2017高考一轮复习教案-函数的奇偶性与周期性
第6讲模块复习:函数的奇偶性与周期性教案
第6讲模块复习:函数的奇偶性与周期性教案 第6讲:《函数的奇偶性与周期性》教案一、教学目标1.了解函数奇偶性、周期性的含义.2.会判定奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.二、知识梳理1.函数奇偶性的定义设函数y =f(x)的定义域为A.假如关于任意的x ∈A ,都有__________,则称f(x)为奇函数;假如关于任意的x ∈A 都有__________,则称f(x)为偶函数.2.奇偶函数的性质(1)f(x)为奇函数⇔f(-x)=-f(x)⇔f(-x)+f(x)=____;f(x)为偶函数⇔f(x)=f(-x)=f(|x|)⇔f(x)-f(-x)=____.(2)f(x)是偶函数⇔f(x)的图象关于____轴对称;f(x)是奇函数⇔f(x)的图象关于______对称.(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有______的单调性.3.函数的周期性(1)定义:假如存在一个非零常数T ,使得关于函数定义域内的任意x ,都有f(x +T )=______,则称f(x)为______函数,其中T 称作f(x)的周期.若T 存在一个最小的正数,则称它为f(x)的________.(2)性质: ①f(x +T )=f(x)常常写作f(x +T 2)=f(x -T 2).②假如T 是函数y =f(x)的周期,则kT(k ∈Z 且k ≠0)也是y =f(x)的周期,即f(x +kT )=f(x).③若关于函数f(x)的定义域内任一个自变量的值x 都有f(x +a)=-f(x)或f(x +a)=1f x 或f(x +a)=-1f x(a 是常数且a ≠0),则f(x)是以______为一个周期的周期函数.三、题型突破题型一 函数奇偶性的判定例1 判定下列函数的奇偶性. (1)1()(1)1x f x x x -=++; (2)11()()212x f x x =+-; (3) 22()log (1)f x x x =++;(4) 22,0(),0x x x f x x x x ⎧+<⎪=⎨-+>⎪⎩ 变式迁移1 判定下列函数的奇偶性.(1) 23()f x x x =-;(2) 22()11f x x x =-+-;(3) 24()33x f x x -=+-. 题型二 函数单调性与奇偶性的综合应用例2 已知偶函数()f x 在区间[)0,+∞上单调递增,则满足1(21)()3f x f -<的x 的取值范畴是________.变式迁移2 已知函数3()f x x x =+,对任意的[]2,2m ∈-,(2)()0f mx f x -+<恒成立,则x 的取值范畴为________. 题型三 函数性质的综合应用例3 已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程()(0)f x m m =>,在区间[-8,8]上有四个不同的根1234,,,x x x x ,则1234x x x x +++=________.四、针对训练(满分:90分)一、填空题(每小题6分,共48分)[来源:学|科|网Z|X|X|K]1.已知2()f x ax bx =+是定义在[]1,2a a -上的偶函数,那么a b +的值为________.2.已知定义域为{}0x x ≠的函数()f x 为偶函数,且()f x 在区间(),0-∞上是增函数,若(3)0f -=,则()0f x x <的解集为________________. 3.已知()f x 是定义在R 上的偶函数,并满足1(2)()f x f x +=-,当1≤x ≤2时,()2f x x =-,则(6.5)f = ________.4.设()f x 为定义在R 上的奇函数.当0x ≥时,()22x f x x b =++ (b 为常数),则(1)f -=________.5.设函数()f x 满足:①(1)y f x =+是偶函数;②在[1,+∞)上为增函数,则(1)f -与(2)f 大小关系为____________________.6.设定义在R 上的函数()f x 满足()(2)13f x f x +=,若(1)2f =,则(99)f = .7.设函数()f x 是定义在R 上的奇函数,若()f x 满足(3)()f x f x +=,且(1)1f >,23(2)1m f m -=+,则m 的取值范畴为________________. 8.函数3()812f x x x =+-在区间[]3,3-上的最大值与最小值之和是 .二、解答题(共42分)9.(14分)已知()f x 是定义在[-6,6]上的奇函数,且()f x 在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,()f x ≤(5)f =3,(6)f =2,求()f x 的表达式.10.(14分)设函数2()21(33)f x x x x =---≤≤,(1)证明()f x 是偶函数;(2)画出那个函数的图象;(3)指出函数()f x 的单调区间,并说明在各个单调区间上()f x 是增函数依旧减函数;(4)求函数的值域.11.(14分)已知函数2()a f x x x=+ (x ≠0,常数a ∈R).(1)讨论函数()f x 的奇偶性,并说明理由;(2)若函数()f x 在[2,+∞)上为增函数,求实数a 的取值范畴.五、参考答案二、知识梳理1.f(-x)=-f(x) f(-x)=f(x) 2.(1)0 0 (2)y 原点 (3)相反 3.(1)f(x) 周期 最小正周期 (2)③2a三、题型突破例1 解题导引 判定函数奇偶性的方法.(1)定义法:用函数奇偶性的定义判定.(先看定义域是否关于原点对称).(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y 轴对称,则f(x)为偶函数.(3)差不多函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.解 (1)定义域要求1-x 1+x≥0且x ≠-1, ∴-1<x ≤1,∴f(x)定义域不关于原点对称,∴f(x)是非奇非偶函数.(2)函数定义域为(-∞,0)∪(0,+∞).∵f(-x)=-x(12-x -1+12) =-x(2x 1-2x +12)=x(2x 2x -1-12) =x(12x -1+12)=f(x). ∴f(x)是偶函数.(3)函数定义域为R.∵f(-x)=log2(-x +x2+1)=log21x +x2+1=-log2(x +x2+1)=-f(x),[来源:学&科&网Z&X&X&K]∴f(x)是奇函数.(4)函数的定义域为(-∞,0)∪(0,+∞).当x<0时,-x>0,则f(-x)=-(-x)2-x =-(x2+x)=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x =x2-x =-(-x2+x)=-f(x).∴对任意x ∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x).故f(x)为奇函数.变式迁移1 解 (1)由于f(-1)=2,f(1)=0,f(-1)≠f(1),f(-1)≠-f(1),从而函数f(x)既不是奇函数也不是偶函数.(2)f(x)的定义域为{-1,1},关于原点对称,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧4-x2≥0|x +3|≠3得,f(x)定义域为[-2,0)∪(0,2]. ∴定义域关于原点对称, 又f(x)=4-x2x ,f(-x)=-4-x2x ,∴f(-x)=-f(x),∴f(x)为奇函数. 例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.解 偶函数满足f(x)=f(|x|),依照那个结论,有f(2x -1)< f ⎝ ⎛⎭⎪⎫13 ⇔ f(|2x -1|)<f ⎝ ⎛⎭⎪⎫13, 进而转化为不等式|2x -1|<13,解那个不等式即得x 的取值范畴是⎝ ⎛⎭⎪⎫13,23. 变式迁移2 (-2,23)解析 易知f(x)在R 上为单调递增函数,且f(x)为奇函数,故f(mx -2)+f(x)<0,等价于f(mx -2)<-f(x)=f(-x),现在应用mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h(m)=mx +x -2, 现在,只需⎩⎪⎨⎪⎧ h -2<0h 2<0即可,解得x ∈(-2,23). 例3 解题导引 解决此类抽象函数问题,依照函数的奇偶性、周期性、单调性等性质,画出函数的一部分简图,使抽象问题变得直观、形象,有利于问题的解决.答案 -8解析 因为定义在R 上的奇函数,满足f(x -4)=-f(x),因此f(4-x)=f(x).因此,函数图象关于直线x =2对称且f(0)=0,由f(x -4)=-f(x)知f(x -8)=f(x),因此函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,因此f(x)在[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,因此x1+x2+x3+x4=-12+4=-8.四、针对训练 1.13 解析 依题意得⎩⎪⎨⎪⎧ a -1=-2a b =0,∴⎩⎨⎧ a =13b =0, ∴a +b =13. 2.(-3,0)∪(3,+∞) 解析 由已知条件,可得函数f(x)的图象大致为下图,故f x x <0的解集为(-3,0)∪(3,+∞).3.-0.5[来源:学,科,网Z,X,X,K]解析 由f(x +2)=-1f x ,得f(x +4)=-1f x +2=f(x),那么f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x ≤2时,f(x)=x -2,∴f(1.5)=-0.5.综上知,f(6.5)=-0.5.4.-3解析 因为奇函数f(x)在x =0有定义,因此f(0)=20+2×0+b =b +1=0,b =-1.因此f(x)=2x +2x -1,f(1)=3,从而f(-1)=-f(1)=-3.5.f(-1)>f(2)解析 由y =f(x +1)是偶函数,得到y =f(x)的图象关于直线x =1对称,∴f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,∴f(3)>f(2),即f(-1)>f(2).6.132 解析 由()(2)13f x f x +=,得(4)(2)13f x f x ++=,因此(4)()f x f x +=,即()f x 是周期函数且周期为4,因此1313(99)(4243)(3)(1)2f f f f =⨯+===. 7.(-1,23)解析 ∵f(x +3)=f(x), ∴f(2)=f(-1+3)=f(-1).∵f(x)为奇函数,且f(1)>1,∴f(-1)=-f(1)<-1,∴2m -3m +1<-1. 解得:-1<m<23.8.16解析 设在区间[]3,3-上()x f 的最大值为M,最小值为m ,再设()()()x g x f x g ,8-=的最大值为M-8,最小值为m-8,又()312x x x g -=是奇函数,因此在区间[]3,3-上()(),0min max =+x g x g 即()()16m 08-m 8=+=+-M M ,.9.解 由题意,当3≤x ≤6时,设f(x)=a(x -5)2+3,∵f(6)=2,∴2=a(6-5)2+3.∴a =-1.∴f(x)=-(x -5)2+3(3≤x ≤6).………………………………………………………(4分)∴f(3)=-(3-5)2+3=-1.又∵f(x)为奇函数,∴f(0)=0.∴一次函数图象过(0,0),(3,-1)两点.∴f(x)=-13x(0≤x ≤3).…………………………………………………………………(8分)当-3≤x ≤0时,-x ∈[0,3],∴f(-x)=-13(-x)=13x.又f(-x)=-f(x),∴f(x)=-13x.∴f(x)=-13x(-3≤x ≤3).……………………………………………………………(10分)[来源:ZXX K]当-6≤x ≤-3时,3≤-x ≤6,∴f(-x)=-(-x -5)2+3=-(x +5)2+3.又f(-x)=-f(x),∴f(x)=(x +5)2-3.………………………………………………………………………(13分)∴f(x)=⎩⎨⎧ x +52-3, -6≤x ≤-3,-13x -3<x<3,……………………………………………14分-x -52+3, 3≤x ≤6.10.解 (1)f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x),即f(-x)=f(x).∴f(x)是偶函数.………………………………………………………(3分)(2)当x ≥0时,f(x)=x2-2x -1=(x -1)2-2,[来源:学+科+网Z+X+X +K]当x<0时,f(x)=x2+2x -1=(x +1)2-2, 即f(x)=⎩⎪⎨⎪⎧x -12-2, x ≥0,x +12-2, x<0. 依照二次函数的作图方法,可得函数图象如下图. ……………………………………………………………………………………………(7分)(3)由(2)中函数图象可知,函数f(x)的单调区间为[-3,-1],[-1,0],[0,1],[1,3].f(x)在[-3,-1]和[0,1]上为减函数,在[-1,0],[1,3]上为增函数.………………(10分)(4)当x ≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2;当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].……………………………………………………………(14分)11.解 (1)当a =0时,f(x)=x2对任意x ∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),∴f(x)为偶函数.…………………………………………………………………………(2分)当a ≠0时,f(x)=x2+a x (x ≠0,常数a ∈R),若x =±1时,则f(-1)+f(1)=2≠0;∴f(-1)≠-f(1),又f(-1)≠f(1),∴函数f(x)既不是奇函数,也不是偶函数.……………………………………………(6分)综上所述,当a =0时,f(x)为偶函数;当a ≠0时,f(x)为非奇非偶函数.………………………………………………………(7分)(2)设2≤x1<x2,f(x1)-f(x2)=x21+a x1-x22-a x2 =x1-x2x1x2[x1x2(x1+x2)-a],……………………………………………………………(10分)要使f(x)在x ∈[2,+∞)上为增函数,必须使f(x1)-f(x2)<0恒成立. ∵x1-x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.………………………………………(12分)又∵x1+x2>4,∴x1x2(x1+x2)>16,∴a 的取值范畴为(-∞,16].………………………………………………………(14分)。
高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
函数的奇偶性教案2篇
函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性
第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
《函数的奇偶性与周期性》教案
《函数的奇偶性与周期性》教案教案:函数的奇偶性与周期性一、教学内容本节课主要内容为函数的奇偶性与周期性。
1.函数的奇偶性概念及判断方法;2.函数的周期性概念及判断方法;3.综合应用题。
二、教学目标1.理解函数的奇偶性的定义;2.掌握函数奇偶性的判断方法;3.了解函数周期的概念,掌握函数周期的判断方法;4.能够应用函数的奇偶性与周期性解决综合问题。
三、教学过程1.导入(5分钟)教师通过提问与学生交流,引出函数的奇偶性与周期性的概念,比如“大家了解什么是函数的奇偶性吗?可以举几个例子来说明一下。
”“函数的周期性是什么意思呢?”等等。
2.讲解(25分钟)通过投影仪展示PPT,讲解函数的奇偶性与周期性的概念。
1)函数的奇偶性概念及判断方法:函数f(x)为奇函数,当且仅当对于任意x∈D,f(-x)=-f(x);函数f(x)为偶函数,当且仅当对于任意x∈D,f(-x)=f(x);判断奇偶性的方法为将函数代入定义进行验证。
2)函数的周期性概念及判断方法:函数f(x)的周期为T,当且仅当对于任意x∈D,有f(x+T)=f(x);判断函数周期的方法为找出函数的一次性表达式,并将其化简为f(x+T)=f(x)。
3)综合应用题解析:通过一些例题的解析,让学生能够运用奇偶性和周期性的知识解决问题。
3.锻炼与拓展(20分钟)举一些例题进行训练,可以分小组进行讨论与比赛,以增加学生的参与度。
1)设f(x)是定义域为R的周期函数,且f(0)=3,f(1)=2,f(2)=4,f(3)=-1,f(4)=-2,f(5)=-4,求f(2005)的值。
2)已知函数f(x)是定义域为R的奇函数,且f(2)=3,f(4)=-1,求f(x)的表达式。
3)设f(x)=x^3-3x,则f(x)是奇函数还是偶函数?。
4.巩固与评价(10分钟)布置一些练习题,要求学生自主完成,并互相批改答案,提升学生的综合应用能力。
1)设f(x)为周期函数,且f(x)=2x^2-x+1,周期为T,求T的值。
高考数学一轮复习-2-3函数的奇偶性与周期性课件-理
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶
高考数第一轮复习函数的奇偶性与周期性
1.已知函数y=f(x)是奇函数,则函数y=f(x+1)的图象的对 称中心是( ) (A)(1,0) (B)(-1,0) (C)(0,1) (D)(0,-1) 【解析】选B.函数y=f(x)的图象关于点(0,0)对称,函数 y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位得到, 故函数y=f(x+1)的图象的对称中心为(-1,0).
周期性求f(1)+f(2)+…+f(2 012).
(2)利用周期性可知f(-1)=f(1),
列方程
组求解.
【规范解答】(1)选B.∵f(x+6)=f(x),∴T=6. ∵当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x, ∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0, f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1, ∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12) =…=f(2 005)+f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1× =335. 而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
(2)因为f(x)的周期为2,所以
即
又因为
所以
∴3a+2b=-2
①,
又因为f(-1)=f(1),所以
即b=-2a ②,
高考数学一轮复习第二章函数3函数的奇偶性与周期性课件新人教A版2
对于B选项,|f(-x)|g(-x)=|f(x)|g(x),|f(x)|g(x)为偶函数,故B错误;
对于C选项,f(-x)|g(-x)|=-f(x)·
|g(x)|,f(x)|g(x)|为奇函数,故C正确;
对于D选项,|f(-x)g(-x)|=|f(x)·
g(x)|,|f(x)g(x)|是偶函数,故D错误.
(6)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.( × )
-7知识梳理
双基自测
1
2
2.下列函数为奇函数的是(
A.y=√
C.y=cos x
3
4
5
)
B.y=|sin x|
D.y=ex-e-x
关闭
令y=f(x),选项A,定义域为[0,+∞),不关于原点对称,所以为非奇非偶函数;
利用待定系数法求解,根据f(x)±f(-x)=0得到关于待求参数的恒等
式,由系数的对等性得参数的值或方程(组),进而得出参数的值.
-20考点1
考点2
考点3
考点4
(4)解不等式
利用奇偶性与单调性,将抽象函数不等式转化为关于未知数的不
等式,进而得出未知数的取值范围.
(5)画函数图象和判断单调性
利用奇偶性可画出另一对称区间上的图象及判断另一区间上的
1
1
A. 0, e
B. e ,e
1
D. 0, e ∪(e,+∞)
(3)若f(x)是R上的奇函数,且当x>0时,f(x)=x3-8,则{x|f(x-2)>0}=
( B )
A.{x|-2<x<0或x>2}
B.{x|0<x<2或x>4}
高考数学一轮复习 函数的奇偶性与周期性
解法二(图象法):作出函数 f(x)的图象,由图象关于原点对
称的特征知函数 f(x)为奇函数.
(3)由4|x-+x32|≥-03,≠0 得-2≤x≤2 且 x≠0.
所以 f(x)的定义域为[-2,0)∪(0,2],关于原点对称.
(4)(2018·武昌联考)若函数 f(x)=1k+-k2·2xx在定义 域上为奇函数,则实数 k=________.
解:因为 f(-x)=1k+-k2·2--xx=k2·2x+x-k1,所以 f(-x)+f(x)=(k-2x)((2x+1+k)k·2+x)((k·22xx+-k1))(1+k·2x) =((1k+2-k1·2)x)((222xx++1k)). 由 f(-x)+f(x)=0 对定义域中的 x 均成立可得 k2=1, 所以 k=±1.故填±1.
所以 f(x)=(x+43-)x2-3=
4-x2 x.
所以 f(x)=-f(-x),所以 f(x)是奇函数.
(4)由9x2--x92≥ ≥00, 得 x=±3.
所以 f(x)的定义域为{-3,3},关于原点对称.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.
所以 f(x)=±f(-x). 所以 f(x)既是奇函数,又是偶函数.
(2)若函数 f(x)为偶函数,且在[a,b]上为增(减)函数,
则 f(x)在[-b,-a]上为. 6.奇、偶函数的“运算”(共同定义域上)
奇 ± 奇 = ________________ , 偶 ± 偶 = ________________,奇×奇=________________,偶×偶 =________________,奇×偶=________________.
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。
教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。
教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。
教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。
章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。
教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。
教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。
章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。
教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。
教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。
教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。
章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。
高考数学一轮复习-函数的奇偶性与周期性教案
函数的奇偶性与周期性一、考纲要求函数的奇偶性与周期性 B 二、复习目标1.理解函数奇偶性的定义;2、会判断函数的奇偶性;3、能证明函数的奇偶性;4、理解函数 周期性的定义;5、会求周期函数的周期。
三、重点难点函数奇偶性的判断及证明;函数周期性判断及周期求法。
四、要点梳理1.奇、偶函数的定义:对于函数 f (x)定义域内的任意一个 x ,都有_______________,称 f (x)为偶函数,对于函数f (x)定义域内的任意一个 x ,都有________________,称 f (x)为奇函数. 2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于_________对称;(2)奇函数的图像关于____对称,偶函数的图像关于_________对称; (3)若奇函数的定义域包含0,则_____________;(4)在偶函数中, f ( x )f (x).(5)在公共定义域内,①两个奇函数的和是___函数,两个奇函数的积是____函数;②两个偶函数 的和、积是___函数;③一个奇函数,一个偶函数的积是____函数.(填“奇”,“偶”) 3.对于函数y =f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都 有 ,那么就称函数y =f(x)为周期函数,称T 为这个函数的周期. 4.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小正数,那么这个 叫做f(x)的最小正周期. 就 5.周期性三个常用结论对f(x)定义域内任一自变量的值x : (1)若f(x +a)=-f(x),则T =2a ;1 1(2)若f(x +a)= ,则T =2a ; (3)若f(x +a)=- ,则T =2a.(a>0)fx fx五、基础自测1.对于定义在R 上的函数 f (x),下列命题正确的序号是___________. (1)若 f (2) f (2),则函数 f (x)是偶函数; (2)若 f (2) f (2),则函数 f (x)不是偶函数; (3)若 f (2) f (2),则函数 f (x)不是奇函数; (4)若 f (x)是偶函数,则 f (2) f (2). 2.给出4个函数:① f (x) 1 x2 1x ;④ f (x) x1. 3x 4;② f (x) 2x 5;③ f (x) lg1 xx 1 既不是奇函数也不是偶函数.其中是奇函数; 是偶函数; 3.已知函数 f (x)4x2bx 3a b 是偶函数,其定义域是 [a 6,2a],则点 a,b 的坐标为__________.3,且f (1) 2,则f(2014)=________. 2 4.已知定义在R 上的函数 f (x)满足 f (x) f x x a5.若函数 f (x)在[1,1]上是奇函数,则 f (x) x bx 12.六、典例精讲: 例1判断下列函数的奇偶性,并说明理由: (1) f (x) (1 2x ) 21x ;(2) f (x) lg(xx21);(3) f (x)(1x) 1 x; 2xx 2| x1| 1;(5) f (x)x 11 x2;(6) f (x)22x (x ≥0),(4) f (x)x x 2x (x 0).例2:设 f (x)是定义在R 上的奇函数,且对任意实数x ,恒有 f (x 2) f x .当x∈[0,2]时,f (x) 2xx 。
高考数学一轮复习函数的单调性、奇偶性、周期性-教学课件
质疑探究 2:当一个函数的增区间(或减区间) 有多个时,能否用“∪”将函数的单调增区间 (减区间)连接起来? 提示:不能直接用“∪”将它们连接起来,例如: 函数 y=x3-3x 的单调增区间有两个:(-∞,-1) 和(1,+∞),不能写成(-∞,-1)∪(1,+∞).
义 当 x1<x2 时,都有 f(x1)<f(x2),那么就说函数 当 x1<x2 时,都有 f(x1)>f(x2),
f(x)在区间 D 上是增函数
那么就说函数 f(x)在区间 D 上是减函数
图
象
描
述
自左向右看图象是上升的
自左向右看图象是下降的
(2)增减函数定义的等价形式:设 x1,x2∈D,x1≠x2,
解析:(1)f(-1)=-f(1)=-[g(1)-4]=-(2-4)=2. (2)函数 f(x)的定义域是 R, 且 f(-x)=e-x-ex=-f(x), 因此 f(x)为奇函数,故选 A. 答案:(1)2 (2)A
考点四 函数的周期性及应用
【例 4】 已知函数 f(x)对任意的实数满足:f(x+3)=
y=
1 2
x
,定义域为 R,在(0,+∞)上递减,y=x+
1 x
,定义域为(-∞,0)∪
(0,+∞),在(0,1)上递减,在(1,+∞)上递增.故选 A.
3.若函数 f(x)=ax+1 在 R 上递减,则函数 g(x)=a(x2-4x+3)的增区间是( B ) (A)(2,+∞) (B)(-∞,2) (C)(-2,+∞) (D)(-∞,-2) 解析:由 f(x)在 R 上递减知 a<0,所以 g(x)在 (-∞,2)上递增,在(2,+∞)上递减.故选 B.
高三一轮复习函数性质教案
函数 教学目标:函数的性质应用教学重点:函数的性质综合应用 教学难点:函数的性质综合应用 教学过程链接(包括学情诊断、知识引入和过渡)函数的奇偶性与周期性:f(-x)= f(x) ⇔f(-x)-f(x)=0 ⇔f(x)是偶函数⇔函数图象关于y 轴对称。
f(-x)=-f(x) ⇔f(-x)+ f(x)=0 ⇔f(x)是奇函数⇔函数图象关于原点对称。
()()f x T f x +=则最小正周期为T ,注意区别:①y=f(a+x)是偶函数⇔f(a+x)=f(a -x) ⇔f(x)=f(2a -x) ⇔f(x)关于x=a 对称。
②f(a+x)=f(b -x) ⇔f(x)关于x=2ba +对称。
③y=f(a+x)是奇函数⇔ f(a -x) =-f(a+x)⇔f(x)关于点(a,0)成中心对称。
④f(x+a)=f(x -a) ⇔f(x+2a)=f(x) ⇔f(x)是周期T=2a (a ≠0)的周期函数。
二、名题探究(包括精讲、例题、跟进练习题)例1 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3f 2()=_______________。
例2 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则___________ A.(25)(11)(80)f f f -<< B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 例 3已知函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++-∈,则()2010f =_____________.例4 已知偶函数f(x)(x ∈R)满足f(x+2)=f(x),且x ∈【0,1】时,f(x)=x,则方程f(x)= f(x)=ᅵ的根的个数为___________例5 函数x x x y sin cos +=的图象大致为三、易错题点拨(找几个易错的例题讲解,包括疑难辨析,跟进练习)1.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为A .2-B .1-C .1D .22. 函数x xx x e e y e e--+=-的图像大致为( ).3.函数22x y x-=的图象大致是(A )(B )(C )(D )四、拓展练习(题目题型训练)ABCD1.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f (A)2 (B)1 (C)0 (D)-22. 函数()f x = (A)(-3,0] (B) (-3,1] (C) (,3)(3,0]-∞-- (D) (,3)(3,1]-∞-- 3. 定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( )A.-1B. -2C.1D. 24.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .5. 函数2sin 2xy x =-的图象大致是A B五、本堂小节 C D六、作业布置(根据本堂课所讲内容,进行巩固练习的套题)1. 已知函数f(x)是R 上的偶函数,且f(1-x)=f(1+x),当x ∈【0,1】时,f(x)=,则函数y=f(x)-的零点个数为___________2.已知0t >,则函数241t t y t-+=的最小值为____________3.直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 . 4. 已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是_____。
数学(文)一轮教学案:第二章第3讲 函数的奇偶性与周期性 Word版含解析
第3讲函数的奇偶性与周期性考纲展示命题探究奇偶性的定义及图象特点奇函数偶函数定义如果对于函数f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么函数f(x)是奇函数都有f(-x)=f(x),那么函数f(x)是偶函数图象特点关于原点对称关于y轴对称注意点判断函数的奇偶性时需注意两点(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.1.思维辨析(1)函数具备奇偶性的必要条件是函数的定义域在x轴上是关于坐标原点对称的.()(2)若函数f(x)为奇函数,则一定有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.()(5)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.()(6)若函数f(x)=x(x-2)(x+a)为奇函数,则a=2.() 答案(1)√(2)×(3)√(4)√(5)×(6)√2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13C.12 D .-12答案 B解析 由已知得a -1+2a =0,得a =13,又f (x )为偶函数,f (-x )=f (x ),∴b =0,所以a +b =13.3.下列函数为奇函数的是( ) A .y =2x-12xB .y =x 3sin xC .y =2cos x +1D .y =x 2+2x答案 A解析 由函数奇偶性的定义知,B 、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有A 中的函数为奇函数,故选A.[考法综述] 判断函数的奇偶性是比较基础的问题,难度不大,常与函数单调性相结合解决求值和求参数问题,也与函数的周期性、图象对称性在同一个题目中出现.主要以选择题和填空题形式出现,属于基础或中档题目.命题法 判断函数的奇偶性及奇偶性的应用 典例 (1)下列函数为奇函数的是( ) A .y =x B .y =|sin x | C .y =cos xD .y =e x -e -x(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 [解析] (1)因为函数y =x 的定义域为[0,+∞),不关于原点对称,所以函数y =x 为非奇非偶函数,排除A ;因为y =|sin x |为偶函数,所以排除B ;因为y =cos x 为偶函数,所以排除C ;因为y =f (x )=e x -e -x ,f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以函数y =e x -e -x为奇函数,故选D.(2)由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.[答案] (1)D (2)C【解题法】 判断函数奇偶性的方法 (1)定义法 (2)图象法1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x-a,即1-a ·2x =-2x +a ,化简得a ·(1+2x )=1+2x ,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2)=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1. 解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x+e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立, 令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立. 因此实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x+1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x-1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x . 令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1. 1 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.注意点 常见的有关周期的结论 周期函数y =f (x )满足:(1)若f (x +a )=f (x -a ),则函数的周期为2a . (2)若f (x +a )=-f (x ),则函数的周期为2a .(3)若f (x +a )=-1f (x ),则函数的周期为2a .1.思维辨析(1)若函数f (x )满足f (0)=f (5)=f (10),则它的周期T =5.( ) (2)若函数f (x )的周期T =5,则f (-5)=f (0)=f (5).( ) (3)若函数f (x )关于x =a 对称,也关于x =b 对称,则函数f (x )的周期为2|b -a |.( )(4)函数f (x )在定义域上满足f (x +a )=-f (x )(a >0),则f (x )是周期为a 的周期函数.( )(5)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2016)=0.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f (2014)等于( )A .0B .3C .4D .6答案 A解析 ∵f (x )是定义在R 上的偶函数, ∴f (-2)=f (2),∴f (-2+4)=f (2)=f (-2)+f (2)=2f (2), ∴f (2)=0,f (2014)=f (4×503+2)=f (2)+503×f (2)=f (2)=0,故选A. 3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.答案 -12解析 ∵f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. [考法综述] 函数周期性的考查在高考中主要以选择题、填空题形式出现.常与函数的奇偶性、图象对称性结合考查,难度中档.命题法 判断函数的周期性,利用周期性求值典例 (1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0D .-12[解析] (1)由于f (x )周期为5,且为奇函数,∴f (8)=f (5+3)=f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (8)-f (4)=-2-(-1)=-1.(2)因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π.又因为当0≤x ≤π时,f (x )=0,所以f ⎝⎛⎭⎪⎫5π6=0,即f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0, 所以f ⎝⎛⎭⎪⎫-π6=12,所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12.[答案] (1)A (2)A【解题法】 函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .-1 B.45 C .1 D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A.2.函数f (x )=lg |sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,则f (2013)+f (2014)的值为( )A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124B.112C.16D.13答案 A解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A. 6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( )A .既是周期函数,又是奇函数B.既是周期函数,又是偶函数C.不是周期函数,但是奇函数D.不是周期函数,但是偶函数答案 B解析因为y=f(x)是周期函数,设其周期为T,则有f(x+T)=f(x),两边同时求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函数为周期函数.因为y=f(x)是奇函数,所以f(-x)=-f(x),两边同时求导,得f′(-x)(-x)′=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),即导函数为偶函数,选B.判断f(x)=x2+1,x∈[-2,2)的奇偶性.[错解][错因分析]忽视判断函数的奇偶性时对定义域的要求.[正解]由于x∈[-2,2),所以f(x)=x2+1的定义域不关于原点对称,所以函数f(x)=x2+1是非奇非偶函数.[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是()A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x答案 C解析函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( ) A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝ ⎛⎭⎪⎫lg 12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f (y )x +f (x )y 成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=f (1)1+f (1)1,∴f (1)=0.令x =y =-1,则f (1)=f (-1)-1+f (-1)-1,∴f (-1)=0. 令y =-1,则f (-x )=f (-1)x +f (x )-1, ∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧ x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0, 解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[2016·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________. 答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. 9.[2016·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________.答案 4解析 由f (x )=(x +a )(x -4),得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[2016·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,23解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1,∴2a -3a +1<-1,解得-1<a <23. 11.[2016·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足:①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2.(1)判断函数f (x )是否为周期函数;(2)求f解 (1)由⎩⎪⎨⎪⎧f (x )=f (2-x ),f (x )=f (-x )⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)fffff12.[2016·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧ -2<x -1<2,-2<3-2x <2,∴⎩⎨⎧ -1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52. (2)由g (x )≤0得f (x -1)+f (3-2x )≤0.∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎨⎧ x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[2016·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <aB .c <a <bC .a <c <bD .a <b <c答案 B 解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),①因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),②所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b . 14.[2016·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数,则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2,∴f (-1)+1=-f (1)-1,∴f (-1)=-3,∴g (-1)=f (-1)+2=-1.15. [2016·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. ∴实数m 的取值范围是[0,1).16.[2016·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性;(2)求证:f (x )是R 上的减函数;(3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围.解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数,∴f (x 1)>f (x 2).∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6,∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6].(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。
高三数学一轮复习 函数的奇偶性和周期性教案
城东蜊市阳光实验学校仲尼中学高三数学一轮复习教案:函数的奇偶性和周期性1教材分析:函数的奇偶性、周期性是函数的一个重要的性质,为高考中的必考知识点;常用函数的概念、图像、单调性、周期性、对称性等综合考核。
学情分析:大多数学生理解函数的奇偶性、周期性的概念,但对判断函数奇偶性的判断和应用,对函数的周期的求法还没有掌握。
教学目的:结合详细函数,理解函数奇偶性和周期性的含义;会运用函数图像判断函数奇偶性和周期,利用图像研究函数的奇偶性和周期。
教学重点、难点:函数奇偶性和周期的判断,结合图像解决函数的奇偶性和周期性问题。
教学流程:一、回忆上节课内容〔问答式〕C1.奇偶函数的判断根本步骤:〔1〕先求定义域,定义域不对称那么函数为非奇非偶函数;〔2〕定义域对称那么利用定义判断函数奇偶性。
C2.奇偶函数的图像特征:奇函数图像关于原点〔0,0〕对称;偶函数关于y轴对称。
二、函数的周期C1.周期的概念对于函数f(x),假设存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)叫做周期函数,非零常数T叫f(x)的周期,假设所以的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)最小正周期。
C 判断:最小正周期一样的两个函数的和,其最小正周期是不变。
答:错,不一定不变2.周期函数的性质C(1)周期函数不一定有最小正周期,假设T≠0是f(x)的周期,那么kT(k∈Z,k≠0)也是的周期,周期函数的定义域无上、下届。
〔2〕如何判断函数的周期性:⑴定义;⑵图象;⑶利用以下补充性质:设a>0,C-①函数y=f(x),x∈R,假设f(x+a)=f(x-a),那么函数的周期为2a 。
B-②函数y=f(x),x∈R,假设f(x+a)=-f(x),那么函数的周期为2a 。
B-③函数y=f(x),x∈R,假设,那么函数的周期为2a 。
B-④函数f(x)时关于直线x=a 与x=b 对称,那么函数f(x)的周期为||2a b- 理解证明过程:证明:由得: ||2a b T -=∴ B 特例:假设函数f(x)是偶函数,其图象关于直线x=a 对称,那么其周期为T=2a 。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》第一章:引言1.1 课程目标:理解函数奇偶性的概念。
学会判断函数的奇偶性。
1.2 教学内容:引入函数的概念。
介绍奇函数和偶函数的定义。
举例说明奇函数和偶函数的性质。
1.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇偶性的概念。
进行小组讨论,让学生互相交流思路。
1.4 教学活动:引入函数的概念,引导学生回顾已学的函数知识。
讲解奇函数和偶函数的定义,举例说明其性质。
布置练习题,让学生巩固奇偶性的判断方法。
第二章:奇函数的性质2.1 课程目标:理解奇函数的性质。
学会运用奇函数的性质解决问题。
2.2 教学内容:回顾奇函数的定义。
介绍奇函数的性质,如奇函数的图像关于原点对称等。
举例说明奇函数性质的应用。
2.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇函数的性质。
进行小组讨论,让学生互相交流思路。
2.4 教学活动:回顾奇函数的定义,引导学生复习相关知识。
讲解奇函数的性质,举例说明其应用。
布置练习题,让学生巩固奇函数性质的理解。
第三章:偶函数的性质3.1 课程目标:理解偶函数的性质。
学会运用偶函数的性质解决问题。
3.2 教学内容:回顾偶函数的定义。
介绍偶函数的性质,如偶函数的图像关于y轴对称等。
举例说明偶函数性质的应用。
3.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解偶函数的性质。
进行小组讨论,让学生互相交流思路。
3.4 教学活动:回顾偶函数的定义,引导学生复习相关知识。
讲解偶函数的性质,举例说明其应用。
布置练习题,让学生巩固偶函数性质的理解。
第四章:奇偶性的判断4.1 课程目标:学会判断函数的奇偶性。
理解奇偶性在实际问题中的应用。
4.2 教学内容:介绍判断函数奇偶性的方法。
举例说明如何判断函数的奇偶性。
探讨奇偶性在实际问题中的应用。
4.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解判断函数奇偶性的方法。
进行小组讨论,让学生互相交流思路。
函数的奇偶性、周期性与对称性+课件-2025届高三数学一轮复习
常用结论
函数周期性的常用结论
设函数 y = f ( x ), x ∈R, a >0, a ≠ b .
(1)若 f ( x + a )=- f ( x ),则2 a 是函数 f ( x )的周期;
1
(2)若 f ( x + a )=±
,则2 a 是函数 f ( x )的周期;
()
(3)若 f ( x + a )= f ( x + b ),则| a - b |是函数 f ( x )的周期.
于直线 x = a 对称.
(2)若函数 y = f ( x + b )是奇函数,则 f ( x + b )+ f (- x + b )=0,函数 y = f ( x )的图
象关于点( b ,0)中心对称.
2. 函数的周期性
(1)周期函数
一般地,设函数 f ( x )的定义域为 D ,如果存在一个非零常数 T ,使得对每一个 x ∈
∈[4,6)时, f ( x )= x 2-12 x +32.
, )
2
2
+
2
对称.
对称.
(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有
对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内 x
的符号相同,对称性的表示中,括号内 x 的符号相反.
常用结论
函数 f ( x )图象的对称性与周期的关系
(1)若函数 f ( x )的图象关于直线 x = a 与直线 x = b 对称,则函数 f ( x )的周期为2| b -
0 .
(2)若函数在关于原点对
称的区间上单
称的区间上有最值,则
调性⑤ 相同 .
函数的奇偶性和周期性教案
函数的奇偶性和周期性教案教案:函数的奇偶性和周期性教学目标:1.理解函数的奇偶性和周期性的概念;2.掌握判断函数的奇偶性和周期性的方法;3.能够应用奇偶性和周期性的性质解决实际问题。
教学内容:1.函数的奇偶性1.1奇函数的定义:如果对于函数f(x),当x属于定义域时,有f(-x)=-f(x),则称函数f(x)为奇函数。
1.2判断函数的奇偶性方法:1.2.1通过函数的解析式判断,如果函数解析式中只包含奇数次幂的项,则函数为奇函数。
1.2.2通过函数的图像判断,如果函数关于原点对称,则函数为奇函数。
2.函数的周期性2.1周期函数的定义:如果存在正数T,使得对于函数f(x),当x属于定义域时,有f(x+T)=f(x),则称函数f(x)为周期函数,T称为函数的周期。
2.2周期函数的性质:2.2.1周期函数的图像在一个周期内具有相同的性质,如极值点、零点等。
2.2.2 如果函数f(x)是周期为T的周期函数,则f(ax)是周期为T/,a,的周期函数,其中a是非零常数。
教学过程:1.引入函数的奇偶性和周期性的概念,通过例子说明函数的奇偶性和周期性的特点。
2.讲解奇函数的定义,通过例题让学生判断函数的奇偶性。
3.讲解周期函数的定义,通过例题让学生判断函数的周期性。
4.教师带领学生进行小组合作,给定一些函数,要求学生判断其奇偶性和周期性,并给出相应的理由。
5.学生展示自己的判断过程,教师进行点评和指导。
6.学生独立进行练习,通过解答问题和绘制函数图像等方式应用奇偶性和周期性的性质解决实际问题。
7.教师进行总结,概括函数的奇偶性和周期性的判断方法和应用技巧。
教学资源:1.函数的奇偶性和周期性的教学PPT;2.例题和练习题。
评估与反馈:1.课堂练习:提供一些函数,要求学生判断其奇偶性和周期性,并给出相应的理由。
2.课后作业:布置一些与奇偶性和周期性相关的练习题,要求学生独立完成,并在下节课上进行讲解和答疑。
拓展延伸:2.进一步应用函数的奇偶性和周期性解决实际问题,如求解方程、优化问题等;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节函数的奇偶性与周期性函数的奇偶性与周期性结合具体函数,了解函数奇偶性与周期性的含义.知识点一函数的奇偶性1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数 f ( x)的奇偶性时,必须对定义域内的每一个x,均有 f (-x)=-f (x),而不能说存在 x0使 f( -x0) =-f( x0)、f( -x0)=f( x0) .3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.必记结论1.函数奇偶性的几个重要结论:(1) 如果一个奇函数 f ( x)在原点处有定义,即 f(0) 有意义,那么一定有 f (0) =0.(2) 如果函数 f ( x)是偶函数,那么 f(x)=f (| x|) .(3) 既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域 D 是关于原点对称的非空数集.(4) 奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.2.有关对称性的结论:(1) 若函数 y=f ( x+ a)为偶函数,则函数 y=f (x)关于 x=a对称.若函数 y= f ( x+ a)为奇函数,则函数 y=f ( x)关于点(a,0)对称.(2) 若 f( x) =f (2 a- x) ,则函数 f( x) 关于 x=a 对称.若 f ( x) +f (2 a-x) =2b,则函数 f(x)关于点( a,b)对称.[ 自测练习]1.函数 f( x)=lg( x+1) +lg( x-1)的奇偶性是( )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.( 2015·石家庄一模)设函数 f ( x)为偶函数,当 x∈(0 ,+∞ )时, f ( x) =log 2x,则f(-2)=)(1A.-2C.2D.-23.若函数f(x)=x2-|x+a| 为偶函数,则实数 a=知识点二函数的周期性1.周期函数对于函数 y=f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f ( x+ T) = f ( x) ,那么就称函数 y=f(x) 为周期函数,称 T为这个函数的周期.2.最小正周期如果在周期函数 f ( x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作 f (x) 的最小正周期.必记结论定义式 f (x+T)=f ( x)对定义域内的 x是恒成立的.若f (x+a)=f(x+b),则函数 f(x)的周期为 T=| a-b|.11若在定义域内满足 f(x+a)=-f(x),f(x+a)=fx,f(x+a)=-fx ( a>0) .则 f(x)为周期函数,且 T=2a 为它的一个周期.对称性与周期的关系:(1) 若函数 f ( x)的图象关于直线 x=a和直线 x=b对称,则函数 f ( x)必为周期函数,2|a -b| 是它的一个周期.(2) 若函数 f ( x)的图象关于点( a, 0)和点( b, 0)对称,则函数 f(x) 必为周期函数,2|a- b| 是它的一个周期.(3) 若函数 f ( x)的图象关于点( a, 0)和直线 x= b对称,则函数 f ( x)必为周期函数,4| a -b| 是它的一个周期.[ 自测练习]14.函数 f ( x)对于任意实数 x 满足条件 f ( x+2)=fx,若 f(1) =-5,则 f(f(5)) =考点一函数奇偶性的判断|判断下列函数的奇偶性.(1) f(x)=1-x2+ x2-1 ;(2) f(x) =3-2x+2x-3;x -x4- x(3) f (x )=3x-3-x;(4)f (x )=|x +3| -3;2x + x , 2x -x ,函数奇偶性的判定的三种常用方法1. 定义法: 2.图象法:3.性质法:(1) “奇+奇”是奇, “奇-奇”是奇, “奇·奇”是偶, “奇÷奇”是偶;(2) “偶+偶”是偶, “偶-偶”是偶, “偶·偶”是偶, “偶÷偶”是偶;(3) “奇·偶”是奇, “奇÷偶”是奇.考点二函数的周期性 | 设 f (x )是定义在 R 上的奇函数,且对任意实数 x ,恒有 f ( x + 2) =- f ( x ) .当x ∈[0,2] 时, f ( x )=2x -x 2.(1) 求证: f ( x )是周期函数;(2) 当 x ∈[2,4] 时,求 f ( x )的解析式; (3) 计算 f (0) +f (1) +f (2) +⋯+ f (2 017) .判断函数周期性的两个方法(1) 定义法. (2) 图象法.1已知函数 f ( x )是定义在 R 上的偶函数,若对于 x ≥0,都有 f (x +2)=- ,且当 x ∈[0,2)时, f ( x ) =log 2( x + 1) ,则求 f (-2 015) +f (2 017) 的值为 __ .考点三 函数奇偶性、周期性的应用 | 高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、 单调性的综合考查.归纳起来常见的命题探究角度有: 1.已知奇偶性求参数.2.利用单调性、奇偶性求解不等式. 3.周期性与奇偶性综合. 4.单调性、奇偶性与周期性相结合.探究一 已知奇偶性求参数1.( 2015·高考全国卷Ⅰ )若函数 f (x )=x ln( x + a + x 2)为偶函数,则 a = _______探究二 利用单调性、奇偶性求解不等式x >0,x <0. (5) f (x )=1 2.( 2015·高考全国卷Ⅱ )设函数 f (x )=ln(1 +| x |) -1+x 2,则使得 f (x )>f (2x -1)成 1+x立的 x 的取值范围是 ( )∪(1 ,+∞ )1∪ 3 ,+∞探究三 周期性与奇偶性相结合3.( 2015·石家庄一模 )已知 f (x )是定义在 R 上的以 3为周期的偶函数, 若 f (1)<1 ,f (5) =2a a -3,则实数 a 的取值范围为 ( )a +1A .( -1,4)B .( -2,0)C .( -1,0)D .(-1,2)探究四 单调性、奇偶性与周期性相结合4. 已知定义在 R 上的奇函数 f (x )满足 f (x -4)=- f (x ) ,且在区间 [0,2] 上是增函数,则()A . f ( - 25)<f (11)< f(80)B . f (80)< f (11)< f (-25)C . f (11)< f (80)< f ( - 25)D . f ( - 25)< f (80)< f (11) 函数性质综合应用问题的三种常见类型及解题策略(1) 函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象 的对称性.(2) 周期性与奇偶性结合. 此类问题多考查求值问题, 常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3) 周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的 区间,然后利用奇偶性和单调性求解.2. 构造法在函数奇偶性中的应用[ 思路点拨 ] 直接求解函数的最大值和最小值很复杂不可取, 所以可考虑对函数整理化简,构造奇函数,根据奇函数的最大值与最小值之和为零求解.[ 方法点评 ] 在函数没有指明奇偶性或所给函数根本不具备奇偶性的情况下, 通过观察 函数的结构, 发现其局部通过变式可构造出奇偶函数, 这样就可以根据奇偶函数特有的性质 解决问题.[跟踪练习 ] 已知 f (x )=x 5+ax 3+bx -8,且 f ( - 2) =10,则 f (2) 等于( ) A .-26B .-18C .- 10D .10A 组 考点能力演练1.( 2015·陕西一检 )若 f ( x )是定义在 R 上的函数,则“ f (0) =0”是“函数 f (x )为奇典例】 设函数 f (x )=x +12+sin2x2+1x的最大值M ,最小值为 m ,则 M + m =函数”的 ( )24x 2- 2,- 2≤x ≤0 x , 0<x <1A .0B.1D .- 1x4.在 R 上的奇函数 f (x )满足 f (x +3)=f (x ),当 0<x ≤1时, f (x )=2x,则 f (2 015)=( ) A .- 2B .2 C.- 125.设奇函数 f ( x )在(0 ,+∞ )上是增函数,且 f (1) =0,则不等式 x [f (x )-f (-x )]<0的解集为 ( )A .{x | - 1<x <0,或 x >1}B .{x |x <-1,或 0<x <1}C .{ x | x <- 1,或 x >1} D.{x | - 1<x <0,或 0<x <1}6.已知 f (x )是定义在 R 上的偶函数, f (2) = 1,且对任意的 x ∈R ,都有 f (x +3)=f (x ), 则 f (2 017) = .7.函数 f (x )=x +1x 3+a为奇函数,则 a = __________ .8.已知函数 f (x )在实数集 R 上具有下列性质: ①直线 x =1 是函数 f ( x )的一条对称轴;②f ( x + 2) =- f ( x ) ;③当1≤ x 1<x 2≤3时,[ f ( x 2) - f ( x 1)]( x 2-x 1)<0,则f (2015) ,f (2 016), f (2 017) 从大到小的顺序为 .2- x + 2x , x >0,9.已知函数 f (x ) = 0,x =0, 是奇函数.2 x +mx , x <0(1) 求实数 m 的值;(2) 若函数 f (x )在区间 [ -1, a - 2]上单调递增,求实数 a 的取值范围.10.函数 y =f (x )(x ≠0)是奇函数,且当 x ∈ (0 ,+∞ )时是增函数,若 f (1) =0,求不 等式 f x x -21 <0 的解集B 组 高考题型专练A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件2.( 2015·唐山一模 ) 已知函数1 - x f (x )=-x +log 21+x + 1,则 f 12 + f -12 的值为 (A . 2B- 2 C .0 D3.设 f (x ) 是 定义在R 上 的周 期为 3 的 函数, 当 x ∈[-2,1) 时,f (x ) =,则 f 2 = ( 2log1.( 2014·高考新课标全国卷Ⅰ) 设函数 f ( x ) ,g ( x )的定义域都为 R ,且 f (x ) 是奇函数, g (x ) 是偶函数,则下列结论中正确的是A . f (x ) g (x ) 是偶函数 .| f (x )| g ( x )是奇函数 C . f (x )| g (x )| 是奇函数 D .| f ( x )g ( x )| 是奇函数 2.( 2014·高考安徽卷 ) 设函数 f ( x )( x ∈R) 满足 f ( x +π)=f (x ) +sin x .当 0≤x <π 23π时, f ( x )=0,则 f 6=( C .1D .-123.( 2015·高考广东卷) 下列函数中,既不是奇函数,也不是偶函数的是 ( )A .y = 1+ x 21B .y =x +x 1C . y =2x+21xx D .y =x +e 4.( 2015·高考天津卷 )已知定义在 R 上的函数 f (x )=2|x -m|-1(m 为实数 ) 为偶函数. 记 a =f ,b =f (log 25),c =f (2m ) ,则 a ,b , c 的大小关系为 ( ) A . a <b <cC . c <a <b5.( 2015·高考湖南卷A .奇函数,且在(0,1)B .奇函数,且在 (0,1)C .偶函数,且在 (0,1)D .偶函数,且在 (0,1)上是增函数上是减函数上是增函数上是减函数B .a <c <b D .c <b <a)设函数 f (x ) =ln(1 + x ) - ln(1 -x ),则 f (x ) 是( )答案:x + 1>01. 解析:由 知 x >1,定义域不关于原点对称,故 f (x ) 为非奇非偶函数.x -1>0 答案: C12. 解析:因为函数 f ( x )是偶函数,所以 f (- 2)=f ( 2) = log 2 2=2,故选 B.答案: B3.解析: ∵ f ( - x ) = f ( x )对于 x ∈R 恒成立,∴|-x +a |=|x +a |对于 x ∈ R恒成立, 两 边平方整理得 ax =0 对于 x ∈R 恒成立,故 a =0.答案: 0114.解:f (x +2)=fx ,∴ f (x +4)=fx +2=f (x ),11∴f (5) =f (1) =- 5,∴ f ( f (5)) =f (-5)=f (3) =f1=-5.答案:-1 5考点一2 x 2-1≥0,解: (1)由 2 得 x =± 1,1-x 2≥0,∴f ( x )的定义域为 {-1,1} . 又f (1)+f (-1)=0,f (1) -f (-1)=0, 即 f ( x ) =±f ( - x ) .∴f ( x )既是奇函数又是偶函数.3(2) ∵函数 f ( x )= 3-2x + 2x - 3的定义域为 23,不关于坐标原点对称,∴函数 f (x ) 既不是奇函数,也不是偶函数.(3) ∵f ( x )的定义域为 R ,- xx x - x ∴ f ( -x ) = 3-x -3x =- (3 x -3-x) =- f (x ),所以 f (x )为奇函数.24- x ≥0, | x + 3| - 3≠0,∴f ( x )的定义域为 [ -2,0) ∪(0,2] ,∴f( x)=4-x 2 = 4-x 2= 4-x 2| x + 3| -3 x + 3-3x∴f (-x )=- f ( x ) ,∴ f ( x )是奇函数.(5) 易知函数的定义域为 (-∞, 0) ∪(0 ,+∞ ) ,关于原点对称,又当 x >0时,f (x )(4) ∵由 得- 2≤ x ≤2且 x ≠0.=则当 x <0 时,- x >0,2故 f (-x )=x 2-x =f (x );当 x <0时, f ( x ) =x 2-x ,则当 x >0时,- x <0,故 f (-x )=x 2+x =f ( x ) ,故原函数是偶函数. [解] (1) ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴ f ( x )是周期为 4 的周期函数.(2) 当 x ∈[ -2,0] 时,- x ∈ [0,2] ,由已知得22 f ( -x )=2(-x )-(-x )2=-2x -x 2.2又 f ( x )是奇函数,∴ f (-x )=-f (x )=- 2x -x 2,∴f (x )=x 2+2x .又当 x ∈[2,4] 时,x -4∈[ -2,0] ,2∴f (x -4)=( x - 4) 2+ 2( x - 4) .又 f (x ) 是周期为 4 的周期函数,22 ∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8.2从而求得 x ∈[2,4] 时, f (x ) =x 2-6x +8.(3) f (0) =0,f (2) =0,f (1) =1,f (3) =-1. 又 f (x ) 是周期为 4 的周期函数,∴f (0) +f (1) +f (2) +f (3) =f (4) +f (5) +f (6) +f (7) =⋯= f (2 008) +f (2 009)+f (2 010) +f (2 011) =f (2 012) +f (2 013) +f (2 014) +f (2 015) =0,∴f (0) +f (1) +f (2) +⋯+ f (2 017) =f (0) +f (1) =0+1=1.1 解析:当 x ≥0时, f ( x + 2) =- fx ,∴f (x +4)=f (x ),即 4是f (x )( x ≥0)的一个周期. ∴f (2 017) =f (1) =log 22=1,f (-2 015) =f (2 015) =f (3) =-f1=-1, ∴f (-2 015) +f (2 017) =0. 答案: 01. 解析:由题意得 f ( x ) =x ln( x + a +x 2)=f (-x )=-x ln( a + x 2- x ) ,所以 a +x 2+x =a =1.答案:112. 解析:函数 f (x )=ln(1 +|x |) - 1x 2,∴ f (-x )=f (x ),故 f ( x )为偶函数,又当x 1+ x1∈(0 ,+∞ )时,f ( x ) =ln(1 +x )-1+x 2,f (x )是单调递增的,故f (x )>f (2x -1)f (| x |)>f (|2 x1 + x1-1|) ,∴|x |>|2 x -1|,解得 3<x <1,故选 A.3答案: A3. 解析:∵ f ( x )是定义在 R 上的周期为 3 的偶函数,∴f (5) =f (5-6)=f (-1)=f (1),2a - 3 a - 4 ∴ - <1,即 -<0 ,解得- 1<a <4,故选 A. a + 1 a +1答案: A4.解析:∵ f (x )满足 f ( x -4) =- f (x ), ∴f (x -8)=f (x ),∴函数 f (x )是以 8 为周期的周期函数, 则f (-25)=f (-1),f (80)=f (0),f (11)=f (3) .由f (x )是定义在 R 上的奇函数,且满足 f ( x - 4) =- f ( x ) ,得f (11) =f (3)=-f (-1) =f (1) .∵ f ( x )在区间 [0,2] 上是增函数, f (x )在 R 上是奇函数, ∴ f ( x )在区间 [ - 2,2] 上是增函数,∴ f ( -1)< f (0)< f (1) ,即 f ( -25)< f (80)< f (11) . 答案: D2x + sin x 【典例】 [解析] 易知 f ( x ) =1+2x +2sin x.则 g (x ) 是奇函数.∵ f ( x )的最大值为 M ,最小值为 m , ∴ g ( x )的最大值为 M -1,最小值为 m -1, ∴ M - 1+ m - 1=0,∴ M+m = 2.[ 答案 ] 2解析:由 f ( x ) =x 5+ax 3+ bx -8知 f (x )+8=x 5+ax 3+bx , 令 F (x )=f (x )+8 可知 F ( x )为奇函数,x + 1∵ f (1)<1 ,f (5)=2a -3,a +1,设 g (x )=f (x )-1= 2x + sin2x2+1∴F( -x) +F( x) =0.∴F(-2)+F(2)=0,故 f ( -2) +8+ f (2) +8=0.∴f(2) =-26.答案:A1. 解析: f ( x)在R上为奇函数 f (0) =0;f (0) =0/ f(x)在R上为奇函数,如 f(x)=x2,故选 A.答案:A1- x 1 + x 1 - x2. 解析:由题意知, f(x)-1=-x+log2 ,f(-x)-1=x+log2 = x-log 21+ x 1 - x 1 + x1 1 1 1 =-(f(x)-1),所以f(x)-1为奇函数,则f 2-1+f -2-1=0,所以f 2+f -2= 2.答案:A5 1 1 1 23. 解析:因为 f(x)是周期为3的周期函数,所以 f 2=f -2+3=f -2=4× -22 -2=-1,故选 D.答案:D4. 解析:由 f ( x+3) = f ( x)得函数的周期为3,所以 f(2 015) =f ( 672×3-1)=f(-1) =- f(1) =-2,故选 A.答案:A5. 解析:∵奇函数 f ( x)在(0 ,+∞ )上是增函数, f(-x)=-f(x),x[ f(x)-f(-x)]<0 ,∴xf (x)<0 ,又 f (1) =0,∴f( -1)=0,从而有函数 f(x) 的图象如图所示:则有不等式 x[ f(x)-f (-x)]<0 的解集为{ x| -1<x<0或0<x<1} ,选 D.答案:D6. 解析:由 f(x+3)=f(x)得函数 f(x)的周期 T=3,则 f(2 017) =f(1) =f(-2),又f ( x)是定义在R上的偶函数,所以 f(2 017) =f(2) =1.答案:17. 解析:由题意知, g(x)=( x+1)( x+ a)为偶函数,∴ a=-1.答案:-18. 解析:由 f(x+2)=-f(x)得 f(x+4) =f ( x) ,即函数 f ( x)是周期为 4 的函数,由③ 知f ( x)在[1,3] 上是减函数.所以 f(2 015) =f (3) ,f(2 016) =f (0) =f (2) ,f (2 017) =f (1) ,所以 f(1)> f(2)> f(3) ,即 f(2 017)> f(2 016)> f(2 015) .答案: f (2 017)> f (2 016)> f (2 015)9.解:(1) 设 x<0,则- x>0,=0,622所以 f ( - x ) =- ( - x ) + 2( - x ) =- x - 2x . 又 f ( x )为奇函数,所以 f (-x )=-f (x ), 22于是 x <0时, f (x ) = x 2+ 2x = x 2+ mx ,所以 m =2.(2) 要使 f (x )在[-1,a -2] 上单调递增,a - 2>- 1,结合 f (x )的图象知a -2≤1,所以 1<a ≤3,故实数 a 的取值范围是 (1,3] . 10.解:∵ y= f ( x )是奇函数,∴ f (-1)=-f (1) =0. 又∵y=f (x ) 在(0 ,+∞ )上是增函数, ∴y=f (x )在(-∞, 0)上是增函数,即 0<x x -2II <1,解得 21<x <1+4 17或 1-4 171∴ x x -2 <-1,解得 x ∈.∴原不等式的解集是II 解析:由题意可知 f (-x )=-f (x ),g (-x )=g (x ),对于选项 A ,f (-x )·g (-x ) =-f (x )·g (x ),所以 f ( x ) g ( x )是奇函数,故 A 项错误;对于选项 B ,| f (-x )| g (-x )=| -f (x )| g ( x ) =| f ( x )| g ( x ) ,所以| f ( x )| g ( x )是偶函数,故B 项错误;对于选项 C ,f ( -x )| g (- x )| =- f( x )| g (x )| ,所以 f (x )| g (x )| 是奇函数, 故C 项正确;对于选项 D ,| f ( - x ) g ( -x )| =| -f (x )g (x )| =|f (x )g (x )| ,所以 |f (x )g (x )| 是偶函数,故 D 项错误,选 C.答案: C2.解析:∵ f (x +2π)=f (x +π ) + sin( x +π )=f (x )+sin x -sin x =f ( x ) ,∴ f ( x ) 的周期 T=2π,又∵当 0≤ x <π 时, f (x ) =0,∴ f1若f xx -2 <0= f (1) ,1x x - 2 >0, 1x x - 2 <1,<x <0.f x x -12 <0=f (-1) ,1x x - 2 <0, 1x x -2 <- 1.1 x 2<x <1+417或1-4 17<x <0445π答案: A3. 解析:选项 A 中的函数是偶函数; 选项 B 中的函数是奇函数;选项 C 为偶函数, 只有选项 D 中的函数既不是奇函数也不是偶函数.答案: D4.解析:由 f (x )=2|x -m|-1是偶函数得 m =0,则 f (x )=2|x|-1,当 x ∈[0 ,+∞ )时,f (x ) =2x-1 递增,又 a =f =f (||) = f (log 23) , c = f (0) ,且 0<log 23<log 25,则 f (0)< f (log 23)<f (log 25),即 c <a <b .答案: C5. 解析:由题意可得,函数 f ( x )的定义域为 ( - 1,1) ,且f ( x ) = ln 11-+x x=ln 1-3x -1 ,1-x 1- x3易知 y =-1 在(0,1) 上为增函数,故 f ( x ) 在(0,1) 上为增函数,又 f ( -x ) =ln(1 -x )1-x-ln(1 +x )=-f (x ),故 f ( x )为奇函数,选 A.答案: A即f-6 +sin=0,∴fπ16 =2,∴f 23π 6π4π-= f6π6=12.故选 A.62。