[理学]流体力学第三章
流体力学第三章流体动力学ppt课件
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a
dv
dt
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v
vx
i
v
y
j
(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt
即
dx a
dt
0xd
x
t
0
adt
x
a
t
dy bt
dt
y
0
dy
t
0
btdt
y
b
t2 2
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a
流体力学第3章
2019/10/24
6
第二节 流体平衡方程式
一、流体平衡微分方程式
在静止流体中任取一边长为 dx,dy和dz的微元平行六面体
的流体微团,现在来分析作用在这流体微团上外力的平衡条 件。作用在微元平行六面体的表面力只有静压强。设微元平 行六面体中心点处的静压强为p,则作用在六个平面中心点 上的静压强可按泰勒(G.I.Taylor)级数展开,在垂直于X轴 的左、右两个平面中心点上的静压强分别为:
方程几何意义:表示在重力作用下静止流体中各点的静水头 都相等。
在实际工程中,常需计算有自由液面的静止液体中任意一点 的静压强。
2019/10/24
21
静止液体中任一点压强
2019/10/24
22
如图所示,在一密闭容器中盛有密度为ρ的液体,若自由液面上的压
强为p0、位置坐标为z0,则在液体中位置坐标为z的任意一点A的压强p可
绝对压强
真空 绝对压强
绝对压强、计示压强和真空之间的关系
2019/10/24
28
当流体的绝对压强低于当地大气压强时,就说该流体处于真
空状态。例如水泵和风机的吸入管中,凝汽器、锅炉炉膛以
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,
则
pv pa p
的总压力分别为:
Hale Waihona Puke p 1 p dxdydz 2 x
和
p 1 p dx dydz 2 x
同理,可得到垂直于y轴的下、上两个微元面上的总压力分别
为:
p
1 2
p y
dy dxdz
流体力学3
第3章理想流体动力学3.1系统和控制体3.1系统和控制体流体力学第三章 系统包含着确定不变的物质的任何集合,称之为系统,系统以外的一切,统称为外界。
系统的边界是把系统和外界分开的真实或假想的曲面。
在流体力学中,系统就是指由确定的流体质点所组成的流体团。
所有的力学定律都是由系统的观念推导而来的。
在系统与外界之间以边界来划分。
系统的边界随着流体一起运动。
在系统的边界处没有质量交换.在系统的边界上,受到外界作用在系统上的表面力。
在系统边界上可以有能量交换,如可以有能量(热或功)进入或跑出系统的边界。
系统流体力学第三章 系统是与拉格朗日观点相联系的。
以确定的流体质点所组成的流体团作为研究的对象。
对应的方程叫拉氏型方程.问题的提出: 但是对大多数实际的流体力学问题来说,感兴趣的往往是流体流过坐标系中某些固定位置时的情况。
例如,在飞机或导弹的飞行; 当燃气轮机在运行时,我们希望知道其进、出口截面处的诸流动参数的分布等等。
在处理流体力学问题时,采用欧拉观点更为方便,与此相应,必须引进控制体的概念。
相对于某个坐标系来说,被流体流过的的固定不变的任何体积称之为控制体。
控制体的边界面称之为控制面,其总是封闭表面。
占据控制体的流体质点是随着时间而改变的。
控制体是与欧拉观点相联系的。
控制面有如下特点:控制体的边界(控制面)相对于坐标系是固定的。
在控制面上可以有质量交换。
在控制面上受到控制体以外物体加在控制体之内物体上的力。
在控制面上可以有能量交换,即可以有能量(内能、动能、热或功)跑进或跑出控制面。
对应的方程叫欧拉型方程.V )(t S System Control Volume S )(t V Control Surface)(t F。
流体力学
表明流速不变或流速的改变可以忽略时,理
想流体稳定流动过程中流体压强能与重力势
能之间的转换关系,即高处的压强较小,低处 的压强较大. 两点的压强差为
p1 p2 g (h2 h1 )
空吸原理
SB SA SC
S AvA SB vB
S A SB
vB vA
1 1 2 2 P vA P vB A B 2 2
vB 2 gh
管涌
铜壶滴漏 “寸金难买寸光阴”是再熟 悉不过的诗句了,其中揭示 了计量时间的方法.我国古 代用铜壶滴漏计时,使水从 高度不等的几个容器里依次 滴下来,最后滴到最低的有 浮标的容器里,根据浮标上 铜壶滴漏 的刻度也就是根据最低容器 说明其计时原理. 里的水位来读取时间.
(三) 压强与流速的关系 在许多问题中,所研究的流体是在水平或接近 水平条件下流动.此时,有 h1=h2或 h1≈h2,伯 努利方程可直接写成 1 2 1 2 p1 v1 p 2 v 2 2 2 1 2 p v 常量 2 平行流动的流体,流速小的地方压强大,流速 大的地方压强小(例).
(2)求虹吸管内B、C 两处的压强. 解:水面为参考面,则 有A、B点的高度为零,
C 点的高度为2.50 m, D点的高度为-4.50m.
(1)取虹吸管为细流管,对于A、D 两点,根据伯 努利方程有 1 2 1 2 ghA v A p A ghD vD pD 2 2 由连续性方程有
1 2 1 2 p A v A pB v B 2 2
1 2 PB P0 vB 2
根据连续性方程可知,均匀虹吸管内,水的速率
处处相等,vB=vD.
1 2 PB P0 vB 5.7 10 4 Pa 2 结果表明,在稳定流动的情况下,流速大处压强
流体力学第三章课后习题答案
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
流体力学第三章总结.ppt
§3-1 描述流体运动的方法
• 拉格朗日方法与欧拉方法 • 流动的分类 • 流线和流管 • 系统与控制体
拉格朗日法与欧拉法
拉格朗日法
欧拉法
基本思想:跟踪各质点的 基本思想:通过综合流场
运动历程, 综合所有质点 中各空间点各瞬时的质点
的运动情况获得整个流体 运动变化规律,获得整个
的运动规律
流场的运动特性
• 均匀管流的动量方程:
QV2 V1 F
理想流体沿流线法向的压强和速度分布
当流线曲率半径很大,近似为平行直线时:
z1
p1
g
z2
p2
g
当流线为平行直线,且忽略重 力影响时,沿流线法向压强梯 度为零。平直管内流体在管截 面上压强相等。
§3-4 伯努利方程
z1
p1
g
1
1
u
2
h
u
2g
'
1
h
4.34m
/
s
z1
油沿管线流动,A断面流速为2m/s,不计损失, 求开口C管中的液面高度 。
1.2 p1 V12 p2 V22
ρg 2g g 2g
p1
p2
g
V2
2 V12 2g
1.2
p1 p2 1.2g hC g
4070N
Fbolt F 4070N
思考题
• 流线与迹线的区别是什么?二者何时重合? • 欧拉法与拉格朗日法的观察点各自是什么? • 圆管层流的流速与压强分布特征是什么? • 定常流动的特点是什么?
t
F=ma
流体力学第三章
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
流体力学教案第3章流体运动学基础
第三章 流体运动学基础§3—1研究流体流动的方法一、基本概念场-设在空间的某个区域内定义了标量函数或矢量函数,则称定义了相应函数的空间区域为场。
如果研究的是标量函数则称此场为标量场;如果研究的是矢量函数,则称之为矢量场;如果同一时刻场内各点函数的值都相等,则称此场为均匀场,反之为不均匀场,如果场内函数不依于时间,即不随时间改变,则称此场为定常场,反之称为不定常场。
场的分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧密度场压力场标量场力场速度场矢量场 流场―充满运动流体的场称为流场。
二、研究流体运动的欧拉法欧拉法―欧拉法是通过下列两个方面来描述整个流场情况的:(1)在空间固定点上流体的各种物理量(如速度、压力)随时间的变化。
(2)在相邻的空间点上这些物理量的变化 1、速度表示法欧拉法是以流场中每一空间位置作为描述对象,描述在这些位置上流体的物理参数随时间的变化。
显然,同一时刻,流体内部各空间点上流体质点的速度可以是不同的,即V是(x, y, z )的函数。
同一空间点上,不同时刻,流体质点的速度也是不同的。
即V又是t 的函数。
另一方面x , y , z 又可以看作是流体质点的坐标,而流体质点的坐标又是时间的函数。
因此: x = x ( t ) y = y ( t ) z = z ( t )),,,(),,,(),,,(t z y x w w t z y x t z y x u u ===υυ故:V =V(x , y , z, t )同理:),,,(t z y x p p =),,,(t z y x ρρ=2、流体质点的加速度流体质点的加速度为:tVa d d =则:z u w y u x u u t u t z z u t y y u t x x u t u t u a x ∂∂+∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂==υd d z w y x u t t a y ∂∂+∂∂+∂∂+∂∂==υυυυυυd d zw w y w x w u t w t w a z ∂∂+∂∂+∂∂+∂∂==υd d 用矢量表示为: V V tVt V a)(d d ∇⋅+∂∂==其中yk y j x i ∂∂+∂∂+∂∂=∇ 为哈密顿算式。
《流体力学第三章》PPT课件
本章是流体力学在工程上应用的基础。它主要利 用欧拉法的基本概念,引入了总流分析方法及 总流运动的三个基本方程式:连续性方程、能 量方程和动量方程,并且阐明了三个基本方程 在工程应用上的分析计算方法。
第一节 描述流体运动的两种方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以流场 中每一流体质点作为描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综 合足够多的质点(即质点系)运动求得整个流 动。——质点系法
ux=x+t; uy= -y+t;uz=0,试求t =
dx xt dt
dy y t dt
求解
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
dx dy dz dt ux uy uz
ux=x+t;uy=-y+t;uz=0 t = 0 时过
M(-1,-1):
x C1 e t t 1 y C2 e t t 1
运动的轨迹,是与 拉格朗日观点相对 应的概念。
r r(a, b, c, t )
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合; 非恒定流时流线和迹线不重合;
举例
已知直角坐标系中的速度场
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为
所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。 解: uz =0,所以是二维流动,二维流动的流线方程微分为
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
流体力学第三章流体动力学(1)PPT课件
其它各运动参量也可用类似的方法来表示。如: pp(x,y,z,t)
欧拉加速度
ad uuud xud yudz dtt xdtydtzdt
a x
ux t
ux
ux x
uy
ux y
uz
ux z
a y
u y t
ux
u y x
uy
uy y
uz
uy z
az
uz t
ux
uz x
uy
uz y
§3.1 描述液体运动的两种方法
液体和固体不同,液体运动是由无数质点构成的连续介质的流动,液体运 动的各物理量在空间和时间上都是连续分布和连续变化的。怎样用数学物 理的方法来描述液体的运动?这是从理论上研究液体运动规律首先要解决 的问题。
液体质点:物理点。是构成连续介质的液体的基本单位,宏观上无 穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含 许许多多的液体分子,体现了许多液体分子的统计学特性)。
(3)流线的性质
(1)流线是一条条光滑连续的曲线(含直线);
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
第七讲
第三章 流体运动学
§3.1描述液体运动的两种方法 一、拉格朗日法(质点法) 二、欧拉法(流场法)
§3.2液体运动的一些基本概念 一、描述流体运动的基本概念 二、流体运动的类型 三、系统、控制体
《流体力学》第三章一元流体动力学基础
02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。
中南大学《流体力学》课件第三章动力学
——迹线微分方程
第二节 基本概念
二、迹线和流线
流线
z u2 u1 o y
dl
是流场中的瞬时光滑曲线,曲线上各点的切线方向 与经过该点的流体质点的瞬时速度方向一致。 两矢量方向一致,则其叉积为零。
i
j
k
x
d l u dx dy dz 0 ux uy uz
——流线微分方程
dx dy dz ux u y uz
第一节 描述流体运动的方法
流场 —— 充满运动流体的空间称为流场
一、拉格朗日法 跟踪
是以流场中每一个流体质点作为对象描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综合足够多的质点 (即质点系)运动求得整个流动。 ——质点系法
z
(x,y,z,t)
初始时刻t0
新的时刻t
某质点(a,b,c,to)
x f1 (a, b, c, t ) y f 2 (a, b, c, t ) z f (a, b, c, t ) 3
x f1 u x t t y f 2 u y t t u z f 3 z t t
流场运动要素是时空(x,y,z,t)的连续函数
u x F1 ( x, y, z, t ) u y F2 ( x, y, z , t ) u F ( x, y , z , t ) 3 z
x,y,z,t —欧拉变量
du x dF1 u x u x u x u x a u u u x x y z dt dt t x y z du y dF2 u y u y u y u y a u u u y x y z t x y z dt dt a du z dF3 u z u u z u u z u u z x y z z t x y z dt dt
流体力学第三章课后习题答案
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
流体力学第三章
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
流体力学第三章讲义
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
dt时间内,1-1`和2-2`断面间的动能变化量为
1 2 m ( u2 u12 ) 2
2 ( u2 u12 )
第四节 恒定元流能量方程 三 方程推导
p1 1 1` u1dt 2 2` u2dt p2 0
流体力学泵与风机
dA1
dA2 z2
z1
0
dt时间内,1-1`和2-2`断面间的势能变化量为
u x u x ( x , y, z , t ) u y u y ( x, y, z, t ) uz uz ( x , y , z , t ) 2 2 u ux u2 u y z
第二节 描述流场的几个概念
一 恒定流与非恒定流
流体力学泵与风机
恒定流动是指流场中流动参数不随时间变化而改变的流动。 u x 0 u x u x ( x, y, z ) t u u ( x , y , z ) u y y y 0 u u ( x , y , z ) t z z uz p p( x , y , z ) 0 t 若流场的流动参数的全部或其中之一与时间有关,则这类流 场称为非恒定流
dV dQ udA dt
Q dQ udA
A A
vA udA
A
v
udA
A
Q Av
A
第二节 描述流场的几个概念
六 均匀流与非均匀流、渐变流与争变流
流体力学泵与风机
过流断面及其质点流速沿流向大小和方向均不变 的流动称为均匀流动。若过流断面沿流程变化,称这 种流动为非均匀流。 流速没流动方向变化极缓慢的非均匀流称为渐变 流。渐变流时的流线趋于平行直线。流速沿流动方 向变化显著的非均匀流称为急变流。
第四节 恒定元流能量方程 三 方程推导
p1 1 1` u1dt 2 2` u2dt p2 0
流体力学泵与风机
dA1
dA2 z2
z1
0
在一恒定流场中取一元流1-2,如上图所示。经dt时间 后,断面1、2分别运动到1`、2`。 dt时间内1、2移动距离 断面1总压力做功 断面2总压力做功 外力做功为
u1dt
u1 A2 u2 A1
1 2 (不可压缩流体)
u1dA1 u2 dA2
A1
1 2 (可压缩流体) 1u1 A1 2u2 A2
Q2
Q1 Q2 Q3 Q1 Q2 Q3
Q3 Q1
Q2
Q1
Q3
第三节 连续性方程
流体力学泵与风机
例 如图所示,d1=2.5cm,d2=5cm,d3=10cm。(1)当流量为4L/s时, 求各管段的平均流速。(2)旋动阀门,使流量增加至8L/s或使流量 减少至2L/s时,平均流速如何变化?
流体力学泵与风机
hv
ha
用毕托管测量气体
pa pb `hv
` hv
u 2g
γ`-液体压差计所用液体的容重; γ-流动气体本身的容重;
第四节 恒定元流能量方程
【例】用水银比压计量测管中水流, 过流断面中点流速u如图。测得A点 的比压计读数Δh=60mm汞柱。(1) 求该点的流速u;(2)若管中流体 是密度为0.8g/cm3的油,Δh仍不变, 该点的流速为多少?不计损失
Hp
p
p
Z
测压管水头,表示断面测压管水面 相对基准面的高度,表明单位重量 流体具有的势能简称单位势能 总水头,表示单位重量流体总能量
u2 H Z 2g
结论:理想不可压缩流体恒定元流中,各断面总水头 相等,单位重量的总能量保持不变.
第四节 恒定元流能量方程
四 毕托管
hb
u b a A ba
dx dy dz ux u y uz
流线的绘制
突扩管流线簇
绕流流线簇
第二节 描述流场的几个概念
三 一元、二元和三元
流体力学泵与风机
当流场中的流动参数由三个坐标变量来描述的流动,称为三 元流动。 当所有流动参数与坐标中某一方向的变量无关,且在这个方 向的分量也不存在的流动称为二元流动。
四 元流与总流 在流场中任意画出一条封闭曲线,经过曲线上每一点作流线, 则这些流线组成一个管状的表面,称为流管充满流管内的运动流称 为流束。垂直于流束的横断面称为过流断面。过流断面无限小的流 束称为元流。无数元流的总和称为总流。
三 欧拉法
x (a , b, c, t ) t y (a , b, c, t ) uy t z (a , b, c, t ) uz t ux
流体力学泵与风机
欧拉法是对流场中各空间点上流体质点运动的速度、压强等参 数随时间随时间的变化进行研究,而后将所有空间点上的结果综合 起来,从而得到整个流场运动的一种研究方法。 欧拉法不同于拉格朗日法是以固定流体质点为研究对象,而是以确 定的空间为对象。它不能描述单个质点的运动全过程,但可表示出 同一瞬时整个流场的流动参数。
四 毕托管
hb
u b a A ba
流体力学泵与风机
hv
ha
ub 2 g
hv
pa pb
pa pb
ub 2 ghv
上式流速通常需要乘以经实验校正的流速系数φ进行修正,流速 系数与管的构造和加工情况有关,通常取φ=1。
u 2 ghv
第四节 恒定元流能量方程
四 毕托管
hb
u b a A ba
v1 4
0.228 (0.0762)
2
9.83m / s
4
第四节 恒定元流能量方程
一 为什么需要研究能量方程
流体力学泵与风机
之前学习的连续性方程:u1A1=u2A2,只能反映不同 断面间流速大小,不能得到不同断面间能量变化及受 力情况,因此为了分析流体运动,还需要掌握流体运 动的能量方程。 二 分析恒定元流能量方程前需作的假设 流体是不可压缩的,即流体密度是常数; 流动是元流的恒定流动,即空间各点速度及各项参 数不随时间而改变; 作用在流体上的质量力只有重力,此时忽略流体内 摩擦力的影响(这部分在总流能量方程再考虑),即不 考虑元流流动的能量损失。
流体力学泵与风机
hv
ha
对过流断面a、b应用元流能量方程得
pa
2 ub 0 2g
pb
ub 2 g
pa pb
由上图两测压管间关系可得:
pa ha pb hb
pa pb ha hb hv
hv
pa pb
第四节 恒定元流能量方程
第三节 连续性方程
流体力学泵与风机
例 如图所示,断面为(50×50)cm2的送风管,通过a,b,c,d四个 (40×40) cm2的送风口向室内输送空气。送风口气流平均速度 均为5m/s,求通过送风管1-1,2-2,3-3各断面的流速和流量。
解
Q 0.4 0.4 5 0.8m3 / s Q1 3Q 2.4m3 / s Q2 2Q 1.6m3 / s
p1
2 u12 p2 u2 Z1 Z2 2g 2g
第四节 恒定元流能量方程
p1
2 u12 p2 u2 Z1 Z2 2g 2g
流体力学泵与风机
u2 Z C 2g p
伯努利方程
压强水头,表示单 位重量流体的压能
位置水头 ,表示单 流速水头,单位重 位重量流体的位能 量流体具有的动能mg ( z Nhomakorabea z1 )
gdQdt( z2 z1 )
根据功能原理:外力(重力除外)对流体所做的功等 于该流段机械能的变化量,有:
( p1 p2 )dQdt gdQdt ( Z 2 Z1 )
dQdt
2
2 ( u2 u12 )
第四节 恒定元流能量方程 三 方程推导
p1 1 1` u1dt 2 2` u2dt p2 0
u2 dt
p1dA1u1dt
p2dA2 u2dt
( p1 p2 )dQdt
第四节 恒定元流能量方程 三 方程推导
p1 1 1` u1dt 2 2` u2dt p2 0
流体力学泵与风机
dA1
dA2 z2
z1
0
dt时间内,1-1`和2-2`断面间的流体质量为 m1-1` m2-2`:
u1 dA1dt u2 dA2dt dQdt
Q3 Q 0.8m3 / s 例 如图所示,氨气压缩机用直径d1=76.2mm的管子吸入密度 ρ1=4kg/m3的氨气,经压缩后,由直径d2=38.1mm的管子以的速度 v2=10m/s流出,此时密度增至ρ2=20kg/m3.求(1)质量流量; (2)流入流速v1. 解 G Q 2v2 A2 20 10 (0.0381) 2 0.228kg / s 4 1v1 A1 2v2 A2 0.228kg / s
v1 2v1 16.32m / s v2 2v2 4.08m / s v3 2v3 1.02m / s
流量减少1/2,流速也减少1/2 v1 v1 / 2 4.08m / s v2 v2 / 2 1.02m / s v3 v3 / 2 0.255m / s
第三节 连续性方程
连续性方程推导 dA1 u1
dM1 1u1dA1dt dM 2 2u2 dA2 dt
流体力学泵与风机
dA2 u2
dM1 dM 2
1u1dA1dt 2u2dA2dt
u1dA1 u2 dA2
A2
1u1dA1 2u2 dA2
u1 A1 u2 A2
u x u x ( x, y, z, t ) u y u y ( x , y, z , t ) uz uz ( x , y , z , t ) p p( x , y , z , t )