(专题精选)初中数学四边形分类汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(专题精选)初中数学四边形分类汇编含答案

一、选择题

1.如图,正方形ABDC 中,AB =6,E 在CD 上,DE =2,将△ADE 沿AE 折叠至△AFE ,延长EF 交BC 于G ,连AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S ∆FCG =3,其中正确的有( ).

A .1个

B .2个

C .3个

D .4个

【答案】C

【解析】

【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802

FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.

【详解】

解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°

又∵AG=AG

∴Rt △ABG ≌Rt △AFG ,故①正确;

由Rt △ABG ≌Rt △AFG

∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4

∴在Rt △EGC 中,222

(6)4(2)x x -+=+

解得:x=3

∴BG =3,CG=6-3=3

∴BG =CG ,故②正确;

又BG =CG , ∴1802

FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG ∴1802

FGC AGB -∠∠=o ∴∠FCG=∠AGB

∴AG∥CF,故③正确;过点F作FM⊥CE,

∴FM∥CG

∴△EFM∽△EGC

∴FM EF

GC EG

=即

2

35

FM

=

解得

6

5 FM=

∴S∆FCG=

116

344 3.6

225

ECG ECF

S S

-=⨯⨯-⨯⨯=

V V

,故④错误

正确的共3个

故选:C.

【点睛】

本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.

2.下列命题错误的是()

A.平行四边形的对角线互相平分

B.两直线平行,内错角相等

C.等腰三角形的两个底角相等

D.若两实数的平方相等,则这两个实数相等

【答案】D

【解析】

【分析】

根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.

【详解】

解:A、平行四边形的对角线互相平分,正确;

B、两直线平行,内错角相等,正确;

C、等腰三角形的两个底角相等,正确;

D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;

故选:D.

【点睛】

本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.

3.如图,若OABC

Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为()

A.(4,1)B.(5,3)C.(4,3)D.(5,4)

【答案】B

【解析】

【分析】

根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.

【详解】

解:∵四边形OABC是平行四边形,

∴OC∥AB,OA∥BC,

∴点B的纵坐标为3,

∵点O向右平移1个单位,向上平移3个单位得到点C,

∴点A向右平移1个单位,向上平移3个单位得到点B,

∴点B的坐标为:(5,3);

故选:B.

【点睛】

本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.

4.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )

A.5 B.2 C.5

2

D.5

【答案】C 【解析】

【分析】

过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.

【详解】

解:过点D 作DE BC ⊥于点E

由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .

AD BC a ∴==

∴1

2

DE AD a =g 2DE ∴=

由图像得,当点F 从D 到B 时,用5s

5BD ∴=

Rt DBE V 中,

2222(5)21BE BD DE =-=-=

∵四边形ABCD 是菱形,

1EC a ∴=-,DC a =

DEC Rt △中,

2222(1)a a =+-

解得52

a =

故选:C .

【点睛】

本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.

5.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )

相关文档
最新文档