数控机床机械手上下料设计

合集下载

数控机床机械手上下料设计

数控机床机械手上下料设计

数控机床机械手上下料设计近年来,全球制造业的竞争越来越激烈,如何提高生产效率、降低成本便成为制造业关注的焦点。

而数控机床作为其中的重要组成部分,已经成为生产制造的主力工具。

而数控机床机械手上下料设计就是其中的一个重要环节。

下面将从技术、市场等方面对数控机床机械手上下料设计进行详细探讨。

一、技术分析1、数控机床机械手简介数控机床机械手是一种智能化的控制系统,具有先进的传输技术和高效的控制系统,可以实现自动化控制,实现特定生产需要。

数控机床机械手一般由机械臂、夹具和控制系统组成。

2、数控机床机械手上下料设计优势数控机床机械手上下料设计不仅提高了生产效率,减少了人工成本,同时也提升了成品质量,消除了人为因素对质量的影响。

3、数控机床机械手上下料设计应用范围数控机床机械手上下料设计主要应用于制造行业,以及需要高精度加工的领域。

比如,汽车、电子、机械、医疗、航空等领域。

同时,这种设计也适用于大规模连续生产、批量生产的企业。

二、市场分析随着国内制造业对自动化生产的不断追求,智能制造已逐渐成为未来制造业的发展方向。

截至2019年,我国数控机床行业年产值近千亿元,其中数控机床机械手应用广泛,占据了整个市场的重要地位。

据最新数据显示,目前全球机械手市场规模已经超过了50亿美元,未来5年内预计将达到70亿美元,市场需求增长迅猛,可见数控机床机械手上下料设计的未来市场前景良好。

三、设计方案在进行数控机床机械手上下料设计时,应该结合实际生产情况,以实现生产效率、产品质量、生产成本等综合考虑。

下面列出以下设计方案:1、机械手运动设定根据需要加工的工件,制定机械手的运动路线,例如加工不规则工件时,机械手应该根据不同的形状自动控制其运动。

2、工件夹具设计对于各种形状的工件,设计不同的夹具来固定工件,以便机械手顺利上下料,在夹具安装单元中应设计相应的传感器和制动器。

3、自动调整功能由于不同工件的尺寸不同,需要自动调整夹具的升降高度,不同工件铺设位置也会影响机械手的工作效率,因此需要设计自监测功能,通过传感器等接口信息实现自适应调整。

数控机床上下料机械手的机械结构设计

数控机床上下料机械手的机械结构设计

数控机床上下料机械手的机械结构设计【摘要】上下料机械手的设计是数控机床的关键,直接关系到机床的工作质量和工作效率。

所以,在设计数控机床上的上下料机械手时,必须要对其工作特性有一定的认识,并对其进行合理的机械结构设计,以保证其在实际加工过程中的使用。

合理地设计机械手的机械结构,不仅能提高结构的紧凑性,同时也能节省搬运设备。

因此,探索机械手的结构设计是非常有实际意义的。

本文着重介绍了数控机床上下料机械手的机械结构设计,以期对有关技术人员提供一定的借鉴.【关键词】数控机床;上下料机械手;结构设计;1.数控机床上下料机械手的机械结构设计1.1手爪设计爪子是用来抓取工件,确保抓取的力量,根据工件的抓取部位和特点,可将其分为三指和两指,一种是用来抓取圆盘和轴的,另一种是用来抓取异形或盒状的。

在手爪的结构设计中,手爪是工作操作的主要设备,其类型有多种,如搬运手爪、加工手爪、测量手爪等。

机械手的设计必须以机械操作为基础,以满足机械操作的要求,使其体积小、质量轻、结构紧凑、通用性强,便于操作和维护。

按工艺要求,手爪的冲程设计也要注意同时兼顾毛坯与成品的抓取,同时还要考虑到是否要采用弹丸机构。

根据实际情况,工件是轴类零件,本次设计中使用了空气动力夹具,在手指部位涂上了聚氨酯,在保证工件表面质量的前提下,提高了摩擦系数。

V型指头还能实现对工件的自动定心,确保了上料过程中的精度一致性。

1.2手腕设计在机械臂的结构设计中,腕部充当了操作机的终端,将爪子与机械的手臂连接起来,从而实现了机械的工作空间。

因此,在设计腕部时,必须尽量使其结构部件更轻更紧凑,并与机械结构的工作需求相结合,使腕部结构的自由度得到合理的设计。

腕部连接两只爪,分别进行下料和上料,节约换料时间。

腕部设有减震装置,并设有硬限位,可有效防止因超限引起的机械损伤。

在分析上、下料操作时,应充分考虑到数控机床的加工方式,以保证系统的设计要求为前提,提高总体的安全性,减少机械臂的控制难度,简化机械结构,在不增加自由度的情况下,根据这三个自由度,就可以完成对机床的下料。

数控机床上下料机械手设计

数控机床上下料机械手设计

数控机床上下料机械手设计前言随着工业的不断发展和升级,机械制造产业已经成为了各国经济发展不可或缺的重要组成部分。

数控机床则是机械制造产业中的重要设备之一。

而数控机床上下料机械手,作为数控机床的附属设备,它的功能是在机床的输入、输出端之间自动输送加工件,减少了人力,提高了加工效率,为制造行业带来了极大的便利和效益。

本文将介绍数控机床上下料机械手的设计过程。

设计思路首先,在设计机械手之前,我们需要了解机械手的结构和工作原理。

1.机械手结构数控机床上下料机械手的结构一般分为机械手臂、机械手控制系统、夹手器、传感器和运动轴等主要部分。

其中,机械手臂是机械手的核心部件,它的结构一般采用铝合金或者碳纤维材料制作,具有较高的强度和刚度,能够承受较大的载荷;机械手控制系统则是机械手的智能核心,能够根据预设的程序进行自动化控制;夹手器则是机械手的末端执行器,用于夹持加工件;传感器则可以对加工件的位置、形状等进行检测和反馈;而运动轴则是机械手的实际运动部分,能够实现机械手的动作。

2.机械手工作原理数控机床上下料机械手的工作原理是通过控制机械手臂的运动轴和夹手器的打开、关闭,来实现机械手夹取、放置加工件的过程。

在机械手的控制系统中,我们可以预设机械手的运动轨迹和夹手器的运动规律,当接收到工艺指令后,机械手会按照预设的程序自动地执行加工件的夹取和放置操作。

在了解了机械手的结构和工作原理之后,我们可以开始设计机械手的具体实现方案。

设计方案1.机械手臂结构设计机械手臂的结构设计是机械手整体设计中的核心环节之一。

在设计机械手臂时,我们需要考虑以下几个方面:•材料的选择。

由于机械手臂需要具备较强的承载能力和刚度,因此在材料的选择上,我们可以考虑采用铝合金或者碳纤维等高强度材料,来满足机械手的结构要求。

•结构的设计。

机械手臂的结构设计需要采用工程力学理论,考虑机械手的承重和刚度等因素。

在结构设计中,需要确定机械手臂的长度、形状和悬挂方式等关键参数,保证机械手的稳定运行和准确夹取加工件的能力。

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计摘要:本课题针对于数控车床而设计了结构圆柱坐标型的自动上下料机械手,通过对机械手的传动机构,驱动系统、液压系统以及控制系统进行了理论分析和计算。

同时对机械手整体结构进行了详细的设计,主要包括机械手的机身机座,机械手手臂,机械手手爪等部分。

并分析了数控车床自动上下料机械手的操作流程,主要采用液压缸、步进电机等元件实现机械手的运动部分。

关键词:数控车床;机械手;传动机构:液压系统;驱动系统1、数控车床自动上下料机械手的设计方案1.1机械手结构的设计工业机器人的结构形式主要包括直角坐标型机器人、圆柱坐标型机器人、球坐标型机器人、关节型坐标机器人四种。

其对应的特点如表1。

表1工业机器人结构类型球坐标型机器人两个回抬运动以及一个直线运动结构简单.造价成本较低、精度较差搬运机器人关节型机器人三个回转运动动作灵活、结构疑凌焊接机器人、喷漆机器人、搬运1.2数控车床自动上下料机械手手部设计1.2.1机械手手部的设计要求本课题机械手手爪开闭范围需够大。

在机械手工作时,其中一个手爪张开夹紧角度的最大变化量为开闭范围。

手爪开闭范围的要求与工件的形状以及尺寸等因素都有关联。

通常情况下,机械手手爪的开闭范围越大越好。

1.2.2手爪结构的采用方案结合具体的工作要求,综上所述,本课题采用的是齿轮齿条式。

通过活塞往返带动齿条完成手爪张开或夹紧的动作。

1.3数控车床自动上下料机械手腕部设计机械手手腕主要功能是可以使被夹持工件的方位产生变化,此时机械手手腕需做回转运动,即只存在一个回转自由度。

结合本课题,本设计手腕不加自由度以便于机械手结构简单,操作简单。

1.4数控车床自动上下料机械手手臂设计考虑到操纵器在工作中的稳定性和安全性,将两个平行的导向杆添加到该对象的水平框架中,使其与运动活塞杆截面形成等腰三角形结构,以保证其结构更加稳定牢靠。

垂直手臂添加四个导杆其截面为正四边形,每个导杆都选用空心结构以保证机械手整体重量。

数控机床上下料机械手的机械结构设计

数控机床上下料机械手的机械结构设计

机械结构设计原则
数控机床上下料机械手的机械结构设计需要遵循以下原则:
1、机械强度:机械手在搬运和装载工件时需要承受一定的重量和力矩,因 此其结构件应具有足够的强度和刚度,以避免产生形变和损坏。
2、耐久性:机械手需要长时间、高频率地工作,因此其结构件应具有较好 的耐久性,以延长机械手的使用寿命。
此外,还需考虑机械手的夹持机构和电气控制等因素,以确保机械手的安全 性和稳定性。
2、自动化生产线设计
自动化生产线设计是实现数控车床自动上下料的重要环节。通过将数控车床 与机械手连接起来,能够使整个生产过程更加协调和高效。在设计中,我们需要 根据生产节拍和生产工艺要求,合理规划机械手的运动路径和抓取速度,以确保 生产线的顺畅运行。此外,还需采用先进的数控技术,实现生产线的自动化和智 能化,提高生产效率和产品质量。
1、手臂:手臂是机械手的主要承载部件,通常采用轻质高强的材料制造, 以减小运动阻力。同时,手臂应具有足够的刚度和精度,以确保工件搬运和装载 的稳定性。
2、手腕:手腕是连接手臂和手部的关键部件,它不仅需要传递动力和运动 信息,还需确保手部姿态的精确控制。
3、手部:手部是机械手直接与工件接触的部分,它的结构设计需要根据所 搬运工件的形状和尺寸进行定制化设计。
4、驱动系统:驱动系统是机械手的动力来源,它可采用电动、气动或液压 等多种形式,根据实际需求进行选择。
5、控制系统:控制系统是机械手的“大脑”,它负责接收指令并控制机械 手的运动轨迹和姿态,以确保工件的精确搬运和装载。
机性能和降低成本,可采取以下优化 措施:
未来研究方向和意义:
1、进一步优化设计:通过对自动上下料机械手进一步研究和优化设计,提 高其性能表现、稳定性和使用寿命。

数控机床上下料机械手设计

数控机床上下料机械手设计

数控机床上下料机械手设计2.3机械手手腕结构的设计机械手手腕是机械手操作机的最末端,与手爪相连接,它与机械手手臂配合,使手爪在空间运动,完成所需要的作业动作。

2.3.1手腕结构的设计要求1、由于手腕安装在机械手末端,因此要求手腕设计应尽量小巧轻盈,结构紧凑。

2、根据作业需要,设计机械手手腕的自由度。

一般情况下,自由度数目愈多,腕部的灵活性愈高,对对作业的适应能力也愈强。

但自由度的增加,必然使腕部结构更复杂,控制更困难,成本也会相应增加。

因此,手腕的自由度数,应根据实际作业要求来确定。

3、为实现腕部的通用性,要求有标准的连接法兰,以便于和不同的机械手手爪进行连接。

4、为保证工作时力的传递和运动的连贯,腕部结构要有足够的强度和刚度。

5、要设有可靠的传动间隙调整机构,以减小空回间隙,提高传动精度。

6、手腕各关节轴转动要有限位开关,并设置硬限位,以防止超限造成机械损坏。

2.3.2具体设计方案通过对数控机床上下料作业的具体分析,考虑数控机床加工的具体形式及对机械手上下料作业时的具体要求,在满足系统工艺要求的前提下提高安全和可靠性,为使机械手的结构尽量简单,降低控制的难度,本设计手腕不增加自由度,实践证明这是完全能满足作业要求的,3个自由度来实现机床的上下料完全足够。

具体的手腕(手臂手爪联结梁)结构见图2-4。

2.4机械手手臂结构的设计2.4.1手臂结构的设计要求机械手的手臂在工作时,要承受一定的载荷,且其运动本身具有一定的速度,因此,机械手手臂的设计需要遵循以下设计要求:1、工作空间的形状和大小与机械手手臂的长度,手臂关节的转动范围有密切的关系,因此手臂尺寸设计应合理,一般满足其工作空间即可。

2、为了提高机械手的运动速度与控制精度,应在保证机械手手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。

3、应尽可能使机械手手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手的控制。

【毕业设计】数控机床上下料机械手设计开题报告

【毕业设计】数控机床上下料机械手设计开题报告

设计(论文)学生开题报告
(1)A—工程实践型;B—理论研究型;C—科研装置研制型;D—计算机软件型;
E—综合应用型
(2)X—真实课题;Y—模拟课题;
(1)、(2)均要填,如AY、BX等。

2-2
毕业设计(论文)学生申请答辩表
学生签名:日期:毕业设计(论文)指导教师评审表
毕业设计(论文)评阅人评审表
毕业设计(论文)答辩表
毕业设计(论文)答辩记录表
毕业设计(论文)成绩评定总表
学生姓名:蔡炼专业班级:05gb机制1
毕业设计(论文)题目:数控机床上下料机械手设计
注:成绩评定由指导教师、评阅教师和答辩组分别给分(以百分记),最后按“优(90--100)”、“良(80--89)”、“中(70--79)”、“及格(60--69)”、“不及格(60以下)”评定等级。

其中,指导教师评定成绩占40%,评阅人评定成绩占20%,答辩组评定成绩占40%。

数控机床上下料机械手设计

数控机床上下料机械手设计

学科门类:单位代码:毕业设计说明书(论文)数控机床上下料机械手设计学生姓名所学专业班级学号指导教师XXXXXXXXX系二○**年X X月任务书任务下达日期:20** 年 3 月13 日设计(论文)开始日期:20** 年 3 月13 日设计(论文)完成日期:20** 年 6 月20 日一、设计(论文)题目:数控机床上下料机械手设计二、专题题目:高速切削的数控加工工艺三、设计的目的和意义:通过对机械设计制造及其自动化专业机制方向大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的检测、控制仪器的制作,能够充分、完整地体现电子信息工程专业类毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论到实践的有机结合。

本设计能够广泛应用于家庭、车站、码头、医疗机构等需要对人体温度进行实时检测的场所,满足用户对体温实时测试的要求,并能够对体温进行实时显示和对体温异常现象进行报警。

目前,本设计的国内外研究及应用主要体现在2003年全国抗击“非典”期间,清华大学深圳研究所研制的“红外数字体温计”以及同时期出现的国内其他生产厂家制作的“数字遥感体温计”。

四、设计(论文)主要内容:(1)机械手的整体结构设计及其总装图、液压系统图和PLC接线图以及具体零件图的绘制(一张零号图,三张一号图,二张二号图,合计三张零号图)(2)具体设计过程及其合理性的文字说明。

五、设计目标:完成对机械手的总体结构设计,主要是设计合理的液压传动系统,以及PLC控制程序,能合理地控制机械手上下料。

六、进度计划:20**年3月13日至3月31日进行为期3周的生产实习;4月1日至4月20日完成对设计题目的资料收集与查询;4月21日至5月31日完成对设计图纸的绘制;6月1日至6月20日完成毕业设计说明书的编写;6月21日至6月24日最后的审稿及说明书和图纸的打印。

七、参考文献资料:1 付永领, 王岩, 裴忠才. 基于CAN总线液压喷漆机器人控制系统设计与实现. 机床与液压. 2003, (6): 90~922 丁又青, 朱新才. 一种新型型钢翻面机液压系统设计. 机床与液. 2003, (5):128~1293 刘剑雄, 韩建华. 物流自动化搬运机械手机电系统研究. 机床与液压. 2003, (1): 126~1284 徐轶, 杨征瑞, 朱敏华, 温齐全. PLC在电液比例与伺服控制系统中的应用. 机床与液压. 2003, (5): 143~1445 胡学林. 可编程控制器(基础篇). 北京: 电子工业出版社, 2003.6 胡学林. 可编程控制器(实训篇). 北京: 电子工业出版社, 2004.7 孙兵, 赵斌, 施永康. 基于PLC的机械手混合驱动控制. 液压与气动. 2005, (3): 37~398 孙兵, 赵斌, 施永康. 物料搬运机械手的研制. 机电一体化. 2005, (2): 43~459 王田苗, 丑武胜. 机电控制基础理论及应用. 北京: 清华大学出版社, 2003.10 李建勇. 机电一体化技术. 北京: 科学出版社, 2004.11 王孙安, 杜海峰, 任华. 机械电子工程. 北京: 科学出版社,2003.12 张启玲, 何玉安. PLC在气动控制称量包装装置中的应用. 液压与气动.2005, (1): 31~3313赵文. 数字控制技术在龙门刨床电控系统中的应用. 电气传动. 2005. 35 卷(3): 55~5714 沈兴全, 吴秀玲. 液压传动与控制. 北京: 国防工业出版社, 2005.15 王宪军, 赵存友. 液压传动. 哈尔滨: 哈尔滨工程大学出版社, 2002.16 徐灏等. 机械设计手册. 第5卷. 北京: 机械工业出版社, 2000.17陈铁鸣, 王连明, 王黎钦. 机械设计(修订版). 哈尔滨: 哈尔滨工业大学出版社, 2003.18 邓星钟. 机电传动控制(第三版). 武汉: 华中科技大学出版社, 2001.19 西门子自动化与驱动集团(SIEMENS AG). S7-200系统手册. 2002.20 蔡行健. 深入浅出西门子S7-200 PLC. 北京: 北京航空航天大学出版社,2003.22 张利平. 现代液压技术应用220例. 化学工业出版社, 2004.23 高西林. 锻床上料机械手. 轻工机械. 2001,(2):24 李春波, 王大明, 李哲, 王祖温. PLC控制的气动上下料机械手. 液压气动与密封, 1999. 12. (6): 21~2425 尹自荣, 熊晓红, 骆际焕, 王建坤. 数控上下料机械手的研究及应用. 锻压机械. 1994, (6): 3~526 张波, 李卫民, 尚锐. 多功能上下料用机械手液压系统. 2002,(8): 31~3227 侯沂, 刘涛. 装卸机械手设计研究. 机械. 2004, 第31卷(6): 53~5428 叶爱芹, 袁金强. PLC在机械手控制系统中的应用. 安徽技术师范学院学报. 2001, 15卷(4): 64~6529 王会香, 孙全颖. 自动涂胶机械手的PLC控制. 哈尔滨理工大学学报.2002,7卷(5): 16~1830 潘沛霖, 杨宏, 高波, 吴伟光. 四自由度折叠式机械手的结构设计与分析.哈尔滨工业大学学报. 1994, 26卷(4): 90~9531 刘新一. 多工位自动冲床机械手控制器设计. 广州大学学报(综合版).2000, 第14卷(3): 19~2032吉爱国, 冯汝鹏, 郭伟, 张锦江. 计算机在机械手控制中的应用. 机械与电子. 1996, (6): 8~9指导教师:院(系)主管领导:年月日摘要通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,对工业机械手各部分机械结构和功能的论述和分析,设计了一种圆柱坐标形式的数控机床上下料机械手。

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计首先,在设计机械手的结构时,需要考虑机械手的运动自由度。

通常情况下,机械手需要具备至少4个自由度,包括水平滑台运动、垂直滑台运动、夹具旋转和夹具开合等运动。

这样可以保证机械手可以在不同方向上进行运动,以满足不同工件的上下料需求。

其次,机械手的运动方式也需要进行合理的设计。

常见的机械手运动方式有直线运动和旋转运动。

在数控车床自动上下料机械手中,通常选择导轨和丝杠组合的方式实现机械手的水平滑台和垂直滑台运动,以保证稳定性和精度。

夹具的旋转可以通过电机和减速机组合实现,使夹具可以在水平方向上进行旋转。

夹具的开合则可以通过气动或液压系统来实现,以提高开合速度和准确度。

再次,机械手的控制系统需要具备高效、稳定和智能化的特点。

控制系统需要能够准确地控制机械手的运动,以达到预定的上下料速度和精度。

同时,控制系统还需要具备自动化和智能化的功能,可以根据生产需求进行灵活的调整和优化。

使用传感器和编码器等设备对机械手的运动状态进行实时监测和反馈,以实现闭环控制,提高机械手的稳定性和精度。

最后,机械手的安全性也是设计中需要考虑的重要因素。

机械手在工作过程中需要与操作人员和其他设备进行安全隔离,防止意外伤害的发生。

同时,机械手还需要具备急停、紧急停机和故障诊断等安全保护功能,以保障操作人员和设备的安全。

综上所述,数控车床自动上下料机械手的结构设计需要兼顾高效、稳定、安全和智能化的要求。

只有具备合理的运动自由度和方式、高效稳定的控制系统以及安全可靠的保护措施,才能有效提高生产效率和产品质量,满足企业的生产需求。

数控机床机械手上下料设计

数控机床机械手上下料设计

数控机床机械手上下料设计1. 机械手的选型:机械手的选型要根据机床的工作环境、工件尺寸和重量等因素进行选择。

常见的机械手类型有SCARA机械手、直角坐标机械手和Delta机械手等。

机械手的选型要保证其具备足够的精度、承载能力和速度。

2.机械手的运动轨迹规划:机械手上下料的运动轨迹规划要尽量减少运动时间,提高生产效率。

一般采用直线插补或者圆弧插补的方式进行轨迹规划。

同时,还要考虑到机械手的运动平稳性,避免产生过大的加速度和振动。

3.机械手的夹具设计:机械手的夹具设计要根据工件的形状和尺寸进行设计,以保证夹持力和夹持稳定性。

夹具还需要具备自动卡紧和松开的功能,以便于机械手的操作。

4.机械手的控制系统:机械手的控制系统要能够准确控制机械手的运动和夹具的开合,实现精确的上下料操作。

控制系统还需要具备灵活的编程能力,以适应不同工件的加工要求。

5.安全措施的设计:机械手上下料过程中需要考虑到操作人员的安全。

可以设置机械手的安全围栏和光幕等安全装置,防止人机碰撞事故的发生。

在数控机床机械手上下料设计中,还需要进行一系列的试验和验证。

首先进行机械手的空载试运行,测试其准确性和稳定性。

然后进行机械手的负载试运行,测试其夹持力和承载能力。

最后进行机械手与数控机床的协调操作试验,验证机械手是否能够准确地完成上下料操作。

总的来说,数控机床机械手上下料设计需要考虑机械手的选型、运动轨迹规划、夹具设计、控制系统和安全措施等方面。

通过合理的设计和验证,可以实现机械手上下料的自动化操作,提高生产效率和产品质量。

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手的设计方案包括两个直线运动及一共计三种运动方式。

其中直线运动为手臂的回转运动为机械手机座的旋转。

选择此结构类型的好处是机械手手臂活动范围较大且精度较高。

并且1,整体结构造图2机械手整体造型结构图数控车床自动上下料机械手手部设计机械手手爪与手腕相连接,属于末端执行器的一种,安装在手腕末端。

机械手手爪部位结构应有一定的夹紧力,保证可以夹紧工件,使工件牢固稳定。

通常情况下,机械手手爪的开闭范围越大越好,本设计中机械手手爪开闭范围如图3。

图3机械手手爪开闭范围图手爪结构采用的是齿轮齿条式。

通过活塞往返带动齿条完成手爪张开或夹紧的动作。

手爪的结构设计具体如图4。

1.3数控车床自动上下料机械手手臂设计机械手的手臂是机械手的主要执行部位。

考虑到操纵器在工作中的稳定性和安全性,将两个平行的导向杆添加到该对象的水平框架中,使其与运动活塞杆截面形成等腰三角形结构如图5,以保证其结构更加稳定牢靠。

垂直手臂添加四个导杆其截面为正四边形如图6,每个导杆都选用空心结构以保证机械手整体重量。

添加此导杆结构主要原因是可以保证机械手整体稳定。

————————————————管树龙(1991-),男,江苏淮安人,苏州瀚隆智能装备有限公司,本科,研究方向为机械制造。

图1机械手工作布局图图4机械手手抓结构三维图图5机械手水平手臂结构图图6机械手垂直手臂结构图1.4数控车床自动上下料机械手机身机座设计机械手机座包括腰部和底座两部分组成。

在设计过程中机械手的机座部分底座截面需要足够大以保证机械手整体工作时的稳定。

同时底座需要一定承载能力以保证可以承受机械手整体重量。

且其结构装卸要方便。

所示。

图7机械手机座结构图的条件,带入数据,3)理论驱动力的计算:带入数据,计算得:计算驱动力计算公式为:带入数据,计算得:而液压缸的工作驱动力是由缸内油压提供的,F c=P·A经计算,所需的油压约为已知公式:计算得N图8电机参数曲线图3数控车床自动上下料机械手控制系统设计3.1机械手的工作流程如图9所示为机械手的工作流程图。

数控机床机械手上下料设计

数控机床机械手上下料设计

数控机床机械手上下料设计随着工业智能化不断深入,数控机床和机械手的应用越来越广泛,尤其是在制造业领域中,能够大幅度提高生产效率和品质。

数控机床机械手上下料系统是其中的重要组成部分之一。

其功能是在自动化生产线上实现无人化作业,提高生产效率和生产质量。

本文将对数控机床机械手上下料系统的设计进行探讨。

一. 数控机床机械手上下料系统的设计需求及基本结构数控机床上下料系统是指为实现机床自动化加工,将工件自动送到机床上进行加工,并将加工好的工件自动送出机床的自动化设备。

目的是减少人工操作和减少生产成本。

数控机床机械手上下料系统基本结构:1. 机械手机械手是数控机床机械手上下料系统中的核心部件,它的作用是用于搬运工件。

在数控机床机械手上下料系统中,通常采用六轴机械手,也有些使用四轴和五轴机械手。

2. 工件夹具工件夹具是在机械手上的一种装置,用于夹住工件,以便机械手能够将工件拿起来,移动到数控机床上进行加工或从数控机床上拿起工件放在其他位置。

3. 控制系统控制系统是数控机床机械手上下料系统的核心部分,负责控制机械手的各项动作,使其能够按照要求完成工作任务。

控制系统通常采用PLC (可编程逻辑控制器)或者计算机作为控制核心。

4. 传感器传感器作为机械手上下料系统的又一重要组成部分,起到感知和反馈信息的作用。

在数控机床机械手上下料系统中,通常使用光电传感器、接近开关、压力传感器等。

二. 数控机床机械手上下料系统的设计要素1. 工件夹具的设计工件夹具的设计应该满足夹持力强、夹具重量轻、操作方便等要求。

通常采用机械夹紧、气动夹紧和液压夹紧等方式。

2. 机械手的设计机械手需要根据工作环境的不同、承载工件的重量、动作范围、控制精度和抓紧方式等设计。

对于六轴机械手,需要通过各关节的协调配合,实现工件的各种操作。

3. 控制系统的设计控制系统的设计要考虑系统的可靠性、稳定性和高效性。

控制系统需要能够精确控制机械手的各项动作,以提高生产效率和生产质量。

数控机床上下料机器人结构设计

数控机床上下料机器人结构设计

数控机床上下料机器人结构设计数控机床上下料机器人是一种用于自动化上下料的机器人系统,能够将工件从输送线上取下并放置到机床上,并在机加工完成后将工件从机床上取下并放回到输送线上。

该机器人系统的结构设计至关重要,可以影响其性能和效率。

下面将介绍一个典型的数控机床上下料机器人的结构设计。

1.机械臂结构设计:机械臂是数控机床上下料机器人的核心组成部分,其结构设计需要满足以下要求:-能够实现机械臂在水平和垂直方向上的运动;-具有足够的负载能力和刚度,以保证安全和稳定的工作;-能够实现高精度的定位和运动控制。

机械臂通常采用关节式结构,由多个关节连接而成。

每个关节由电机和传动机构驱动,并通过编码器和传感器来实现位置反馈和控制。

机械臂的关节设计需要考虑运动范围、力矩和速度要求,以及紧凑和轻量化的设计。

2.夹具设计:夹具用于固定和夹持工件,保证其在加工过程中的稳定性。

夹具的设计需要考虑以下几个方面:-夹具应能适应不同类型和尺寸的工件;-夹具应具有足够的刚度和精度,以确保工件的准确定位;-夹具的操作应简单、快捷且可靠,以提高机器人的工作效率。

夹具通常采用气动或液压系统来实现夹持和释放操作。

夹具的设计需要根据工件的特点和加工要求,选择合适的夹具结构和控制方式。

3.视觉系统设计:视觉系统用于检测和定位工件,以实现精确的上下料操作。

视觉系统的设计需要考虑以下几个方面:-需要具备高分辨率和高灵敏度的摄像机,以获得清晰的工件图像;-需要配备适当的光源,以提供良好的照明条件;-需要配备图像处理和分析算法,以实现工件识别和定位功能。

视觉系统通常与机械臂的控制系统进行协同工作,以实现自动化的上下料操作。

视觉系统的设计需要根据工件的特点和识别要求,选择合适的摄像机和算法。

4.控制系统设计:控制系统是数控机床上下料机器人的核心,用于实现机械臂、夹具和视觉系统等各个组件的协同工作。

控制系统的设计需要满足以下要求:-需要具备高性能的运动控制和位置反馈功能;-需要具备高可靠性和稳定性,以确保系统的安全和正常工作;-需要具备良好的人机界面和通信功能,以方便操作和监控。

本科毕业设计论文--数控机床上下料机械手设计

本科毕业设计论文--数控机床上下料机械手设计

摘要通过大学本科四年对机械设计制造及其自动化专业的所学知识进行整理,对工业机器人各部分机械结构设计和功能的论述和分析,设计了一种的用于机床上下料的机械手。

本设计的主要内容是5R关节型机械手的结构设计,上下料机械手的主要任务是在各个加工工序的数控机床和自动生产线上运送工件,能实现生产工序上下料自动化。

针对各个关节处采用独立的电机驱动。

各个操作臂由五个转动副串联而成,操作臂包括基座、腰部、手臂、腕部、手爪。

并对各关节的伺服电机的选择和传动进行了设计计算,对进行主要零件校核计算。

关键词: 关节型; 机械手; 多自由度AbstractThrough four years of undergraduate mechanical engineering and automation professional to organize the knowledge of the various parts of industrial robots and mechanical design features discussion and analysis, design a robot one machine for loading and unloading. The main contents of this design is the design 5R articulated robot, the main task of loading and unloading robot CNC machine tools in various manufacturing processes and automatic production line delivery of the workpiece, to achieve the production process automation and unloading. For each of the joints with a separate motor. Each operating arm by the rotation of five deputy in series, including the base operating arm, waist, arm, wrist, gripper. And each joint servo motor and drive selection carried out design calculations, performed the main parts of the checking calculation.Key words:Joint type; Manipulator; Many degrees of freedom目录第一章引言 (1)1.1 选题背景 (1)1.2 机械手的发展动态 (2)1.3 机械手的分类 (3)1.4 课题研究的意义 (4)第二章机械手结构原理和工作要求分析 (5)2.1 机械手结构原理及工作要求 (5)2.2 机械手机构运动分析 (6)2.3 机械手上下料工作空间轨迹分析 (8)第三章机械手各结构设计 (10)3.1 手爪的结构设计 (10)3.1.1 手爪的设计要求 (10)3.1.2 手爪的分类 (10)3.1.3 手爪结构的确定 (10)3.2 手腕的结构设计 (11)3.2.1 手腕的设计要求 (11)3.2.2 手腕的结构确定 (11)3.3 手臂的结构设计 (11)3.3.1 手臂的设计要求 (12)3.3.2 大、小手臂的结构 (12)3.3.3 小臂结构形式的确定 (12)3.4 基座结构的设计 (13)3.4.1 基座结构的设计要求 (13)3.5 小臂后箱体结构设计 (13)3.6 连杆结构设计 (13)第四章机械手关键轴的校核 (14)4.1 腕部输入轴的结构 (14)4.2 腕部输入轴的校核 (15)第五章机械手动力参数的计算 (17)5.1 伺服电机的选型 (17)5.1.1 初步估计机械手的质量 (17)5.1.2 计算各个轴的转速和转矩 (18)5.1.3 计算伺服电机的功率 (20)5.2 锥齿轮设计 (21)5.2.1 齿轮精度、材料 (21)5.2.2 按齿面接触疲劳强度校核 (21)5.2.3 按齿根弯曲强度设计 (22)5.2.4 锥齿轮参数计算 (23)5.3 同步带轮的设计 (23)5.3.1 同步齿形带传动计算 (23)5.3.2 带轮几何尺寸的计算 (25)5.4 减速器的设计 (26)5.4.1 减速器减速比的计算 (26)5.4.2 减速器输出轴径的计算 (27)结论 (28)参考文献 (29)致谢 (30)第一章引言1.1 选题背景工业机器人是一种新兴的机电一体化生产的工具之一,属于现代化、自动化装备包括机械制造、人工智能、计算机技术、控制、传感器等多种学科的先进技术。

数控机床上下料机械手设计

数控机床上下料机械手设计

数控机床上下料机械手设计背景介绍随着工业化程度的不断提升,自动化生产设备越来越普及。

数控机床已成为现代工业生产中的重要设备之一。

在数控机床生产制造过程中,上下料机械手是数控机床最核心的装置之一。

数控机床上下料的机械手是现代工业生产中提高生产效率的重要方法之一。

如何设计一种高效的数控机床上下料机械手成为一个热门的研究方向。

设计目标本文主要研究设计一种高效的数控机床上下料机械手。

我们希望设计出的机械手具有以下一些目标:•精准度高:机械手在匀速运动时应保证其精度,以避免出现工件质量不良的现象。

•稳定性好:机械手的运动应该保持稳定,避免产生摆动和震动的现象。

•具有大范围的移动:机械手应该能够在数控机床工作区域内进行水平和垂直的移动。

•适应性强:机械手应该能够适应多种工件的上下料,即机械手可以精准地完成多个工件的上下料作业。

设计方案机械手结构设计数控机床上下料机械手主要由机身、伸缩框架、前臂、手腕、手指和钳具等部分组成。

图1 数控机床上下料机械手示意图为了实现机械手的稳定性和精度,我们采用了传统的寻心旋运动、伸缩式平行机构和牵引式链条平台。

伸缩式平行机构是机械手的运动基础。

在伸缩式平行机构中,机械手平台的移动距离是由伸缩臂控制的。

同时,为了确保机械手的稳定性,在机械手的移动过程中,伸缩臂应具有平衡能力,以确保其稳定性。

传统寻心旋转运动主要用于控制机械手的平台旋转。

在传统寻心旋转运动的过程中,机械手平台的旋转只围绕其寻心旋转中心进行,并且以恒定的线速度旋转。

牵引式链条平台主要用户控制机械手的前臂运动。

在牵引式链条平台中,机械手前臂通过链条进行移动,而牵引式链条平台由导杆控制。

在这种设计方案中,牵引式链条平台的运动可以控制机械手的高度。

图2 伸缩式平行机构示意图机械手控制系统设计基于单片机,我们设计了一套高效的数控机床上下料机械手控制系统。

该系统主要由控制系统、采集系统、运动控制卡以及人机界面等部分组成。

其中的控制系统可以控制机械手的不同工作状态,采集系统可以采集机械手的运动数据,而运动控制卡可以控制机械手的运动。

机床上下料机械手控制系统的设计

机床上下料机械手控制系统的设计

机床上下料机械手控制系统的设计机床上下料机械手控制系统的设计机床上下料机械手是指一种用来处理金属和其他材料的自动化设备,用于将原料或成品从一处转移到另一处。

它可以帮助公司提高生产效率,减少人力成本。

机床上下料机械手控制系统的设计是其成功运作的关键。

在本文中,我们将讨论机床上下料机械手控制系统的设计。

第一步:确定机械手的需求在设计机械手控制系统之前,必须确定设备的主要需求。

这将有助于准确确定必要的设备,确保机械手控制系统能够顺利工作。

一般来说,机床上下料机械手的主要需求包括:1.什么样的材料需要被处理?2.需要将材料运输到哪里?3.机床上下料的频率是多少?4.运输的距离是多少?5.需要什么样的精度和速度?6.机械手的重量大小是多少?一旦确定了以上需求,就可以开始设计机械手控制系统的关键部分。

第二步:选择机械手类型机械手有许多不同种类,包括伺服电机、液压机和气动机械手。

选择机械手类型的决策应该优先考虑定位和定向系统,因为这些系统对机械手的精度、速度和精度有很大影响,这在机床上下料机械手控制系统上尤为重要。

第三步:选择使用的控制系统机械手控制系统可以使用计算机程序控制,或者使用硬件控制器,也可以两者结合使用。

计算机程序控制允许更精细的控制,因为可以使用更复杂的反馈机制来调整机械手的动作,但如果系统需要高速度操作,则应使用硬件控制器来保证性能。

第四步:机械手柔性和可编程控制机械手控制系统需要具有一定的柔性和可编程性,以适应不同的应用。

例如,可以在机械手的控制系统中添加工艺过程并设计出一个操作界面,这样操作员就可以按照需要进行调整,提高机械手的灵活性。

第五步:能够预测故障,防止故障发生预测故障并及时检修,可以减少停机时间并延长机械手的使用寿命。

因此,在机械手控制系统中要有能够及时发现故障并进行维护的机制。

总结设计机床上下料机械手控制系统需要充分了解机械手的需求,选择合适的机械手类型和控制系统,并具有灵活性和可编程性。

数控机床上下料机械手设计

数控机床上下料机械手设计

数控机床上下料机械手设计首先,对于数控机床上下料机械手的设计,我们需要确定其运动方式。

常见的机械手运动方式有直线运动和旋转运动两种。

对于上下料机械手来说,直线运动是基本的要求,能够将原料和产品准确地送入和取出机床。

而旋转运动则可以进一步提高机械手的工作效率,通过转盘的方式,可以让机械手同时处理多个机床。

其次,机械手的结构设计也需要考虑工作效率和精度。

机械手的结构通常由若干个运动关节组成,通过这些关节的运动,机械手可以实现复杂的动作。

关节通常采用电动的方式,可以利用电机的转动将运动转化为线性运动或旋转运动。

关节的设计需要满足机械手的工作范围和负载要求,同时要保证关节的运动精度和稳定性。

另外,对于上下料机械手来说,安全性也是一个非常重要的考虑因素。

机械手在运行过程中,要能够识别并避免碰撞和其他危险情况的发生。

为了确保安全,可以在机械手上安装传感器或激光避障装置,通过感知周围环境,及时做出相应的动作,避免意外事故的发生。

此外,机械手的控制系统也是设计的重要方面。

机械手的控制系统需要能够接收指令,并将其转化为相应的动作,同时要能够进行位置校正和运动规划。

控制系统通常由硬件和软件两部分组成,硬件部分包括各种传感器和执行器,软件部分则包括机械手的运动控制算法和人机界面。

控制系统的设计需要考虑整个生产线的自动化程度和生产要求。

综上所述,数控机床上下料机械手的设计需要考虑运动方式、结构设计、安全性和控制系统等因素。

通过合理的设计和优化,可以使机械手能够快速、准确地完成上下料任务,提高生产效率和产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控机床上下料机械手设计摘要:通过对机械设计、制造及其自动化专业课程的学习,对工业机械手各部分机械结构和功能的论述和分析,以及实际操作中的应用情况,设计了一种圆柱坐标形式的数控机床上下料机械手。

重点针对机械手的手爪、手腕、手臂、腰座等各部分机械结构以及机械手控制系统(传动系统、驱动系统)进行了详细的设计。

同时对其控制系统和液压系统进行了理论分析和设计计算。

基于PLC对机械手的控制系统进行了深入细致的设计,通过对机械手作业的工艺过程和控制要求的分析,设计了控制系统的硬件电路,同时编制了机械手的控制程序。

设计达到了预期目标。

关键词:机械手;PLC;液压伺服定位;电液系统目录第1章前言 (1)1.1选题背景. 11.2设计目的. 11.3发展现状和趋势. 1第2章机械手各部件的设计. 32.1机械手的总体设计. 32.1.1机械手总体结构的类型. 32.1.2具体设计方案. 42.2机械手手爪结构的设计. 42.2.1设计要求. 42.2.2驱动方式. 52.2.3典型结构. 52.2.4具体设计方案. 62.3机械手手腕结构的设计. 72.3.1手腕结构的设计要求. 72.3.2具体设计方案. 72.4机械手手臂构的设计. 82.4.1手臂结构的设计要求. 82.4.2具体设计方案. 82.5机械手腰座结构的设计. 92.5.1腰座结构的设计要求. 92.5.2具体设计方案. 92.6机械手的机械传动机构的设计. 102.6.1传动机构设计应注意的问题. 10 2.6.2常用的传动机构形式. 102.6.3具体设计方案. 112.7机械手驱动系统的设计. 122.7.1常用驱动系统及其特点. 122.7.2具体设计方案. 122.8机械手手臂的平衡机构设计. 122.8.1平衡机构的形式. 122.8.2具体设计方案. 13第3章理论分析和设计计算. 143.1电机选型有关参数计算. 143.1.1有关参数的计算. 143.1.2电机型号的选择. 163.2液压传动系统设计计算. 183.2.1 确定液压系统基本方案. 183.2.2 拟定液压执行元件运动控制回路. 193.2.3液压源系统的设计. 193.2.4绘制液压系统图. 203.2.5确定液压系统的主要参数. 213.2.6计算和选择液压元件. 26第4章机械手控制系统的设计. 284.1系统硬件设计. 284.1.1 操作面板布置. 284.1.2 工艺过程与控制要求. 284.1.3 作业流程. 294.1.4 控制器的选型. 304.1.5 控制系统原理分析. 314.1.6 PLC外部接线设计. 314.1.7 I/O地址分配. 324.2系统软件设计. 334.2.1控制主程序流程图. 334.2.2控制程序设计. 34结论. 51致谢 (52)参考文献 (53)第一章前言1.1选题背景由于工业自动化的全面发展和科学技术的不断提高,对工作效率的提高迫在眉睫。

单纯的手工劳作以满足不了工业自动化的要求,因此,必须利用先进设备生产自动化机械以取代人的劳动,满足工业自动化的需求。

其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。

在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。

目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。

把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。

但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。

因此,进行机械手的研究设计具有重要意义。

1.2设计目的目前,我国大多数工厂的生产线上数控机床装卸工件仍由人工完成,其劳动强度大、生产效率低,而且具有一定的危险性,已经满足不了生产自动化的发展趋势。

为了提高工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代机械行业自动化生产的要求,针对具体生产工艺,结合机床的实际结构,利用机械手技术,设计用一台上下料机械手代替人工工作,以提高劳动生产率。

本机械手主要与数控机床组合最终形成生产线,实现加工过程的自动化和无人化。

1.3发展现状和趋势目前,国内外各种机械手和机械手的研究成为科研的热点,其研究的现状和大体趋势如下:一.机械结构向模块化、可重构化发展。

二.工业机械手控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,结构小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性,而且维修方便。

三.机械手中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,还引进了视觉、听觉、接触觉传感器,使其向智能化方向发展。

四.关节式、侧喷式、顶喷式、龙门式喷涂机械手产品标准化、通用化、模块化、系列化设计;柔性仿形喷涂机械手开发,柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发;五.焊接、搬运、装配、切割等作业的工业机械手产品的标准化、通用化、模块化、系列化研究;以及离线示教编程和系统动态仿真。

总的来说,大体是两个方向:其一是机械手的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,性价比高,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。

第二章机械手各部件的设计2.1机械手的总体设计2.1.1机械手总体结构的类型工业机械手的结构形式主要有四种:直角坐标结构,圆柱坐标结构,球坐标结构和关节型结构。

各结构形式及其相应的特点,分别介绍如下:1.直角坐标机械手结构特点直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1.a。

由于直线运动易于实现全闭环的位置控制,因此,其运动位置精度高,但此种类型机械手的运动空间相对较小,如要达到较大运动空间,则要求机械手的尺寸足够大。

直角坐标机械手的工作空间为一空间长方体,主要用于装配作业及搬运作业。

直角坐标机械手有悬臂式,龙门式,天车式三种结构。

2.圆柱坐标机械手结构特点圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1.b。

其工作空间是一个圆柱状的空间。

这种机械手构造比较简单,精度相对较高,常用于搬运作业。

3.球坐标机械手结构特点球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1.c。

其工作空间是一个类球形的空间。

这种机械手结构简单、成本较低,但精度不很高,主要应用于搬运作业。

4.关节型机械手结构特点关节型机械手的空间运动是由三个回转运动实现的,如图2-1.d。

相对机械手本体尺寸,其工作空间比较大,动作灵活,结构紧凑,占地面积小。

此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业。

关节型机械手又分为水平关节型和垂直关节型两种。

2.1.2具体采用方案如图2-2所示机械手模拟工作布局图,根据实际操作的需要,该机械手在工作中需要3种运动,其中手臂的伸缩和立柱升降为直线运动,另一个为手臂的回转运动,因此其自由度数目为3,综合考虑,应选择圆柱坐标机械手结构,其结构简单,工作范围相对较大,且有较高的精度,满足设计要求。

2.2机械手手爪结构设计2.2.1设计要求手爪是用来进行操作及作业的装置,其种类很多,根据操作及作业方式的不同,分为搬运用、加工用、测量用等。

搬运用手爪是指各种夹持装置,用来抓取或吸附被搬运的物体;加工用手爪是带有喷枪、焊枪、砂轮、铣刀等加工工具的机械手附加装置,用来进行相应的加工作业;测量用手爪是装有测量头或传感器的附加装置,用来进行测量及检验作业。

机械手手爪设计有如下要求:1、机械手手爪是根据机械手作业要求来设计的。

既根据其应用场合设计手爪,在满足作业要求的前提下,机械手手爪还要求体积小、重量轻、结构紧凑。

2、机械手手爪的万能性与专用性是矛盾的。

万能手爪在结构上很复杂,甚至很难实现,从工业实际应用出发,应着重开发各种专用的、高效率的机械手手爪,加之以快速更换装置,以实现机械手的多种作业功能,而不主张用一个万能的手爪去完成多种作业,以考虑设计的经济效益。

3、机械手手爪的通用性。

通用性是指有限的手爪,可适用于不同的机械手,这就要求末端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化。

4、机械手手爪要便于安装和维修,易于实现计算机控制。

2.2.2驱动方式一般工业机械手手爪,多为双指手爪。

按手指的运动方式,可分为回转型和移动型;按夹持方式来分,有外夹式和内撑式两种。

机械手夹持器(手爪)的驱动方式主要有三种:1.气动驱动方式这种驱动系统是用电磁阀来控制手爪的运动方向,用气流调节阀来调节其运动速度。

由于气动驱动系统价格较低,所以气动夹持器在工业中应用较为普遍。

另外,由于气体的可压缩性,使气动手爪的抓取运动具有一定的柔顺性,这一点是抓取动作十分需要的。

2.电动驱动方式电动驱动手爪应用也较为广泛。

这种手爪,一般采用直流伺服电机或步进电机,并需要减速器以获得足够大的驱动力和力矩。

电动驱动方式可实现手爪的力与位置控制。

但是,这种驱动方式不能用于有防爆要求的条件下,因为电机有可能产生火花和发热。

3.液压驱动方式液压驱动方式是利用液压系统进行控制,传动刚度大,可实现连续位置控制。

2.2.3典型结构机械手手爪的典型结构有以下五种:1.楔块杠杆式手爪利用楔块与杠杆来实现手爪的松、开,来实现抓取工件。

2.滑槽式手爪当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞向后运动时,手爪松开。

这种手爪开合行程较大,适应抓取大小不同的物体。

3.连杆杠杆式手爪在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的力放大作用,这种手爪有可能产生较大的夹紧力。

通常与弹簧联合使用。

4.齿轮齿条式手爪通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。

5.平行杠杆式手爪采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,且比带有导轨的平行移动手爪的摩擦力要小得多。

2.2.4具体设计方案结合具体的工作情况,本设计采用连杆杠杆式的手爪。

驱动活塞往复移动,通过活塞杆端部齿条,中间齿条及扇形齿条使手指张开或闭合。

手指的最小开度由加工工件的直径来调定。

本设计按照工件的直径为50mm来设计。

手爪的具体结构形式如图2-3所示:2.3机械手手腕结构的设计机械手手腕是机械手操作机的最末端,与手爪相连接,它与机械手手臂配合,使手爪在空间运动,完成所需要的作业动作。

相关文档
最新文档