2.8函数的图象及其变换(作业)
《2.8第八节 函数的图象》 学案

学习过程一、课堂导入从图象可知:在横轴上任取t的一个值,过横轴上这个值的对应点作横轴的垂线,交图象于一点,再过图象上这个点作纵轴的垂线,所得垂足对应的实数便是该时刻的对应气温.所有满足这种条件的点的集合,便构成了该函数的图象.二、复习预习1.指数函数的图像与性质2.对数函数的图像和性质三、知识讲解考点1 利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.考点2 利用图象变换法作函数的图象(1)平移变换:y =f (x )―――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a );y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b .(2)伸缩变换:y =f (x )1011ωωωω−−−−−−−−→<<,伸长为原来的倍>1,缩短为原来的 y =f (ωx );y =f (x )―――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y =Af (x ). (3)对称变换:y =f (x )―――――→关于x 轴对称 y =-f (x );y =f (x )―――――→关于y 轴对称 y =f (-x );y =f (x )――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |);y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.四、例题精析【例题1】【题干】分别画出下列函数的图象:(1)y=|lg(x-1)|;(2)y=2x+1-1;(3)y=x2-|x|-2.【解析】(1)首先作出y =lg x 的图象C 1,然后将C 1向右平移1个单位,得到y =lg(x -1)的图象C 2,再把C 2在x 轴下方的图象作关于x 轴对称的图象,即为所求图象C 3:y =|lg(x -1)|.如图(1)所示(实线部分).(2)y =2x +1-1的图象可由y =2x 的图象向左平移1个单位,得y =2x +1的图象,再向下平移一个单位得到,如图(2)所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2 x x 2+x -2 x ,其图象如图(3)所示.【例题2】的图象大致为()【题干】(1)(2012·山东高考)函数y=cos 6x2x-2-x(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()【答案】(1)D (2)B【解析】(1)∵y =f (x )=cos 6x 2x -2-x ,∴f (-x )=-6x 2-x -2x =-f (x ).∴f (x )是奇函数,其图象关于原点对称,排除选项A ;当x 从正方向趋近0时,y =f (x )=cos 6x 2x -2-x 趋近+∞,排除选项B ;当x 趋近+∞时,y =f (x )=cos 6x 2x -2-x 趋近0,排除选项C.(2)法一:由y =f (x )的图象知f (x )=⎩⎨⎧ x x ,x 当x ∈[0,2]时,2-x ∈[0,2],所以 f (2-x )=⎩⎪⎨⎪⎧ x ,2-x x ,故y =-f (2-x )=⎩⎪⎨⎪⎧ -x ,x -x 图象应为B.法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.【例题3】【题干】(2012·天津高考)已知函数y=|x2-1|x-1的图象与函数y=kx-2的图象恰有两个交点,则实数k的取值范围是________.【答案】(0,1)∪(1,4)【解析】先去掉绝对值符号,在同一直角坐标系中作出函数的图象,数形结合求解.根据绝对值的意义,y=|x2-1|x-1=⎩⎪⎨⎪⎧x+x>1或x<-,-x--1≤x在直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知,当0<k<1或1<k<4时有两个交点.四、课堂运用【基础】1.函数y =⎩⎪⎨⎪⎧x 2x ,2x -x 的图象大致是( )解析:选B当x<0时,函数的图象是抛物线;当x≥0时,只需把y=2x的图象在y轴右侧的部分向下平移1个单位即可,故大致图象为B.2.(2013·太原模拟)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则函数f(x)的大致图象为()3.已知函数f (x )的图象向左平移1个单位长度后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >bB .c >b >aC .a >c >bD .b >a >c【巩固】4.函数f (x )=⎩⎨⎧ ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =________.5.已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象交点的个数为________.【拔高】6.作出下列函数的图象.(1)y=|x-2|(x+1);(2)y=|x2-2|x|-3|.7.当x∈(1,2)时,不等式(x-1)2<log a x恒成立,求实数a的取值范围.解:设f(x)=(x-1)2,g(x)=log a x,在同一直角坐标系中画出f(x)与g(x)的图象,要使x∈(1,2)时,不等式(x-1)2<log a x恒成立,只需函数f(x)的图象在g(x)的图象下方即可.当0<a<1时,由两函数的图象知,显然不成立;当a>1时,如图,使x∈(1,2)时,不等式(x-1)2<log a x恒成立,只需f(2)≤g(2),即(2-1)2≤log a2,解得1<a≤2.综上可知,1<a≤2.课程小结1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.2.一个函数的图象关于原点(y轴)对称与两个函数的图象关于原点(y轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.21 / 21。
函数图像变换(整理)

函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
函数的图像及其变换(完整版)

函数的图像及其变换(完整版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( )A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域;(2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x=,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y;③21xy =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI常规函数图像有:指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
函数图象变换

函数图象变换1、平移变换2、对称变换①y=f(-x)与y=f(x)关于y轴对称;②y=-f(x)与y=f(x)关于x轴对称;③y=-f(-x)与y=f(x)关于原点对称;④y=f-1(x)与y=f(x)关于直线y=x对称;⑤y=|f(x)|的图象可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.⑥y=f(|x|)的图象:可将y=f(x),x≥0的部分作出,再利用偶函数关于y轴的对称性.三、伸缩变换①y=Af(x)(A>0)的图象,可将y=f(x)图象上每一点的纵坐标伸(A>1)缩(0<A<1)到原来的A倍,横坐标不变而得到.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每一点的横坐标伸(0<a<1)缩(a>1)到原来的,纵坐标不变而得到.三、初等函数及图象(大致图象)【高考试题剖析】1.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是( )【答案】A2.若函数f(x-1)=x2-2x+3(x≤1)则函数f-1(x)的草图是( )【解析】f(x-1)=(x-1)2+2 ①f(x)=x2+2 ②又∵①式中x≤1,∴x-1≤0,故②式中函数自变量x≤0,由②式得:x=-,即f-1(x)=- (x≥2).【答案】C3.已知函数f(x)=ax3+bx2+cx+d的图象如图2—6,则( )A.b∈(-∞,0)B.b∈(0,1)C.b∈(1,2)D.b∈(2,+∞)【解析】由题知f(x)=0有三个根0,1,2.∴f(x)=ax3+bx2+cx+d=ax(x-1)(x-2)=ax3-3ax2+2ax.∴b=-3a,∵a>0,∴b<0.【答案】A4.若函数y=f(x)的图象过点(1,0),则它的反函数的图象必经过点_____.【解析】点(1,0)关于直线y=x的对称点是(0,1).【答案】(0,1)5.要得到y=lg(3-x)的图象,只需作y=lgx关于_____轴对称的图象,再向_____平移3个单位而得到.【解析】由y=lgx的图象关于y轴对称得y=lg(-x)的图象,要得y=lg(3-x)即y=lg[-(x-3)]的图象,需将y=lg(-x)的图象向右平移3个单位.【答案】y 右【典型例题精讲】[例1]已知y=f(x)的图象如图2—7所示,则下列式子中能作为f(x)的解析式是( )A.B.x2-2|x|+1C.|x2-1|D.【解析】当f(x)=时,其图象恰好是上图.【答案】A[例2]画出函数y=lg|x+1|的图象.【解】y=lg|x+1|.[例3]要将函数y=的图象通过平移变换得到y=的图象,需经过怎样的变换?【解】y=-1,先沿x轴方向向左平移1个单位,再沿y轴方向向上平移1个单位,即可得到y=的图象.[例4]方程kx=有两个不相等的实根,求实数k的取值范围.【解】设y1=kx ①y2= ②方程①表示过原点的直线,方程②表示半圆,其圆心(2,0),半径为1,如图2—9.易知当OA与半圆相切时, ,故当0≤k<时,直线与半圆有两个交点,即0≤k<时,原方程有两个不相等的实根.[例5]作函数f(x)=x+的图象.【分析】f(x)=x+不能由已知函数图象变换得到,故需对函数f(x)的性质进行研究.【解】函数的定义域是(-∞,0)∪(0,+∞),∵f(-x)=-f(x),∴f(x)是(-∞,0)∪(0,+∞)上的奇函数,又|f(x)|=|x+|=|x|+≥2,当且仅当|x|=1时等号成立,∴当x>0时y≥2;当x<0时,y≤-2;当x∈(0,1)时函数为减函数,且急剧递减;当x∈[1,+∞)时函数为增函数,且缓慢递增,又x≠0,y≠0,∴图象与坐标轴无交点,且y轴是渐近线,作出第一象限的函数的图象,再利用对称性可得函数在定义域上的图象,如图2—10所示.【评述】(1)熟悉各种基本函数图的“原型”是函数作图的一项基本功;先研究函数的性质,再利用性质作图则能减少作图的盲目性,提高图象的准确性.(2)与图象有关的“辅助线”要用虚线作,以起到定形、定性、定位、定量的作用.【综合能力训练】1.f(x)是定义在区间[-c,c]上的奇函数,其图象如图所示.令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是( )A.若a<0,则函数g(x)的图象关于原点对称B.若a=-1,-2<b<0,则方程g(x)=0有大于2的实根C.若a≠0,b=2,则方程g(x)=0有两个实根D.若a≥1,b<2,则方程g(x)=0有三个实根【解析】将f(x)图象上每点的纵坐标变为原来的a倍,横坐标不变,再将所得图象向上(b>0)或向下(b<0)平移|b|个单位,得g(x)=af(x)+b的图象.【答案】B2.(2007.全国Ⅱ)把函数y=ex的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)= ( )(A)e x-3+2 (B)e x+3-2 (C)e x-2+3 (D)e x+2-3【答案】C3.(2008·菏泽模拟)如图为函数y=m+的图象,其中m,n为常数,则下列结论正确的是 ( )(A)m<0,n>1 (B)m>O,n>l(C)m>O,0<n<1 (D)m<0,0<n<1【答案】D4.(2008.安庆模拟)函数y=e-|x-1|的图象大致是( )【答案】D5.在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95 B.91 C.88D.75【解析】画出图象,补形做出长方形AOBC,共有整点数11×16=176,而六点(0,10),(3,8),(6,6),(9,4),(12,2),(15,0)在长方形的对角线上,所以符合题意的点数为(176+6)×=91.【答案】B6.将函数y=logx的图象沿x轴方向向右平移一个单位,得到图象C,图象C1与C关于原点对称,图象C2与C1关于直线y=x对称,那么C2对应的函数解析式是_____.【解析】C:y=log(x-1);由-y=log(-x-1)得C1:y=log2(-x-1);求C1的反函数得y=-1-2x.【答案】y=-1-2x7.若函数y=|-x2+4x-3|的图象C与直线y=kx相交于点M(2,1),那么曲线C与该直线有 个交点.【解析】(数形结合法)作y=|-x2+4x-3|的图象,知其顶点在M(2,1).过原点与点M(2,1)作直线y=kx,如图.∴曲线C与直线y=kx有四个交点.【答案】48.作函数y=()|x-1|的图象.【解】(1)y=故它在区间[1,+∞)上的图象,可由y=2-x(x≥0)的图象沿x轴方向向右平移1个单位得到;在区间(-∞,1)上的图象,可由y=2x(x<0)的图象沿x轴方向向右平移1个单位得到.9.已知函数y=f(x)(x∈R)满足f(a+x)=f(a-x),求证y=f(x)的图象关于直线x=a对称.【证明】设p(x0,y0)是y=f(x)图象上的任一点,则有y0=f(x0),设点P关于直线x=a的对称点为p′(x′,y′),则有,即 由y0=f(x0)y′=f[a-(a-x′)]=f(x′).即点p′(x′,y′)也在y=f(x)的图象上.∴y=f(x)的图象关于直线x=a对称.【评述】本题的结论应熟记.10.画出函数y=的图象,并利用此图象判定方程=x+a有两个不同的实数解时,实数a所满足的条件.【解】图象是抛物线y2=2x+1在y≥0上的部分.把y=x+a代入y2=2x+1,得(x+a)2=2x+1,即x2+2(a-1)x+a2-1=0,由Δ=0得a=1,此时直线与抛物线相切.又因抛物线顶点是(-,0),可知当直线过点(-,0)时,即a=时直线与抛物线有两交点,故当≤a <1时直线与此抛物线有两个交点,即原方程有两不同实数解.。
【优化方案】2014届高考数学(理科,大纲版)一轮复习配套课件:2.8 函数的图象及变换(共33张PPT)

)
【思路分析】
从奇偶性上,从x,y的变化关系上,
从特殊值上排除.
目录
【解析】
2 f(-x)=-( x-sin x)=-f(x)是奇函数.排除 C. π
当 x→+∞时,y→+∞,排除 B. π π 1 2 当 x= 时,f( )= - <0,排除 A. 4 4 2 2
【答案】
D
【思维总结】
键作用.
本题难点排除A、B,x→+∞对y的变化起关
目录
【误区警示】
在作 x∈[0,2)上的图象时,易出现因为描点太
9 少而导致图象与实际图象偏差过大的错误,如 f(1)= ,而作出 2 的图象却显示 f(1)>5.另外,不注意特殊点(如与 y 轴的交点), 也是导致作图出现错误的常见原因.
目录
跟踪训练 2.(2012· 高考江西卷)如图,|OA|=2(单位:m),|OB|=1(单 位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧
B.若对定义域内的一切x均有f(x+m)=f(m-x),则y=f(x)的
x=m 图象关于直线________对称; (a,b) C.y=f(x)与y=2b-f(2a-x)关于点________中心对称;
目录
③伸缩,主要有:A.y=af(x)(a>0)的图象,可将 y=f(x)图象上 a 每点的纵坐标伸长(a>1 时)或缩短(a<1 时)到原来的___倍; B.y=f(ax)(a>0)的图象,可将 y=f(x)的图象上每点的横坐标
与线段OA延长线交于点C.甲、乙两质点同时从点O出发,甲
先以速率1(单位:m/s)沿线段OB行至点B,再以速率3(单位: m/s)沿圆弧 行至点C后停止;乙以速率2(单位:m/s)沿
高中数学-函数图象变换及经典例题练习

高中数学-函数图象变换1、平移变换(左加右减上加下减):y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h.2、对称变换:y=f(x) 轴x →y= -f(x); y=f(x)轴y →y=f(-x); y=f(x) 原点→y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x);3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到.4、伸缩变换:y=f(x)ω⨯→x y=f(ωx ); y=f(x)ω⨯→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用例1.函数111--=x y 的图象是( ) 答案B例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([21)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A例3、利用函数x x f 2)(=的图象,作出下列各函数的图象:(1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ).A .10个B .9个C .8个D .1个解析:画出两个函数图象可看出交点有10个.答案 A例7.y =x +cos x 的大致图象是( )解析 当x =0时,y =1;当x =π2时,y =π2;当x =-π2时,y =-π2,观察各选项可知B 正确. 例8.函数cos622x xx y -=-的图象大致为( )例9.函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和为( ). A .2 B .4 C .6 D .8解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.如右图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.例10.函数21log 1x y x+=-的图象( ) A . 关于原点对称 B. 关于主线y x =-对称C. 关于y 轴对称D. 关于直线y x =对称解析 设21()log 1x f x x +=-,则21()log 1x f x x --=+=()f x -,所以函数21log 1x y x+=-是奇函数,其图象关于原点对称,故选A.例11. 若方程2a =|a x -1|(a >0,a ≠1)有两个实数解,求实数a 的取值范围.解:当a >1时,函数y =|a x -1|的图象如图①所示,显然直线y =2a 与该图象只有一个交点,故a >1不合适; 当0<a <1时,函数y =|a x -1|的图象如图②所示,要使直线y =2a 与该图象有两个交点,则0<2a <1,即0<a <12.综上所述,实数a 的取值范围为(0,12).函数图像及图像变换练习(带答案)1. 函数)1(||>⋅=a a x x y x 的图象的基本形状是 ( ) 答案A2.方程lg x =sin x 解的个数为( )。
函数的图像及其变换(完整版)

函数的图像及其变换(完整版)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(函数的图像及其变换(完整版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为函数的图像及其变换(完整版)的全部内容。
晴。
九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析

专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
函数图像的变换(周期,平移,对称)

函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
函数的图像变换和例题

难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目. 知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a .)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-aa a a a a a a a a a a g a f∴f (a )<g (a ). ●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是( )2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题 4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m ); (2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点.(1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t ); (2)求函数S =f (t )的最大值,并求出相应的C 点坐标. 6.(★★★★★)已知函数f (x )是y =1102+x-1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ).(1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2, (1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值.8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a29 (0<a <1).参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a>1,C 中a <0,b >1,∴0<b a<1,D 中a <0,0<b <1,∴b a>1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2) F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2) =log 21441log441log)2(122222+++=+++=++x x x x x x x x)1(21111log2->++++=x x x ∵x +1>0,∴F (x )≤41log211)1(21log 22=++⋅+x x =-2当且仅当x +1=11+x ,即x =0时取等号.∴F (x )max =F (0)=-2. 答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C . (2)S =f (m )为减函数. 5.解:(1)依题意,设B (t ,23 t ),A (-t ,23t )(t >0),C (x 0,y 0).∵M 是BC 的中点.∴2x t +=1,2230y t + =m .∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t .∴S =21|AB |·h AB =21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1).(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m ,23m ),若3m >1,即m >3.S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x-1的反函数为f (x )=lg xx +-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lgxx +-11+21+x ,定义域为(-1,1).(2)用定义可证明函数u =xx +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略.y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π. (2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1. (3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-.8.(1)g (x )=x -2+41-x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0).(3)不等式的解集为{x |4<x <29或x >6}.。
函数的图象及变换

一、利用基本函数的图象作图
2.对称变换:
① y=2x+1与y=2(-x)+1关于 y轴 对称
② y=2x+1与y=-(2x+1)关于
③ y= (x) 1 与y=x+1关于
x轴 原点
对称
对称
④y=|x+1|的图象是将y=x+1图象的 X轴上方图象不变,x轴下方翻折上来 ⑤y=|x|+1的图象是将y=x+1图象的 y轴右侧图象不变,y轴左侧关于右侧对称
一、利用基本函数的图象作图
例1:画函数y=|x-1|的图象
解 (法一) 函数y=|x-1|可以写 成分段函数 x-1 x 1 y 1 x x1 y
方法提炼: 去掉绝对值;
分段画出图象.
o1 x
一、利用基本函数的图象作图
例1:画函数y=|x-1|的图象
解:(法二) 方法提炼: y x轴上方图象不变, x轴下方翻折上来。
0
一、利用基本函数的图象作图
例3 画出y= x 2 3x 2 的图象
解:法二
y
方法提炼: x轴上方图象不变, x轴下方翻折上来。
0
x
一、利用基本函数的图象作图
例4 设函数 y=x 2 2 x 1 画出函数的图象.
x 2 2x (x 0) 1 2 解:法一 y=x 2 x 1 2 1 x 2x (x0)
3 只要把反比例函数 y x
的图象
向左平移1个单位,再向上平移2个单位
y 2 -1 0 x 0 x y
二、数形结合思想
2、函数是“数”, 具有抽象运算的特点; 图象是“形”, 具有直观形象变换的特点.
函数图像及其变换

1. f(x)=|x-1|的图象为如下图所示中的 ( )
【解析】 【答案】 B
2. (湖北卷)函数 y e |ln x| | x 1 |的图象大致是
D
( D
)
(D )
3.为了得到函数 y=2 -1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C .向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
图象变换法:常用变换方法有4种,即平移变换、 翻折变换、伸缩变换和对称变换
y f (2a x)
a 对称的解析式为
④函数 y f ( x) 的图象关于点 (a, 0) 对称的解析式为
y f (2a x)
1 ⑤函数 y f ( x) 和 y f ( x) 的图象关于直线 y=x 对称 .
【例1】 作出下列函数的大致图象
(1) y ( x 1) 1 (2) y log 2 ( x ) 1 (3) y 2
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
高中数学课件 2-8函数的图象及图象变换(3课时)

【解题要点】 作函数图象→分析图象位置关系→由图 象得出相关结论.
x
考点4 图象变换原理的应用 例6 将函数y=f(x)的图象向右平移1 个单位,再将图象上各点的横坐标缩短 到原来的一半,然后将图象向上平移2个 2 x 1 单位,得到函数 y 3 4 的图象,求函 数f(x)的解析式.
图象分别对应曲线C1,C2和 , 则( B ) y A. 0<λ 1<λ 2 C2 B. 0<λ 2<λ 1 C1 C. 1<λ 2 < 0 λ D.λ 2<λ 1 < 0
O x
【解题要点】 从位置关系中发掘数量关系→将图形语 言转化为数量关系.
考点3 函数图象的应用 2 例4 已知函数 f ( x) | x 4 x 3 |. (1)求f(x)的单调区间; (2)若关于x的方程f(x)=mx有4个不 等实根,求m的取值范围. 递增区间是(1,2),(3,+∞), 递减区间是(-∞,1),(2,3).
3.将函数y=f(x)的图象在y轴右侧的 部分翻折到y轴左侧,并保留y轴右侧的 图象,即得y=f(|x|)的图象. 4.函数y=f(x)的图象关于直线x=a 对称 f(a+x)=f(a-x).
5.函数y=f(x)的图象关于点(a,b) 对称 f(a+x)+f(a-x)=2b.
考点分析
考点1 作函数的图象 例1 作出下列函数的大致图象: (1)y=|x+1|―|2x―1|; (2)y=|log2(x+1)|; (3) y 2 3 x . 【解题要点】 对函数式变形→选取基本函数→设计变 换次序→按变换原理作图.
考点5 函数图象的对称性问题 例8 确定函数 f ( x) ( x 1) x 2 的 图象的对称中心. 点(1,3)
2.8 函数的图像及其变换

按Esc键退出
【例3-2】 当x∈(1,2)时,不等式(x-1)2<logax恒成立,求实数a的取值范围. 解:设f(x)=(x-1)2,g(x)=logax, 在同一直角坐标系中画出f(x)与g(x)的图像, 要使x∈(1,2)时,不等式(x-1)2<logax恒成立,只需函数f(x)的图像在g(x)
(2)因y=1+ ,先作出y= 的图象,将其图象向右平移一个单位,再向
3 x 1
返回目录
按Esc键退出
1 1 (3)作出y= 的图象,保留y= 图象中x≥0的部分,加上y= 2 2
x
x
1 的 2
x
1 图象中x>0部分关于y轴的对称部分,即得y= 的图象,如图实线部 2
一、作函数的图像
【例1】 作出下列函数的图像.
(1)y=2x+2; (2)y= ; (3)y= ; (4)y=|log2x-1|.
返回目录
按Esc键退出
解:(1)将y=2x的图象向左平移2个单位.图象如图.
返回目录
按Esc键退出
3 x x2 上平移一个单位,即得y= 的图象,如图. x 1
找到基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对
变换单位及解析式的影响.
返回目录
按Esc键退出
(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少
量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶
性等性质讨论.
提醒:对于左、右平移变换,往往容易出错,在实际判断中可熟记口诀:
).
返回目录
按Esc键退出
答案:C到函数y=3× 的图象,可以把函数y= 的图象向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又因为 P 点关于 x=m的对称点为 P',则 P'的坐标为(2m-x ,y ).
00
由已知 f(m+x)=f(m-x),得
f(2m-x0)=f[m+(m-x0)]=f[m-(m-x0)]=f(x )=y0, 0
即 P'(2m-x ,y )在 y=f(x)的图象上.
00
所以 y=f(x)的图象关于直线 x=m对称.
5.函数 y=2|x|的定义域为[a,b],值域为[1,16],当 a 变动时,函数 b=g(a)的图象可以是( ).
6.(2011广东惠州一模)如图,正方形 ABCD的顶点 A,B,顶点 C,D位于 第一象限,直线 l:x=t(0≤t≤)将正方形 ABCD分成两部分,记位于直 线 l 左侧阴影部分的面积为 f(t),则函数 s=f(t)的图象大致是 ( ).
(2)函数 y=log |ax-1|的图象的对称轴是 x=2,
2
由(1)可知 f(2+x)=f(2-x). 所以 log |a(x+2)-1|
2
=log |a(2-x)-1|,
2
即|a(x+2)-1| =|a(2-x)-1|(a≠0), 所以 a(x+2)-1=a(2-x)-1或 a(x+2)-1=1-a(2-x), 解得 a=0(舍)或 a=, 即非零实数 a 的值为 a=. 11.解:由(1)知,-3≤x≤1,-2≤x+1≤2,故 f(x)的定义域是[2,2]. 由(3)知,f(x)在[-2,0)上是增函数.
12.设函数 f(x)=x+的图象为 C ,C 关于点 A(2,1)对称的图象为 C ,C
11
22
对应的函数为 g(x).
(1)求 g(x)的解析式;
(2)若直线 y=m与 C 只有一个交点,求 m 的值和交点坐标.
2பைடு நூலகம்
##
参考答案
一、选择题 1.B 2.C 3.B 4.B 5.B 6.C 解析:当直线 l:x=t(0≤t≤)从左向右移动的过程中,直线
3.(2012湖北荆州中学二检)已知函数 f(x)=log (x+b)的图象如图所 a
示,其中 a,b为常数,则函数 g(x)=ax+b的大致图象是( ).
4.如果函数 f(x)=ax+b-1(a>0且 a≠1)的图象经过第一、二、四象 限,不经过第三象限,那么一定有( ). A.0<a<1且 b>0 B.0<a<1且 0<b<1 C.a>1且 b<0 D.a>1且 b>0
限时作业 11 函数的图象及其变换 一、选择题 1.已知函数 y=f(x)与函数 y=lg的图象关于直线 y=x对称,则函数 y=f(x-2)的解析式为( ).
A.y=10x-2-2 B.y=10x-1-2 C.y=10x-2 D.y=10x-1 2.(2012湖北省重点中学高三 10月联考)若 a<b,函数 y=(x-a)2(x-b) 的图象可能是( ).
∴g(x)=x-2+. (2)由 消去 y 得 x2-(m+6)x+4m+9=0, Δ=[-(m+6)]2-4(4m+9), ∵直线 y=m与 C 只有一个交点,
2
∴Δ=0,解得 m=0或 m=4.
当 m=0时,经检验合理,交点为(3,0); 当 m=4时,经检验合理,交点为(5,4).
则 u'(x)=3x2-.
令 u'(x)=0,得 x=. 当 0<x<时,u'(x)<0,u(x)单调递减;
当 x>时,u'(x)>0,u(x)单调递增.
所以,当 x=时,u(x)取极小值,
即 u(x)在(0,+∞)上的最小值.
∴|MN|=
=(1+ln 3).
三、解答题 10.解:(1)设 P(x0,y0)是 y=f(x)图象上任意一点,则 y0=f(x ),
.
三、解答题 10.(1)已知函数 y=f(x)的定义域为 R,且当 x∈R 时,f(m+x)=f(m-x) 恒成立,求证:y=f(x)的图象关于直线 x=m对称; (2)若函数 y=log |ax-1|的图象的对称轴是 x=2,求非零实数 a 的值.
2
11.已知函数 y=f(x)同时满足以下五个条件: (1)f(x+1)的定义域是[-3,1]; (2)f(x)是奇函数; (3)在[-2,0)上,f'(x)>0; (4)f(-1)=0; (5)f(x)既有最大值又有最小值. 请画出函数 y=f(x)的一个图象,并写出相应于这个图象的函数解析 式.
综合(2)和(4)知,f(x)在(0,2]上也是增函数,且 f(1)=f(1)=0,f(0)=0.
故函数 y=f(x)的一个图象如上图所示,与之相应的函数解析式 是
f(x)= 12.解:(1)设点 P(x,y)是 C 上的任意一点,则 P(x,y)关于点
2
A(2,1)对称的点为 P'(4-x,2-y),代入 f(x)=x+, 可得 2-y=4-x+, 即 y=x-2+
l 左侧阴影部分的面积 f(t)随 l 的单位移动距离的改变量开始逐渐
增大,当到达中点 t=时,面积 f(t)随 l 的单位移动距离的改变量最
大,而后面积 f(t)随 l 的单位移动距离的改变量逐渐减小,故选 C.
二、填空题 7.a<1或 a=
8.y=log3
9.(1+ln 3) 解析:设 u(x)=x3-ln x,
二、填空题 7.直线 y=1与曲线 y=x2-|x|+a有 2 个交点,则 a 的取值范围
是
.
8.把函数 y=log (x-1)的图象向右平移个单位,再把横坐标缩小为原
3
来的倍,所得图象的函数解析式是
.
9.(2011山东淄博一模)设动直线 x=m与函数 f(x)=x3,g(x)=ln x 的
图象分别交于点 M,N,则|MN|的最小值为