x x x x +-+-〔3〕()()2b c b c a +++ 〔4〕()()3421y y x y -++-2.〔1〕5522x x ⎛+--- ⎝⎭⎝⎭; 〔2〕(x x --;〔3〕22333x y x y ⎛⎫⎛⎫-+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭; 〔4〕()3(1)(11x x x x -+--. 3.等边三角形4.(1)()x a x a -++2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0〔a ≠0〕,用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a ≠0,所以,4a 2>0.于是〔1〕当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;〔2〕当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; 〔3〕当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0〔a ≠0〕的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0〔a ≠0〕的根的判别式,通常用符号“Δ〞来表示.综上所述,对于一元二次方程ax 2+bx +c =0〔a ≠0〕,有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;〔2〕当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; 〔3〕当Δ<0时,方程没有实数根.例1 判定以下关于x 的方程的根的情况〔其中a 为常数〕,如果方程有实数根,写出方程的实数根.〔1〕x 2-3x +3=0; 〔2〕x 2-ax -1=0; 〔3〕 x 2-ax +(a -1)=0; 〔4〕x 2-2x +a =0. 解:〔1〕∵Δ=32-4×1×3=-3<0,∴方程没有实数根. 〔2〕该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x =, 22a x =. 〔3〕由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.〔3〕由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系〔韦达定理〕假设一元二次方程ax 2+bx +c =0〔a ≠0〕有两个实数根. 所以,一元二次方程的根与系数之间存在以下关系:如果ax 2+bx +c =0〔a ≠0〕的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=c a.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,假设x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)程x 2+px +q =0的两根,出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4.∵x 12+x 22-x 1·x 2=21,QQ 群557619246∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:〔1〕在此题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21〞求出m 的值,取满足条件的m 的值即可.〔1〕在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立QQ 群416652117的前提是一元大方向个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y ,那么 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得 QQ 群557619246 x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二〔直接利用韦达定理来解题〕要比解法一简捷. 例5 假设x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. 〔1〕求| x 1-x 2|的值;〔2〕求221211x x +的值; 〔3〕x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-〕22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.〔3〕x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0〔a ≠0〕,那么,2x=,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:假设x 1和x 2分别是一元二次方程ax 2+bx +c =0〔a ≠0〕,那么| x 1-x 2|=||a Δ=b 2-4ac 〕. 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 假设关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,那么x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4.练 习 1.选择题:〔1〕方程2230x k -+=的习题2.1 A 组1.选择题:〔1〕关于x 的方程x 2+kx -2=0的一个根是1,那么它的另一个根是〔 〕 〔A 〕-3 〔B 〕3 〔C 〕-2 〔D 〕2 〔2〕以下四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 〔 〕 〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个〔3〕关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,那么a 的值是〔 〕〔A 〕0 〔B 〕1 〔C 〕-1 〔D 〕0,或-12.填空:〔1〕方程kx 2+4x -1=0的两根之和为-2,那么k = .〔2〕方程2x 2-x -4=0的两根为α,β,那么α2+β2= .〔3〕关于x 的方程x 2-ax -3a =0的一个根是-2,那么它的另一个根是 .〔4〕方程2x 2+2x -1=0的两根为x 1和x 2,那么| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根有两个相等的实数根没有实数根4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:假设关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,那么k 的值为〔 〕〔A 〕1,或-1 〔B 〕1 〔C 〕-1 〔D 〕0 2.填空:〔1〕假设m ,n 是方程x 2+2005x -1=0的两个实数根,那么m 2n +mn 2-mn 的值等于 . 〔2〕如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.关于x 的方程x 2-kx -2=0.4.-1 提示:(x 1-3)( x 2-3)=x 1 x 2-3(x 1+x 2)+9习题2.12.〔1〕2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006.〔2〕-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.〔1〕∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根. 〔2〕∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1.4.〔1〕| x 1-x 2|,122x x +=2b a -;〔2〕x 13+x 23=333abc b a -. 5.∵| x 1-x 2|2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.〔1〕B 〔2〕A〔3〕C 提整数的实数k 的整数值为-2,-3和-5.〔3〕当k =-2时,x 1+x 2=1,① x 1x 2=18, ② ①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴3λ=± 4.〔1〕Δ=22(1)20m -+>;〔2〕∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①假设x 1≤0,x 2≥0,那么x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x-4=0,∴11x =21x =②假设x 1≥0,x 2≤0,那么-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,那么x 1+x 2=-1,x 1x 2=a , 由一根大于1、另一根小于1,得(x 1-1)( x 2-1)2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象〔如图2-1所示〕,从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系图2.2-1同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象〔如图2-2所示〕,从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同〞的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移〞;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移〞.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有以下性质:〔1〕当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.〔2〕当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值〔或最小值〕,并指出当x 取何值时,y 随x 的增大而增大〔或减小〕并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向图2.2-2例2 某种产品的本钱是120元/件,试销阶段每件产品的售价x 〔元〕与产品的日销售量y 〔件〕之x /元 130 150 165 y /件 70 50 35为多少元此时每天的销售利润是多少分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于设每天的利润为z 〔元〕,那么z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,那么是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论. 解:〔1〕当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;〔2〕当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;〔3〕当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;〔4〕当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取局部实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:〔1〕以下函数图象中,顶点不在坐标轴上的是 〔 〕 〔A 〕y =2x 2 〔B 〕y =2x 2-4x +2 〔C 〕y =2x 2-1 〔D 〕y =2x 2-4x〔2〕函数y =2(x -1)2+2是将函数y =2x 2 〔 〕〔A 〕向左平移1个单位、再向上平移2个单位得到的 〔B 〕向右平移2个单位、再向上平移1个单位得到的 〔C 〕向下平移2个单位、再向右平移1个单位得到的 〔D 〕向上平移2个单位、再向右平移1个单位得到的 2.填空题〔1〕二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),那么m = ,n = .〔2〕二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.〔3〕函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小. 3.求以下抛物线的开口方向、对称轴、顶点坐标、最大〔小〕值及y 随x 的变化情况,并画出其图象. 〔1〕y =x 2-2x -3; 〔2〕y =1+6 x -x 2.4.函数y =-x 2-2x +3,当自变量x 在以下取值范围内时,分别求函数的最大值或最小值,并求当函数取最大〔小〕值时所对应的自变量x 的值:〔1〕x ≤-2;〔2〕x ≤2;〔3〕-2≤x ≤1;〔4〕0≤x ≤3.2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:①图2.2-6②③1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标〔纵坐标为零〕,于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在以下关系:〔1〕当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,假设抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么Δ>0也成立QQ群416652117.〔2〕当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点〔抛物线的顶点〕;反过来,假设抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,那么Δ=0也成立QQ群416652117.〔3〕当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,假设抛物线y=ax2+bx+c(a≠0)与x轴没有交点,那么Δ<0也成立QQ群416652117.于是,假设抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),那么x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:假设抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,那么其函数关系式可以表示为y =a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点〔3,-1〕,求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是〔1,2〕.设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点〔3,-1〕, ∴21(32)1a -=-+,解得a =-2.∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式. 分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0), 展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2, ∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+. 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1. 又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12. 所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3 二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式练 习 1.选择题:〔1〕函数y =-x 2+x -1图象与x 轴的交点个数是 〔 〕。
高中数学解三角形(有答案)
![高中数学解三角形(有答案)](https://img.taocdn.com/s3/m/5161ab565e0e7cd184254b35eefdc8d376ee14e3.png)
高中数学解三角形(有答案)高中数学解三角形在高中数学中,解三角形是一个重要的概念和技巧。
掌握解三角形的方法对于理解和解决几何问题至关重要。
本文将介绍几种常见的解三角形的方法,并附上相应的答案,帮助读者巩固和拓展数学知识。
一、解决直角三角形直角三角形是指其中一个角为90度的三角形。
解决直角三角形的方法主要有三种:勾股定理、正弦定理和余弦定理。
勾股定理适用于已知两条边求第三边的情况,其公式为:c² = a² + b²,其中c为斜边的长度,a和b分别为两个直角边的长度。
正弦定理适用于已知一个角和两条角边的情况,其公式为:sinA/a = sinB/b = sinC/c,其中A、B、C分别为三角形的三个内角,a、b、c 分别为对应的边长。
余弦定理适用于已知三条边求角度的情况,其公式为:cosA = (b² + c² - a²) / (2bc),其中A为夹在b和c之间的角,a为对应的边长。
二、解决等腰三角形等腰三角形是指两边长度相等的三角形。
解决等腰三角形的方法主要有两种:勾股定理和正弦定理。
勾股定理适用于已知两条等腰边求底边的情况,其公式与直角三角形相同。
正弦定理适用于已知一个角和两条等腰边的情况,其公式与直角三角形相同,只是此时的两条边为等腰边。
三、解决一般三角形一般三角形是指三个角和三个边都不相等的三角形。
解决一般三角形的方法主要有两种:正弦定理和余弦定理。
正弦定理适用于已知一个角和两条边的情况,公式同上。
余弦定理适用于已知三条边求角度的情况,公式同上。
答案示例:1. 已知直角三角形的两个直角边分别为3cm和4cm,请计算斜边的长度。
解法:根据勾股定理,斜边的长度c² = 3² + 4² = 9 + 16 = 25,所以斜边的长度c = √25 = 5cm。
2. 已知一等腰三角形的底边长度为5cm,两条等腰边的长度分别为4cm,请计算顶角的度数。
初高中数学衔接教材 word版配答案(精品版)
![初高中数学衔接教材 word版配答案(精品版)](https://img.taocdn.com/s3/m/45dc84616529647d262852c7.png)
数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。
在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。
这也是我们继续高中数学学习的基础。
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。
高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。
高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
专题09 三角形 初升高数学衔接教材系列一(原卷版)
![专题09 三角形 初升高数学衔接教材系列一(原卷版)](https://img.taocdn.com/s3/m/52aa55eb1a37f111f0855b1d.png)
专题09三角形高中必备知识点1:三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.如图3.2-1 ,在三角形ABC V 中,有三条边,,AB BC CA ,三个角,,A B C 行?,三个顶点,,A B C ,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段.三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.过不共线的三点A 、B 、C 有且只有一个圆,该圆是三角形ABC 的外接圆,圆心O 为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.典型考题【典型例题】如图,在⊙O 中,AB 是的直径,P A 与⊙O 相切于点A ,点C 在⊙O 上,且PC =P A ,(1)求证PC 是⊙O 的切线;(2)过点C 作CD ⊥AB 于点E ,交⊙O 于点D ,若CD =P A =2,①求图中阴影部分面积;②连接AC,若△P AC的内切圆圆心为I,则线段IE的长为.【变式训练】已知菱形ABCD的边长为2.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
(1)特殊发现:如图①,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O 即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图②.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图③,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
初升高衔接教本数学答案
![初升高衔接教本数学答案](https://img.taocdn.com/s3/m/dc7950435e0e7cd184254b35eefdc8d376ee14ed.png)
初升高衔接教本数学答案尊敬的老师和同学们:为了帮助同学们更好地适应高中数学的学习,我们特此提供了初升高衔接教本数学的答案。
请注意,这些答案仅供学习参考,我们鼓励同学们在遇到难题时先自己思考,然后再对照答案进行学习。
【第一章:代数基础】1. 问题1:解一元一次方程。
答案:对于方程 \( ax + b = 0 \),解为 \( x = -\frac{b}{a} \)。
2. 问题2:因式分解。
答案:多项式 \( ax^2 + bx + c \) 可以通过公式 \( x^2 + (b+c)x + bc \) 进行因式分解。
【第二章:几何初步】1. 问题1:证明三角形的内角和。
答案:在三角形ABC中,设角A、角B、角C分别为α、β、γ,则\( α + β + γ = 180^\circ \)。
2. 问题2:证明勾股定理。
答案:在直角三角形ABC中,设直角边为a、b,斜边为c,根据勾股定理,有 \( a^2 + b^2 = c^2 \)。
【第三章:函数与方程】1. 问题1:求函数的值域。
答案:对于函数 \( f(x) = ax + b \),其值域为 \( (-\infty,+\infty) \)。
2. 问题2:解一元二次方程。
答案:对于方程 \( ax^2 + bx + c = 0 \),当 \( a \neq 0 \) 时,解为 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。
【第四章:解析几何】1. 问题1:求直线的方程。
答案:给定直线上的两点 \( (x_1, y_1) \) 和 \( (x_2, y_2) \),直线的斜率为 \( m = \frac{y_2 - y_1}{x_2 - x_1} \),直线方程为 \( y - y_1 = m(x - x_1) \)。
2. 问题2:求圆的方程。
答案:给定圆心 \( (h, k) \) 和半径 \( r \),圆的标准方程为\( (x - h)^2 + (y - k)^2 = r^2 \)。
2019年初升高数学衔接必备教材——三角形
![2019年初升高数学衔接必备教材——三角形](https://img.taocdn.com/s3/m/f8d21dbc453610661fd9f486.png)
专题09三角形高中必备知识点1:三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题. 如图3.2-1 ,在三角形中,有三条边,三个角,三个顶点,在三角形中,角平分线、中线、高(如图 3.2-2)是三角形中的三种重要线段.三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部. 过不共线的三点A 、B 、C 有且只有一个圆,该圆是三角形ABC 的外接圆,圆心O 为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点. 典型考题【典型例题】如图,在⊙O 中,AB 是的直径,P A 与⊙O 相切于点A ,点C 在⊙O 上,且PC =PA ,(1)求证PC 是⊙O 的切线;(2)过点C 作CD ⊥AB 于点E ,交⊙O 于点D ,若CD =P A =2,ABC V ,,AB BC CA ,,A B C 行?,,A B C①求图中阴影部分面积;②连接AC ,若△PAC 的内切圆圆心为I ,则线段IE 的长为.【答案】(1)详见解析;(2)①S 阴影=.②.【解析】(1)证明:连接OC ?OP ,∵点C 在⊙O 上,∴OC 为半径.∵PA 与⊙O 相切于点A ,∴OA ⊥PA .∴∠P AO =90°.∵OC =OA ,OP =OP ,PC =PA ,∴△PCO ≌△PAO .∴∠PCO =∠PAO =90°.∴PC ⊥OC .∴PC 是⊙O 的切线.(2)①作CM ⊥AP 于点M ,∵CD ⊥AB ,∴CE =DE =,∠CEA =90°.43373。
【初升高 数学衔接教材】1~16讲参考答案
![【初升高 数学衔接教材】1~16讲参考答案](https://img.taocdn.com/s3/m/bc8fa401998fcc22bdd10d9d.png)
第一讲 因式分解例1:解:由多项式的乘法法则易得))(()(2d cx b ax bd x bc ad acx ++=+++∴∴3×(-3)+2×1=-7∴)32)(13(3762-+=--x x x x 例2:解:∴原式=])([])([2222b a x b a x +-⋅-- =))()()((b a x b a x b a x b a x --+++--+ 例3:解:原式=)3103()44(422+--+-y y x y x=)3)(13()44(42---+-y y x y x =)]3(2)][13(2[-+--y x y x =)32)(132(-++-y x y x点评:以上三例均是利用十字相乘来因式分解,其中例3中有x 、y ,而我们将其整理x 的二次三项式。
故又称“主元法”。
例4:解:如果要分解的因式的形式是,唯一确定的,那么可以考虑利用待定系数法 ∵)3)(32(93222y x y x y xy x +-=-+则可设)3)(32(2031493222n y x m y x y x y xy x +++-=+-+-+(m 、n 待定) ∴原式=mn y n m x n m y xy x +-+++-+)33()2(93222比较系数得⎪⎩⎪⎨⎧=-=-=+20333142m n n m n m 解得m =4,n =53 2 1-3 x 2 -(a -b)2 x 2-(a -b)22x -(3y -1)2xy -3∴原式=)53)(432(+++-y x y x(2)在例3中利用了十字相乘法,请同学们用待定系数法解决。
例5:解:(1))61)(1()1(6)1)(1()66()1(762233+++-=-+++-=-+-=-+x x x x x x x x x x x =)7)(1(2++-x x x或)7)(1()1(7)1)(1()77()(76233++-=-+-+=-+-=-+x x x x x x x x x x x x 或)7)(1()1)(1(6)1)(1(7)66()77(7622333++-=-+-++-=---=-+x x x x x x x x x x x x x x解:(2)15++x x =)1()1()1()(232225+++-=+++-x x x x x x x x)1()1)(1(222+++++-=x x x x x x )1)(1(232+-++=x x x x例6:解:把198757623+-+x x x 用含有132--x x 的代数式表示∴321990339 198739 261987576132223232+--+--+----x x x x x x x x x x x x∴19901990)13)(32(1987576223=+--+=+-+x x x x x x 课堂练习答案:1、(1)))()()()((2222y xy x y xy x y x y x z y x +++--+-+ (2))1)(1)(1)(1(--+--+++b a b a b a b a (3))42)(2)(14(2++-+m m m m2、(1))22)(22(22+-++x x x x (2))8)(1(2-+-x x x3、(1))1)(23(+-++y x y x (2))23)(12(+--+y x y x4、-15、2-=ab第二讲 分式例题解析答案:例1:解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2例2:解:观察各分母的特点知,式中第一、二项,第三、四项分别组合通分较容易∴原式=4422442222232))(())((b a b a b a b b a b a b b a b a a -+--++-+++ =011))((22224422222222=---=-+-+-+ba b a b a b a b a b a b a 例3:解:设a m n =,b nm=,则1=ab ∴原式=2)(32223322-++÷---++b a ba b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(n m n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c ba abc b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+-----------=ac b c a c a b c b c a b a -=---+-+-----2111111 例5:解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bcb bcbc b b bc b 例6:解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。
2024年新高一数学初升高衔接《正弦函数、余弦函数的图像》含答案解析
![2024年新高一数学初升高衔接《正弦函数、余弦函数的图像》含答案解析](https://img.taocdn.com/s3/m/6c48e99e760bf78a6529647d27284b73f2423683.png)
第26讲 正弦函数、余弦函数的图象模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解正弦曲线和余弦曲线间的关系,会用“五点(画图)法”画给定区间上的正弦函数、余弦函数的图象;2.掌握正弦函数与余弦函数图象间的关系以及图象的变换,能通过函数图象解决简单的问题.知识点 1 正弦曲线与余弦曲线1、正弦曲线:正弦函数sin ,y x x R =∈的图象叫做正弦曲线,是一条“波浪起伏”的连续光滑曲线,如下图.【要点诠释】(1)由正弦曲线可以研究正弦函数的性质;(2)运用数形结合的思想研究与正弦函数有关的问题.2、余弦曲线:余弦函数cos ,y x x R =∈的图象叫做余弦曲线,它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线,如下图.3、将正弦曲线向左平移2π个单位长度即能得到余弦曲线.知识点 2 正(余)弦函数的图象1、正(余)弦函数的图象函数y =sin xy =cos x图象图象画法五点法五点法关键五点(0,0),π(,1)2,(,0)π,3π(,1)2-,(2,0)π(0,1),π(,0)2,(,1)π-,3π(,0)2,(2,1)π2、用“五点法”作正(余)弦函数的简图步骤(1)确定五个关键点:最高点、最低点、与x 轴的三个交点(三个平衡点);(2)列表:将五个关键点列成表格形式;(3)描点:在平面直角坐标系中描出五个关键点;(4)连线:用光滑的曲线连接五个关键点,注意连线时,必须符合三角函数的图象特征;(5)平移:将所作的[0,2]π上的曲线向左、向右平行移动(每次平移2π个单位长度),得到的图象即为所求正弦曲线、余弦曲线。
知识点 3 用三角函数图象解三角不等式的方法1、作出相应正弦函数或余弦函数在[0,2π]上的图象;2、写出适合不等式在区间[0,2π]上的解集;3、根据公式一写出不等式的解集.考点一:“五点法”画正(余)弦函数的图象例1.用“五点法”作出下列函数sin 1y x =-,[0,2π]x ∈的简图:【变式1-1】(22-23高一下·河南·月考)用五点法作出函数π2sin 6y x ⎛⎫=- ⎪⎝⎭在一个周期内的图象【变式1-2】(23-24高一上·陕西西安·期末)用五点作图法画出cos 2y x =的图象.【变式1-3】用“五点法”作出下列函数的简图.(1)2sin y x =-,[]0,2πx ∈;(2)πcos 6y x ⎛⎫=+ ⎪⎝⎭,π11,π66x ⎡⎤∈-⎢⎥⎣⎦.(3)πcos 3y x ⎛⎫=+ ⎪⎝⎭,π5π,33x ⎡⎤∈-⎢⎣⎦考点二:含绝对值的三角函数图象例2. 当[]2π,2πx ∈-时,作出下列函数的图象,把这些图象与sin y x =的图象进行比较,你能发现图象变换的什么规律?(1)sin y x =;(2)sin y x =.【变式2-1】(23-24高一上·四川绵阳·期末)函数()sin f x x =-在区间[]π,π-上的图象大致是( )A .B .C .D .【变式2-2】作出函数2sin sin y x x =+,[],x ππ∈-的大致图像.【变式2-3】(23-24高一上·云南昆明·期末)函数1(cos cos ),[0,2π]2y x x x =-∈的大致图象为( )A .B .C .D .考点三:用正(余)弦函数的图象解不等式例3. (22-23高一下·四川南充·月考)不等式1si n ,2x <-[0,2]x πÎ的解集是( )A .711,66ππ()B .45,33ππ⎡⎤⎢⎥⎣⎦C .57,66ππ()D .25,33ππ()【变式3-1】(22-23高一下·上海嘉定·期中)不等式[]()1cos π,π2x x ≥∈-的解集为 .【变式3-2】(23-24高一下·广东江门·月考)在()0,2π内,使sin cos x x >成立的x 的取值范围为( )A .π,π4⎛⎫⎪⎝⎭B .ππ5π,π,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .π5π,44⎛⎫ ⎪⎝⎭D .ππ3π5π4244⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭,,【变式3-3】(23-24高一上·江苏淮安·月考)在[]0,2π内函数()ln sin x f x ⎛= ⎝⎭的定义域是( )A .ππ,43⎛⎤ ⎥⎝⎦B .3π5π,43⎛⎤ ⎥⎝⎦C .π3π,34⎡⎫⎪⎢⎣⎭D .π,3π4⎡⎫⎪⎢⎣⎭考点四:正(余)弦函数的图象辨识例4. (23-24高一下·北京·期中)设a 是实数,则函数()sin 1axf x a=+的图象可能是( )A .B .C .D .【变式4-1】(22-23高一下·辽宁·月考)华罗庚说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”所以研究函数时往往要作图,那么函数()sin cos 2f x x x=+的部分图像可能是()A.B.C.D.【变式4-2】(23-24高一下·重庆·月考)函数()3sin 2x x xf x-=的图象大致为()A.B.C.D.【变式4-3】(22-23高一下·湖南长沙·期末)函数()1 sin ln1xf x xx -=⋅+的大致图象为()A.B.C.D.考点五:与正(余)弦函数有关的交点例5. (23-24高一下·陕西·月考)(多选)函数πsin2π3y x x⎛⎫=<<⎪⎝⎭图象与直线y t=(t为常数)公共点的个数可能是()A.0B.1C.2D.3【变式5-1】(23-24高一上·江苏扬州·月考)函数()sin f x x =与()cos g x x =的图象在区间[]2π,π-的交点个数为.【变式5-2】(23-24高一下·辽宁盘锦·月考)若函数()sin 3sin f x x x =+在[]0,2πx ∈的图象与直线2y a =有两个交点,则实数a 的取值范围是.【变式5-3】(23-24高一上·广东江门·期末复习)在同一坐标系中,作函数sin y x =和lg y x =的图像,根据图像判断出方程sin lg x x =的解的个数为.一、单选题1.用“五点法”作2cos 2y x =的图象,首先描出的五个点的横坐标是( )A .π3π0,,π,,2π22B .ππ3π0,,,,π424C .0,π,2π,3π,4πD .πππ2π0,,,,63232.(23-24高二上·福建福州·月考)函数()cos 0y x x =-≥ 的图象中与y 轴最近的最高点的坐标为( )A .π,12⎛⎫ ⎪⎝⎭B .()π,1C .()0,1D .()2π,13.(22-23高一下·山西朔州·期中)函数()cos f x x =,ππ,36x ⎡⎤∈-⎢⎥⎣⎦的最小值为( )A .BC .12-D .124.(23-24高一上·浙江温州·月考)设a 为常数,且满足sin 1a x =+,且[]π,πx ∈-的x 的值只有一个,则实数a 的值为( )A .0B .1C .1或2D .0或25.(23-24高一上·山东青岛·期末)当(0,2π)x ∈时,函数()sin f x x =与()|cos |g x x =的图象所有交点横坐标之和为( )A .πB .2πC .3πD .4π6.(22-23高一上·江苏淮安·期末)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,常用函数的图象来研究函数性质,也常用函数解析式来琢磨函数的图象特征,函数cos ()2sin ||x xf x x =+的部分图象大致为( )A .B .C .D .二、多选题7.函数()sin 2sin f x x x =+,[]0,2πx ∈的图象与直线y k =的交点个数可能是( )A .1B .2C .4D .68.(22-23高一下·江西抚州·期中)函数cos y x =,π4π,33x ⎛⎫∈ ⎪⎝⎭的图像与直线y t =(t 为常数,R t ∈)的交点可能有( )A .0个B .1个C .2个D .3个三、填空题9.已知函数()32cos f x x =-+的图象经过点π,3b ⎛⎫⎪⎝⎭,则b =.10.(23-24高一下·山东威海·月考)方程sin tan x x =在区间3π3π,22⎛⎫- ⎪⎝⎭上解的个数是.11.(23-24高一上·湖南长沙·月考)若()5533cos sin 3sin cos θθθθ-<-且[)0,2πθ∈,则θ的取值范围为 .四、解答题12.用“五点法”作出下列函数的简图.(1)2sin y x =,[]0,2πx ∈;(2)πsin 3⎛⎫=+ ⎪⎝⎭y x ,π5π[,33x ∈-.(3)1πsin()23y x =-在一个周期(4πT =)内的图像.13.(23-24高一上·福建厦门·月考)已知函数()sin y x α=+,其中α为三角形的内角且满足1cos 2α=.(1)求出角α.(用弧度制表示)(2)利用“五点法”,先完成列表,然后作出函数()sin y x α=+,在长度为一个周期的闭区间上的简图.(图中x 轴上每格的长度为π,6y 轴上每格的长度为1)x α+02πxy第26讲 正弦函数、余弦函数的图象模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解正弦曲线和余弦曲线间的关系,会用“五点(画图)法”画给定区间上的正弦函数、余弦函数的图象;2.掌握正弦函数与余弦函数图象间的关系以及图象的变换,能通过函数图象解决简单的问题.知识点 1 正弦曲线与余弦曲线1、正弦曲线:正弦函数sin ,y x x R =∈的图象叫做正弦曲线,是一条“波浪起伏”的连续光滑曲线,如下图.【要点诠释】(1)由正弦曲线可以研究正弦函数的性质;(2)运用数形结合的思想研究与正弦函数有关的问题.2、余弦曲线:余弦函数cos ,y x x R =∈的图象叫做余弦曲线,它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线,如下图.3、将正弦曲线向左平移2π个单位长度即能得到余弦曲线.知识点 2 正(余)弦函数的图象1、正(余)弦函数的图象函数y =sin xy =cos x图象图象画法五点法五点法关键五点(0,0),π(,1)2,(,0)π,3π(,1)2-,(2,0)π(0,1),π(,0)2,(,1)π-,3π(,0)2,(2,1)π2、用“五点法”作正(余)弦函数的简图步骤(1)确定五个关键点:最高点、最低点、与x 轴的三个交点(三个平衡点);(2)列表:将五个关键点列成表格形式;(3)描点:在平面直角坐标系中描出五个关键点;(4)连线:用光滑的曲线连接五个关键点,注意连线时,必须符合三角函数的图象特征;(5)平移:将所作的[0,2]π上的曲线向左、向右平行移动(每次平移2π个单位长度),得到的图象即为所求正弦曲线、余弦曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 三角形3.2.1 三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题。
如图3.2-1 ,在三角形ABC∆中,有三条边,,AB BC CA,三个角CBA∠∠∠,,,三个顶点,,A B C,在三角形中,角平分线、中线、高(如图 3.2-2)是三角形中的三种重要线段。
三角形的三条中线相交于一点,这个交点称为三角形的重心。
三角形的重心在三角形的内部,恰好是每条中线的三等分点。
例1求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1。
已知:D、E、F分别为ABC∆三边BC、CA、AB的中点,求证:AD、BE、CF交于一点,且都被该点分成2:1。
证明连结DE,设AD、BE交于点G,D、E分别为BC、AE的中点,则DE//AB,且12DE AB,GDE∆∴∽GAB∆,且相似比为1:2,GEBGGDAG2,2==∴。
设AD、CF交于点'G,同理可得,'2','2'.AG G D CG G F则G与'G重合,∴AD、BE、CF交于一点,且都被该点分成2:1。
三角形的三条角平分线相交于一点,是三角形的内心。
三角形的内心在三角形的内部,它到三角形的三边的距离相等。
(如图3.2-5)图3.2-1 图3.2-2图3.2-3图3.2-4例2已知ABC ∆的三边长分别为,,BC a AC b AB c ,I 为ABC ∆的内心,且I在ABC ∆的边BC AC AB 、、上的射影分别为D E F 、、,求证:2bc aAE AF。
证明:作ABC ∆的内切圆,则D E F 、、分别为内切圆在三边上的切点,AF AE , 为圆的从同一点作的两条切线,AF AE =∴,同理,BD=BF ,CD=CE 。
CD BD CE AE BF AF --+++=-+∴a b cAE AF AE AF 22==+=即2bc aAEAF。
例3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形。
已知:O 为ABC ∆的重心和内心。
求证: ABC ∆为等边三角形。
证明:如图,连AO 并延长交BC 于D 。
O 为三角形的内心,故AD 平分BAC ∠,DCBDAC AB =∴(角平分线性质定理) O 为三角形的重心,D 为BC 的中点,即BD =DC 。
1=∴ACAB ,即AB AC 。
同理可得,AB =BC 。
ABC ∆∴为等边三角形。
图3.2-6图3.2-7图3.2-8三角形的三条高所在直线相交于一点,该点称为三角形的垂心。
锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为它的直角顶点,钝角三角形的垂心在三角形的外部。
(如图3.2-8)例4求证:三角形的三条高交于一点。
已知:ABC ∆中,,于于E AC BE D BC AD ⊥⊥,AD 与BE 交于H 点。
求证:AB CH ⊥。
证明:以CH 为直径作圆,,,E AC BE D BC AD 于于⊥⊥︒=∠=∠∴90HEC HDCE D 、∴在以CH 为直径的圆上,DEH FCB ∠=∠∴。
同理,E 、D 在以AB 为直径的圆上,可得BAD BED ∠=∠。
BCF BAD ∠=∠∴,又ABD ∆与BCF ∆有公共角DBF ∠,︒=∠=∠90ADB BFC ,即AB CH ⊥。
过不共线的三点A 、B 、C 有且只有一个圆,该圆是ABC ∆的外接圆,圆心O 为三角形的外心。
三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点。
练习1 1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形。
2.(1)若∆ABC 的面积为S ,且三边长分别为a b c 、、,则∆的内切圆的半径是 。
并请说明理由。
(2)若∆t R 三边长分别为a b c 、、(其中c 为斜边长),则∆的内切圆的半径是 。
并请说明理由。
3.2.2 几种特殊的三角形等腰三角形底边上三线(角平分线、中线、高线)合一。
因而在等腰ABC ∆中,三角形的内心I 、重心G 、垂心H 必然在一条直线上。
例5在ABC ∆中,3, 2.AB AC BC ===求:(1)ABC ∆的面积及AC 边上的高BE ;(2)ABC ∆的内切圆的半径r ;(3)ABC ∆的外接圆的半径R 。
解:(1)如图,作AD BC ⊥于D 。
,AB AC D =∴为BC 的中点, 2222=-=∴BD AB AD ,2222221=⨯⨯=∴∆ABC S 又BE AC S ABC •=∆21,解得42BE =。
(2)如图,I 为内心,则I 到三边的距离均为r ,连,,IA IB IC ,IAC IBC IAB ABC S S S S ∆∆∆∆++=,即11122222AB r BC r CA r =⋅+⋅+⋅, 解得22r =。
(3)ABC ∆是等腰三角形,∴外心O 在AD 上,连BO ,图3.2-10 图3.2-13图3.2-11 图3.2-12则OBD R ∆t 中,,OD AD R =-222,OB BD OD =+222(22)1,R R ∴=-+解得92.R =在ABC R ∆t 中,A ∠为直角,垂心为直角顶点A , 外心O 为斜边BC 的中点,内心I 在三角形的内部,且内切圆的半径为2bc a(其中,,a b c 分别为三角形的三边BC ,CA ,AB 的长),为什么?该直角三角形的三边长满足勾股定理:222ACAB BC 。
例6如图,在ABC ∆中,AB =AC ,P 为BC 上任意一点。
求证:PC PB AB AP •-=22。
证明:过A 作BC AD ⊥于D 。
在ABD R ∆t 中,222AD AB BD 。
在APD R ∆t 中,222AP AD DP 。
)()(22222DP BD DP BD AB DP BD AB AP -•+-=+-=DC BD BC AD AC AB =∴⊥=,, 。
PC DP CD DP BD =-=-∴。
PC PB AB AP •-=∴22。
正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)合一,该点称为正三角形的中心。
例7已知等边ABC ∆和点P ,设点P 到三边AB ,AC ,BC 的距离分别为123,,h h h ,ABC ∆的高为h ,“若点P 在一边BC 上,此时30h ,可得结论:123h h h h 。
”图3.2-14请直接应用以上信息解决下列问题:当(1)点P 在ABC ∆内(如图b ),(2)点在ABC ∆外(如图c),这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,123,,h h h 与h 之间有什么样的关系,请给出你的猜想(不必证明)。
解:(1)当点P 在ABC ∆内时, 法一如图,过P 作''B C 分别交,,AB AM AC 于',','B M C , 由题设知'AM PD PE ,而'AM AM PF , 故PD PEPFAM ,即123h h h h 。
法二如图,连结PA 、PB 、PC ,PBC PAC PAB ABC S S S S ∆∆∆∆++= ,PF BC PE AC PD AB AM BC •+•+•=•∴21212121, 又AB BCAC ,PF PE PD AM ++=∴,即123h h h h 。
(2)当点P 在ABC ∆外如图位置时,123h h h h 不成立,猜想:123h h h h 。
注意:当点P 在ABC ∆外的其它位置时,还有可能得到其它的结论, 如123h h h h ,123h h h h (如图3.2-18,想一想为什么?)等。
在解决上述问题时,“法一”中运用了化归的数学思想方法,“法二”中灵活地运用了面积的方法。
练习21.直角∆的三边长为3,4,x ,则x________。
2.等腰∆有两个内角的和是100°,则它的顶角的大小是_________。
图3.2-16图3.2-183.满足下列条件的ABC ∆,不是直角三角形的是( ) A.222ba c B.C B A ∠=∠-∠C.5:4:3:::=∠∠∠C B AD.::12:13:5a b c4.已知直角三角形的周长为3+1,求这个三角形的面积。
5.证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量。
图 3.2-20图 3.2-19图 3.2-21图3.2-22习题3.2 A 组1.已知:在ABC ∆中,AB =AC ,120,oBAC AD ∠=为BC 边上的高,则下列结论中,正确的是( ) A.32AD AB =B.12AD AB = C.AD BD = D.22AD BD = 2.三角形三边长分别是6、8、10,那么它最短边上的高为( ) A .6 B .4.5 C .2.4 D .83.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于_________。
4.已知:,,a b c 是ABC ∆的三条边,7,10a b ==,那么c 的取值范围是_________。
5.若三角形的三边长分别为1、a 、8,且a 是整数,则a 的值是_________。
B 组1.如图3.2-19,等边ABC ∆的周长为12,CD 是边AB 上的中线,E 是CB 延长线上一点,且BD =BE ,则CDE ∆的周长为( )。
A .643+B .183+.623+ D .183+2.如图3.2-20,在ABC ∆中,2C ABC A ∠=∠=∠,BD 是边AC 上的高,求DBC ∠的度数。
3.如图 3.2-21,ABC R ∆t ,,90︒=∠B M 是AC 的中点,AM=AN ,MN//AB ,求证:MN=AB 。
4.如图3.2-22,在ABC ∆中,AD 平分BAC ∠,AB +BD =AC 。
求:B C ∠∠的值。
5.如图3.2-23,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且14EC BC , 求证:︒=∠90EFA 。
图3.2-23C 组1.已知241,2,2,1k b k a c k ac k >=+==-,则以a b c 、、为边的三角形是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .形状无法确定2.如图3.2-24,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠ 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )。
A .12A ∠=∠+∠B .212A ∠=∠+∠C .312A ∠=∠+∠D .32(12)A ∠=∠+∠3.如图3.2-25,已知BD 是等腰ABC ∆底角平分线,且AB =BC +CD ,求证:︒=∠90C 。