油层物理第三章资料

合集下载

油层物理何更生版第三章3-4节课件

油层物理何更生版第三章3-4节课件
32
A1>A2
亲水
A1<A2
亲油
33
8.润湿指数W 和视润湿角
实验方法:将一块岩心一分为二,一块饱和
油后测定空气驱油的毛管力,另一块饱和水后测定 油驱水毛管力。得到两条毛管力曲线,分别求出两 条毛管力曲线的阈压PTog和PTwo,按以下指标判 断岩石的润湿性。
(1)润湿 指数W
cos wo PTwo og W cos og PTog wo
24
2 评 估 岩 石 储 集 性
25
3.


Swr
4.确定油层Pc(J(sw)函数) J(sw)=Pc(K/)0.5/cosθ 利用J(sw)函数可求出同一类型岩石平均Pc 曲线,还可找出不同类型岩石的物性特征。
26
5.确定自由水面的高度h(确定油水过渡带)油
水过渡带成因(见下图):

3-50 油藏中的油水过渡带分布示意图
(3)测取的参数: Δ V:被驱替水的体积;Δ P:驱替压差( Δ P=Pc)
17
(4)根据Pci∽Swi数据绘测Pc曲线。
18
19
2.压汞法和离心法 四、岩石毛管力曲线的 基本特征
1.Pc曲线的定性特征 Pc曲线的一般形状:两头 陡,中间缓,故分三段:初始段、 中间平缓段、和末端上翘段。
20
Pcc=б
wo/r wocosθ
Pcs=(2б )/R=(2б
)/r
由此看出:液体静止时,施于管壁的球面Pcs使液膜 变薄,Pcc则使液膜增厚,两种力作用的结果,液膜最后 保持一定的平衡厚度。最后静液珠Pcl(指向管壁)则为:
Pc1=(2б cosθ )/r-б /r = 2б (cosθ -0.5)/r

油层物理1-3第三节油气藏烃类的相态课件

油层物理1-3第三节油气藏烃类的相态课件
v 露点(dew point) . 开始从气相中凝结出第一滴液滴的气液共存态。
v 露点压力(dew point pressure) . 在温度一定的情况下,开始从气相中凝结出第一滴液滴的压力。
v 临界点(critical point) . 在临界状态下,共存的气、液相所有内涵性质相等。
v 内涵性质(intensive property) . 与物质的数量无关的性质,如粘度、密度、压缩性等等。
8
8
一、油藏烃类的相态表示方法
(2)相态的表示方法 v相态——相平衡态(phase equilibrium state); v相态研究——指体系相平衡状态随组成、温度、压力
等状态变量的改变而发生变化的有关研究。
→直观的相态研究和表示方法:相图。 v相图(phase diagram):表示相平衡态与 Nhomakorabea系组成、温
12
12
一、油藏烃类的相态表示方法
(3)三角相图 (三元或拟三元相图) (triangular/ternary/ pseudo-ternary)
主要用于研究地层条件下注气混相 驱和非混相驱提高原油采收率。
(gas injection注气)
(miscible flooding混相驱) (immiscible flooding非混相驱)
(正常相变) ; 液相:40→30→20→10→0%。 ➢ E→F降压:单一气相
27
27
三、单、双、多组分体系相态特征
结果:气相体系等温降压穿过反凝析区时,体系中液相含量 ↑
u 等温反凝析(isothermal retrograde condensation) 等温反凝析:在温度不变的条件下,随压力降低而从气相中凝析出液体 的现象。

油层物理3.1-2004

油层物理3.1-2004

18.4 17.0 21.8 26.9 30.3
苯 三氯甲烷 二氯乙烷 二硫化碳 甲苯
29.0 28.5 32.6 73.2 32.8
(2)物质的相态 一般地,气-液界面张力大于液-液界面张力。
(3)物质的极性 两相分子的极性越接近,界面张力越小。 (4)温度和压力 温度升高, 气-液界 面张力降 低。 压力升高, 气-液界 面张力降 低。
1.比界面能 定义:单位界面面积上所具有的界面能
Us A 单位:J/m2
J/m2=Nm/m2=N/m 2.界面张力 定义:作用于单位界面长度上的收缩力
平衡时:
1.3 1.2 2.3
界面张力的三要素: 作用点:三相周界的接触点 大小:等于各自的比界面能 方向:界面为平面则在界面上,界面为曲面,则 在界面切线上,方向指向使界面收缩的方向
§3.1 油藏流体的界面张力
一、两相界面的界面能(interfacial energy) 1.界面和表面
界面:互不相溶的两相间的接触面 表面:当接触的两相中有一相为气相时,把与气相 接触的界面称为表面。 经常把“界面”和“表面”混用。
2.界面层分子的受力分析
(1)液体内部分子--分子力场平衡 (2)液体表面分子--受到指向液体内部的净吸引力
3. 界面张力的测定方法
(1)细管上升法
(2)滴法
(3)旋转液滴法 (4)液滴最大压力法 (5)液滴质量法 (6)吊板法
4.影响界面张力的因素
(1)两相物质
表3-1-1 不同液体在室温条件下与空气接触时的表面张力 物 质 表面张力 mN/m 物 质 表面张力 mN/m
正己烷 乙醚 正辛烷 四氯化碳 邻二甲苯
★极性均衡原则
若极性A>极性C>极性B,则C为吸附在A、B界面上-比吸附,指与相内比 较,界面层单位面积上的 多余吸附量

油层物理-中国石油大学-华东-复习资料

油层物理-中国石油大学-华东-复习资料

第一章储层流体的物理性质1、掌握油藏流体的特点,烃类主要组成处于高温、高压条件下,石油中溶解有大量的天然气,地层水矿化度高。

石油、天然气是由分子结构相似的碳氢化合物的混合物和少量非碳氢化合物的混合物组成,统称为储层烃类。

储层烃类主要由烷烃、环烷烃和芳香烃等。

非烃类物质(指烃类的氧、硫、氮化合物)在储层烃类中所占份额较少。

2、掌握临界点、泡点、露点(压力)的定义临界点是指体系中两相共存的最高压力和最高温度点。

泡点是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。

露点是指温度(或压力)一定时,开始从气相中凝结出第一批液滴时的压力(或温度)。

3、掌握画出多组分体系的相图,指出其特征线、点、区,并分析不同类型油藏开发过程中的相态变化;三线:泡点线--AC线,液相区与两相区的分界线露点线--BC线,气相区与两相区的分界线等液量线--虚线,线上的液相含量相等四区:液相区(AC线以上-油藏)气相区(BC线右下方-气藏)气液两相区(ACB线包围的区域-油气藏)反常凝析区(PCT线包围的阴影部分-凝析气藏)J点:未饱和油藏I点:饱和油藏,可能有气顶;F点:气藏;A点:凝析气藏。

凝析气藏(Condensate gas ):温度位于临界温度和最大临界凝析温度之间,阴影区的上方。

1)循环注气2)注相邻气藏的干气。

4、掌握接触分离、多级分离、微分分离的定义;接触分离:指使油气烃类体系从油藏状态变到某一特定温度、压力,引起油气分离并迅速达到平衡的过程。

特点:分出气较多,得到的油偏少,系统的组成不变。

多级分离:在脱气过程中分几次降低压力,最后达到指定压力的脱气方法。

多级分离的系统组成是不断发生变化的。

微分分离:在微分脱气过程中,随着气体的分离,不断地将气体放掉(使气体与液体脱离接触)。

特点:脱气是在系统组成不断变化的条件下进行的。

5、典型油气藏的相图特征,判别油气藏类型;6、掌握油田常用的分离方式及原因多级分离分出的气少,获得的地面油多,而且其中轻质油含量高,测得的气油比小。

油层物理

油层物理

R σ = S

R = σS
• 对于储油(气)层来说,表面张力可以存 对于储油( 层来说, 在于以下各个界面上。即油- )、油 在于以下各个界面上。即油-水(σ )、油
gw
)、气 )、油 岩石( -气(σ )、气-水(σ )、油-岩石( )、
ow
og
σ 水σ 岩石( )和气σ 岩石( )的界面上。 -岩石( 和气-岩石( 的界面上。 -

在油层情况下,当存在油、 在油层情况下,当存在油、气、水三 相时, 相时,油和水之间的表面张力的变化主要 取决于气体在油中的溶解度。压力越高, 取决于气体在油中的溶解度。压力越高, 气体在石油中的溶解度也就越大, 气体在石油中的溶解度也就越大,致使油 和水的极性差变大, 和水的极性差变大,油-水的表面张力也 随之增大。 随之增大。


论:
各种石油与水接触时的表面张力值不同, 各种石油与水接触时的表面张力值不同,是因 为它们两者的极性不同。或者更准确地说, 为它们两者的极性不同。或者更准确地说,是因为 各种石油中极性组分的含量不同。 各种石油中极性组分的含量不同。水相对于各种石 油来说,是一种极性最大的流体,因此, 油来说,是一种极性最大的流体,因此,随着石油 极性的减少,它们分界面上的表面张力就变大。 极性的减少,它们分界面上的表面张力就变大。
表3-1-3 在各种温度及压力下,水与气体分界面上的表面张力值 表面张力(达因 厘米 厘米) 表面张力(达因/厘米) 压 力 MPa 0 0.71 1.76 3.52 25℃ ℃ 74.1 71.1 66.5 61.8 65℃ ℃ 67.5 63.2 58.8 55.5 压 力 MPa 7.05 10.50 14.00 19.00 表面张力(达因 厘米 厘米) 表面张力(达因/厘米) 25℃ ℃ 55.9 51.6 47.9 44.1 65℃ ℃ 50.4 46.5 42.3 39.5

油层物理 第三章(渗透率)PPT精选文档

油层物理 第三章(渗透率)PPT精选文档
前面介绍的公式是建立在一块岩心实验基础上的, 并且认为这块岩心的孔隙介质由均质介质组成,流体在 内部的渗流向一个方向。
实际上,地下流体的渗流是相当复杂的,下面主要 讨论几种简单渗流方式的达西公式表达式。
16
1. 水平线性稳定渗流
从达西定律一般表达式推导,Z1=Z2(水平),代入一般表达式
Q K P A r K P 1 A P 2 g Z 1 Z 2
13
二、达西公式的推广 (一)达西公式的微分方程
对于实际中不均匀的孔隙介质,加上不均质的流体(即 多相)流体同时渗流时,常作非平面、非稳定的线性渗流。 大量实验证明,达西定律也是适用的。
达西公式的一般表达式为:
Q K P A r K P 1 A P 2 g Z 1 Z 2
L
L
当岩样水平时,流体作水平渗流,Z1-Z2=0,则:
27
气体在致密岩石中低速渗流时会产生滑动效应 ——克林肯博格效应,必须对达西定律进行修正
气体渗透率与平均压力 的关系——实验发现
1)同一岩石、同一种气体, 在不同的平均压力下测得 的气体渗透率不同,低平 均压力下气体渗透率比较 高,高平均压力下气体渗 透率比较低
2)同一岩石,同一平均压力,不同气体测得的渗透率不同
可压缩气体的最大特点是:当压力减小时,气体会发生 膨胀,温度一定时气体的膨胀服从波义尔定律:
p1Q 1p2Q 2pQp0Q 0
Q p0Q0 p
因: p p1p2 2
故Q: p0Q0 2p0Q0 p p1p2
22
只要将流量用平均流量代替即可 水平线性稳定渗流
Q K ( P L A 1 P 2 ) 或 Q 0 K 2 (p p 1 2 0 A L p 2 2 )或 K A 2 ( Q p 1 0 2 p 0 p L 2 2 )

油层物理杨胜来油层物理-杨胜来油层物理学3_图文

油层物理杨胜来油层物理-杨胜来油层物理学3_图文

油层物理杨胜来油层物理-杨胜来油层物理学3_图文导读:就爱阅读网友为您分享以下“油层物理-杨胜来油层物理学3_图文”的资讯,希望对您有所帮助,感谢您对的支持!第三章油气藏烃类的相态和汽液平衡剂,而很少采用N2和CH4作混相剂的主要原因。

第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡单组分P-V相图第三章油气藏烃类的相态和汽液平衡2、双组分体系的相态特征第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡石油和天然气是多种烃类和非烃类所组成的混合物,各地油气藏流体混合物的组成差别甚大。

在原始油气藏条件下,有的呈单一气相为纯气藏;有的是单一液相的油藏;也有的是油、气两相共存,成为带气顶的油藏。

石油和天然气在从地下到地面的采出过程中,状态变化也很复杂,例如原油中溶解的天然气会从原油中分离,而凝析气则会发生由气态转变为液态的反凝析现象。

油藏开发前烃类混合物究竟处于什么相态?为什么开采过程中会发生一系列相态的变化呢?烃类的相态变化的第三章油气藏烃类的相态和汽液平衡油气藏烃类:石油和天然气特点:(1)是多种烃类和非烃类所组成的混合物(2)各地油气藏流体混合物的组成差别甚大(3)高温高压状态下。

原始状态:有的呈单一气相为纯气藏;有的是单一液相的油藏;也有的是油、气两相共存,成为带气顶的油藏。

变化过程:从地下到地面的采出过程中,状态变化也很复杂,例如原油中溶解的天然气会从原油中分离,而凝析气则会发生由气态转变为液态的反凝析现象。

油藏开发前烃类混合物究竟处于什么相态?为什么开采过内因是事物变化的根据:油藏烃类的化学组成的复杂性是相态转化的内因。

外因则是事物变化的条件:压力和温度的变化是产生相态转化的外部条件。

本章将研究压力、温度变化时相态变化的规律。

第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡主要内容第一节油气藏烃类的相态特征第二节汽-液相平衡第三节油气体系中气体的溶解与分离第四节用相态方程求解油气分离问题的实例第三章油气藏烃类的相态和汽液平衡PT第三章油气藏烃类的相态和汽液平衡PT第三章油气藏烃类的相态和汽液平衡状态方程是体系相态的数学描述方法。

油层物理第三章

油层物理第三章

地层中流体流动的空间是一些弯弯曲 曲、大小不等、彼此曲折相通的复杂小孔 道,这些孔道可看成是变断面、且表面粗 糙的毛细管,而储层岩石则可看成为一个 多维的相互连通的毛细管网络。由于流体 渗流的基本空间是毛管,因此研究油气水 在毛管中出现的特性就显得十分重要。
一、毛管压力概念综述
二、毛管压力曲线的测定 三、毛管压力曲线的基本特征及应用
2 c o s 又 Pc r 则
可得 : Δρgh =2σCOSθ/ r
2 cos h rg
(5)
在实际油藏中毛管倾斜时,只要其它参数(如σ 、 r、cosθ 、Δ ρ )相同时,上升的液柱高度将不变化。 当毛管孔道半径变化时,则湿相上升高度会高低不一 致,孔道越小,上升越高。因此可得出:实际油藏中 油水界面不是一个截然分开的平面,而是具有相当高 度的油水过渡带(或油气过渡带)。一般而言,因为 ρ w- ρ o <ρ o- ρ g (或ρ w- ρ g ),故油水过渡带 比油气过渡带厚度更大。

本章将对储层岩石的界面性质,毛管 压力曲线,水驱油过程的各种阻力效应及 相对渗透率曲线进行研究,这些将是提高 采收率的部分基础,也是油藏工程计算中 的重要资料。
§3.1 油藏岩石的润湿性
一、流体相间的界面特性
界面是指非混溶两相物体之间的 接触面。当其中一相为气体时,则把 界面称为表面。
1. 自由界面能
2. 储层润湿性的影响因素
(1)岩石的矿物组成
亲水矿物:粘土>石英>灰岩>白云岩>长石; 亲油矿物:滑石、石墨、烃类有机固体等。
(2)油藏流体组成
非极性烃类物质:碳数C , ; 极性物质:沥清质, ,成为油湿。
(3)表面活性物质 (4)矿物表面粗糙度

油层物理3.4-2004

油层物理3.4-2004

3.7.2 相关经验公式法
利用有代表性的相关经验公式,对每块岩心的相对 渗透率曲线数据进行回归,求出能反映曲线特征的相关 参数,然后对相关参数进行平均,从而得到该油藏有代 表性的相对渗透率曲线。
对于亲水性油藏,油水相对渗透率的经验公式有:
K rw
含水饱和度
S w S wc ( )n 1 S wc S or
3.2.2 计算公式
1 d V t K ro S we f o S we 1 d I V t
w f w S we K rw S we K ro S we o f o S we
2.2 两相相对渗透率曲线的特征 A区:单相油流区 三个区 B区:油水同流区 C区:单相水流区
等渗点:油水相对渗透率曲线的交叉点
2.3 三相相对渗透率
§3.4
2.4 相对渗透率的影响因素
2.4.1 润湿性的影响
§3.4
当岩石润湿性从亲水向亲油转化时,油的相对渗透 率趋于降低,而水的相对渗透率趋于升高。
3.3 根据毛管力曲线计算法 3.3.1 原理
§3.4
岩石孔隙由大小不同的等直径的毛细管组成,当其中饱和单 相流体时,根据毛管渗流定律及达西定律,可计算一定压差下通 过岩样流体的流量及绝对渗透率;当用非湿相驱替湿相时,随外 加压力增加,非湿相优先进入较大的孔隙并在其中流动,而湿相 则占据较小的孔隙并在其中流动,用同样的方法可算出两者的流 量及有效渗透率。从而可计算出不同饱和度下的相对渗透率。
§3.4
Swe Swi Vo t fo Swe V t
I KPt
ouL

KAPt
o LQt
与稳定试验相比法,不稳定试验法测定速度快得 多,一不需要稳定,二不需要单独测定岩心中的流体 饱和度,三无需要考虑消除末端效应的措施;而且设 备简单、操作方便。

油层物理学3

油层物理学3

三维相图:P-V-T 相图
二维相图:P-V 相图
P-T 相图
三角相图:C1-C2-6-C7+
1、立体相图
(三维相图)
以P、v、T三个变 量为坐标作图。
利用立体相图, 可以详尽地表示出各 参数间的变化关系。
2、平面相图(二维相图)
在状态方程中,如果某一状态参数保持不变,则其它两 个参数之间的关系可以表示为二维相图(平面相图)。 用二维相图来表示相态变化更直观和容易实现。 石油工程中通常采用P-v相图(压力-比容图)和P-T相图 (压力-温度图) 。
P-T相图
在相图中,J点表示一个纯油藏,在原始压力和温度下,该烃类体系 是单一液相原油。由于油藏压力高于饱和压力,油藏未被天然气所饱和, 故称欠饱和油藏(undersaturated reservoir)。随着油藏原油的采出, 油藏压力下降,而油藏温度基本保持不变,当压力降至I点以下时,会有 气泡从原油中分离出来,在油藏中出现油、气两相。I点的压力即为油藏 泡点压力或饱和压力,它是原油开始脱气的最高压力。油藏饱和压力越 高,则开采过程中出现气泡越早,继续降压,则会有越来越多的气从原 油中分离出来。
L点代表一个有气顶的油藏。由于气、液两相的重力分离作用,原始 状态下气体积聚于油藏构造高部位,形成气顶。 如果烃类系统的原始条件处于临界点的右侧,且在包络线之外(F 点),那么该系统在原始条件下处于气相,F点代表一个气藏,即使在等 温降压的采气过程中,也不穿过两相区而始终保持单一气相。 图中A点所代表的体系为凝析气藏,它的特点是:原始地层压力高于 临界压力,而地层温度介于临界温度与临界凝析温度之间,A点位于等温 反凝析区的上方。
露点压力:是温度一定时、压力升高过程中从汽相中凝 结出第一批液滴时的压力。

油层物理复习资料

油层物理复习资料

一、 地层水的化学组成 1. 化学组成 地层水中含有相当多的金属盐类,尤其以钠盐、钾盐最多 主要阳离子: Na +、K +、Ca 2 +、Mg 2 + 主要阴离子:
2− Cl −、HCO 3−、SO 4
地层水中还存在多种微生物,最常见为厌氧硫酸还原菌(腐蚀管柱、堵塞地层) 2. 矿化度与离子当量浓度 矿化度 代表水中矿物盐的总浓度,用 mg/L 或 ppm(百万分之一)表示 总矿化度 水中正负离子含量之和 离子毫克当量 某离子的浓度除以该离子的当量(分子量) (注意 钠钾离子通常合在一起计算,当量取 23) 3. 硬度 与地层水中钙、镁等二价阳离子含量的大小有关 钠钾离子首先结合氯离子、其次硫酸根离子、再碳酸氢根离子 氯离子首先结合钠钾离子、其次镁离子、再钙离子 二、 地层水的水型分类 阳离子结合顺序 阴离子结合顺序 单位:毫克当量/L
天然气含水量的确定方法, X = X o × C s × C β
第三章 油气藏烃类的相态和汽液平衡 第一节 油气藏烃类的相态特征 体系 看作由边界面包围起来的空间 体系中某一均质的部分称为相,物质一般分为气、液、固相,每一种相可以含有多种成分,每一个成
油层物理复习资料
分称为一种组分 体系中所含组分及各组分在总体系中所占比例称为组成 一个组成不变的体系,有状态方程 F(p, V, T)=0 平面(二维)相图 (即某一参数保持不变)
p=
RT a − 2 Vm − b Vm
a,b 为常数
Vm 为比容,单位 m 3 / kmol
第三节 天然气的高压物性 一、天然气的地层体积系数 Bg 一定量天然气在油气层条件下的体积与标况(20℃,0.1MPa)的体积之比
Bg =
VR ρ sc ZRTn nRTsc ZTpsc 273 + T psc Z = = = = / Vsc ρ R p psc Tsc p 293 p

油层物理ppt3-1

油层物理ppt3-1
(3)吸附是放热的,所以升高温度,吸附量降低。 但有的体系,温度升高溶质的溶解度降低,使溶质在 固体表面的吸附量增加,此时,若溶解度降低超过了温度 对吸附量的影响时,吸附量将随温度的增加而增大;
(4)吸附量与被吸附物质的浓度成正比,浓度越大,吸 附量越大。气体具有较大的压缩性,固体表面对气体的吸附 量随压力的升高而增大。
界面张力
油藏岩石润湿性
毛细管上升法 悬滴法 旋转液滴法 液滴(气泡)最大压力法
直接测定法
测润湿角
光学投影法
吊板法
间接测定法
液滴质量(或体积)法
自吸吸入法
吊板法
自吸离心法
自吸驱替法
37
38

湿
指数



自动吸水排油量Vo1 吸水排油量Vo1 离心吸水排

量Vo
2
油湿指数

自动吸油排水量Vw1 自动吸油排水量Vw1 离心吸油
物质 正己烷 乙醚 正辛烷 四氯化碳 邻二甲苯
界面张力 (mN/m)
18.4
17.0
21.8
26.9
30.3
物质
苯 三氯甲烷 二氯乙烷 二硫化碳 甲苯
界面张力 (mN/m)
29.0
28.5
32.5
73.2 32.85
4
(2)与物质的相态有关;
表3.1.2 水、水银与不同物质接触时的界面张力
第一相 第一相
因为增加温度和提高压力将同时改变油水 各自的分子间作用力,它们之间的差值仍可能 保持不变,因此界面张力不变。
更多的研究认为 :温度对油水界面张力的影 响比较明显,温度升高,油水界面张力降低;压 力对油水界面张力也有影响,但影响较小,随压 力升高一般略有升高,但有时还可能略有降低, 这主要取决于油水的组成及压缩性。

油层物理(第三章)

油层物理(第三章)

1 G C ( )T RT C
溶质在溶液中 的平衡浓度
恒温下,表面张 力随溶液浓度的 变化率,称溶质 表面活度
G-吉布斯吸附量,为单位面积表面层中溶质的摩尔 数与溶液中任一相当薄层中溶质的摩尔数之差(或过 剩值、多余量),又称比吸附。
4、吸附规律
( )T 0, G 0 C
u比界面自由能:
单位界面面积上的界面自由能。
比界面自由 能 ,J/m2
U ( )T、p、n A
或:在T、p 及组成一定下,可逆地增加物系单 位表面积需对物系作的非体积功
W / A
1、自由界面能和界面张力
如图,用力F 拉L 边: 薄膜面积新增△A 做功W
新增表面自由能△U
第三章 多相流体的渗流机理
本章内容
第一节 储层岩石中的各种界面现象 第二节 储层岩石的润湿性 第三节 储层岩石的毛管压力曲线 第四节 储层岩石驱油过程中的阻力效应
第五节 储层岩石的有效渗透率和相对渗透率曲线
第一节 储层岩石中的各种界面现象
本节内容
储层流体相间的界面张力 界面吸附现象
第一节 储层岩石中的各种界面现象
2、润湿程度的衡量——接触角,附着功
(1)接触角(润湿角)θ ①概念: 接触角::气液两相流体与某固相接触时,过气液固三相交点 对液体界面作切线,切线与液固界面的夹角。 规定:确定θ 角时,从密度大的液相一侧算起。
油、水、储层岩石体系
空气、水、玻璃
空气、水银、玻璃
2、润湿程度的衡量——接触角,附着功
体系的状态函数,可求改变量,无法求绝对量。
1、自由界面能和界面张力
u影响因素:
界面面积↑→自由界面能↑ 分子极性差异↑→自由界面能↑(分子间作用力↑) 相及相态(T、p)不同→自由界面能不同 任何引起体系界面状态改变的因素,都会使体系界 面自由能发生变化。

油层物理第三四章

油层物理第三四章

研 究
第一节 油藏岩石的润湿性 和油水分布
1 润湿的概念 2 润湿滞后
3 油水在岩石孔道中的分布
1 润湿的概念
润湿是指液体在分子力作用下在固体表面的流 散现象;或指:当存在两种非混相流体时,其中某 一相流体沿固体表面延展或附着的倾向性。
液体对固体的润湿程度通常用润湿角(也称接触角)
表示。润湿角是指过三相周界点,对液滴界面所作切线与 液固界面所夹的角。
2 不同驱动方式和采收率
式中 EV——体积波及系数或简称波及系数;
第一节 油藏岩石的润湿性和油水分布
驱动方式不同,采收率也不同。
第二,开采技术研究
岩石亲油,毛管力是水驱油的阻力。
第二章 储层岩石的物理性质
目前,世界上广泛采用“EOR”这个术语来概括除天然能量采油和注水、注气采油以外的任何方法,而不管它使用在哪一个采油期,
1 润湿的概念
图3.2.1 油水对岩石表面的接触角
a一水湿,θ<90°;b一中间润湿性,θ=90°;c一油湿,θ>90°
按接触角(也称润湿角)定义,可得:
θ=0°完全润湿; 也可称为:亲水性极强或强水湿;
θ<90° 润湿好;
亲水性好或水湿;
θ>90° 润湿不好
亲油性好或油湿;
θ=180°完全不润湿; 亲油性极强或强油湿;
也不管它使用何种方式(如驱替方法、单井吞吐等)。
可将其分为三段—初始段、中间平缓段和末端上翘段。
它是在注入水中添加各种化学剂,以改善水的驱油及波及性能,从而提高原油的采收率。
同时考虑波及程度及洗油效率两个因素时,原油采收率ER可为 :
目前,世界上广泛采用“EOR”这个术语来概括除天然能量采油和注水、注气采油以外的任何方法,而不管它使用在哪一个采油期,

第三章油层物理基础

第三章油层物理基础

第三章油层物理基础第三章油层物理基础§3-1储层流体的组成及其物理性质⼀、⽯油的组成及其物理性质⽯油是⼀种以液体形式存在于地下岩⽯孔隙中的可燃性有机矿产之⼀。

从直观上看,它表现为⽐⽔稠但⽐⽔轻的油脂状液体,多呈褐⿊⾊;化学上是以碳氢化合物为主体的复杂的混合物。

液态⽯油中通常溶有相当数量的⽓态烃和固态烃,还有极少量的悬浮物。

因此,⽯油没有确定的化学成分和物理常数。

(⼀)⽯油的组成1.⽯油的元素组成⽯油没有确定的化学成分,因⽽也就没有确定的元素组成。

⽯油尽管是多种多样,但它们的元素组成却局限在较窄的变化范围之内,碳(C)、氢(H)占绝对优势。

根据对世界各地油⽥⽯油化学分析资料统计,⽯油中含碳量在80%~88%,含氢量在10%~14%,碳、氢含量的总和⼤于95%,⽯油的碳氢⽐(C/H)介于5.9~8.5之间。

碳、氢两元素在⽯油中组成各种复杂的碳氢化合物,即烃类存在,它是⽯油组成的总体。

⽯油中除碳、氢外,还有氧(O)、氮(N)、硫(S)等元素,⼀般它们总量不超过l%,个别油⽥可达5%~7%,这些元素在⽯油中多构成⾮烃有机化合物。

它们含量虽少,但对⽯油质量有⼀定影响,如⽯油中含硫则具有腐蚀性,且降低⽯油的品质。

除上述元素外,在⽯油成分中还发现有30余种微量元素。

但含量较少。

其中以钒(V)、镍(Ni)为主,约占微量元素的50%~70%。

因此,在⽯油残渣中提炼某些稀有元素,是⼀个值得注意的领域。

2.⽯油的烃类组成从有机化学⾓度来讲,凡是仅由碳、氢两个元素组成的化合物,称为碳氢化合物,简称“烃”。

⽯油主要是由三种烃类组成:即烷族烃、环烷族烃和芳⾹族烃。

3.⽯油的组分组成根据⽯油中不同的物质对某些介质有不同的吸附性和溶解性,将⽯油分为四种组分。

(1)油质:油质是由烃类(⼏乎全部为碳氢化合物)组成的淡⾊油脂状液体,荧光反应为浅蓝⾊,它能溶解于⽯油醚中,但不能被硅胶吸附。

油质是⽯油的主要组成部分,含油量约为65%⼀100ok。

油层物理第三章

油层物理第三章

第四节 饱和多相流体的岩石的渗流特征
第四节 饱和多相流体的岩石的渗流特征
⑵有效(相)渗透率:当多相流体共存时,岩石让其 中一种流体通过的能力。
第四节 饱和多相流体的岩石的渗流特征
有效渗透率特点: ⑴有效渗透率与岩石自身的属性、流体饱和度、润湿 性有关。⑵Ko+Kw<K
⑶相对渗透率:有效渗透率与绝对渗透率的比值。
3、润湿滞后
3.1 定义: 由于三相周界沿固体表面 移动的迟缓,而使润湿角发 生改变的现象。
第二节 油藏岩石的润湿性和油水分布
3.2 影响润湿滞后的因素
⑴与三相周界的移动方向有关:
静润湿滞后:由于润湿次序不同而引起的润湿角改变的现象。
第二节 油藏岩石的润湿性和油水分布
3.2 影响润湿滞后的因素
⑵与三相周界的移动速度有关: 动润湿滞后:由于流体流动速 度引起的润湿角改变的现象。
第二节 油藏岩石的润湿性和油水分布
5.3 水驱油过程:
亲油岩石:
驱替过程:非湿相驱替湿相的过程。
第三节 油藏岩石的毛管力
1、毛管中的液体上升现象 1.1 毛管插入水中
三相周界受力
水柱受到向上及向下的力:
毛管力
第三节 油藏岩石的毛管力
◇毛管插入水中
毛管力的大小=拉起h高的 水柱产生的压力
◇毛管插入油水界面处
第二节 油藏岩石的润湿性和油水分布
2、储层岩石的润湿性及其影响因素
2.1 油藏岩石亲油、亲水性的争论:
第二节 油藏岩石的润湿性和油水分布
2、储层岩石的润湿性及其影响因素
2.2 影响油藏岩石润湿的因素 凡是影响油-固、水-固界面张力的因素都影响岩石 的 润湿性。
第二节 油藏岩石的润湿性和油水分布

油层物理第三章答案

油层物理第三章答案

第三章一、基本概念1.自由表面能:表面层分子比液相内分子储存的多余的“自由能”,这就是两相界层面的自由表面能。

2.界面张力:在液体表面上,垂直作用在单位长度的线段上的表面紧缩力。

(体系单位表面积的自由能,也可想象为作用于单位面积上的力。

)3.吸附:由于物质表面的未饱和力场自发地吸附周围介质以降低其表面的自由能的自发现象。

(PPT:溶解在具有两相界面系统中的物质,自发地聚到两相界面层上,并降低界面层的界面张力。

)4.润湿:当不相混的两相(如油、水)与岩石固相接触时,其中一相沿着岩石表面铺开,其结果使体系的表面自由能降低的现象。

5.润湿性:当存在两种非混相流体时,其中某一种流体沿固体表面延展或附着的倾向性。

6.润湿滞后:在一相驱替另一相过程中出现的一种润湿现象,即三相润湿周界沿固体表面移动迟缓而产生润湿接触角改变的现象。

7.动润湿滞后:在水驱油或油驱水过程中,当三相界面沿固体表面移动时,因移动的迟缓而使润湿角发生变化的现象。

8.静润湿滞后:指油、水与固体表面接触的先后次序不同时产生的滞后现象(即是以水驱出固体表面上的油或以油驱除固体表面的水的问题)。

9.毛管压力:毛管中由于液体和固体间的相互润湿,使液—气相间的界面是一个弯曲表面。

凸液面,表面张力将有一指向液体内部的合力,凸面像是紧绷在液体上一样,液体内部压力大于外部压力;凹液面,凹面好像要被拉出液面,因而液体内部的压力小于外部压力,这两种附加力就是毛管压力。

10.毛管压力曲线:含水饱和度与毛管压力间关系的曲线。

11.排驱压力:非湿相开始进入岩样最大喉道的压力,也就是非湿相开始进入岩样的压力。

12.饱和度中值压力:()在驱替毛管压力曲线上饱和度为50%时所对应的毛管压力值。

13.中值喉道半径:相应的喉道半径,简称中值半径。

14.驱替过程:当岩石亲油时,必须克服施加一个外力克服毛管力,才能使水驱油。

计算,则为正、h15.吸允过程:对于实际油层,当岩石亲水时,按也为正,水面会上升。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档