专题6.1 统计与概率(解析版)
高考数学中的概率与统计题详解
高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。
概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。
在高考中,概率与统计题往往需要运用一定的公式和推理能力来解答。
下面将详细介绍高考中常见的概率与统计题,并提供相关的解题技巧。
一、概率题概率题常见于高考数学中,考察学生对随机事件和概率的理解与计算能力。
下面将从基本定义、计算公式和常见类型等方面对概率题进行详解。
1.基本定义概率是事件发生的可能性大小的度量,用一个介于0和1之间的数表示。
当事件不可能发生时,概率为0;当事件一定发生时,概率为1。
2.计算公式(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。
(2)互斥事件的概率:P(A或B) = P(A) + P(B)。
(3)独立事件的概率:P(A和B) = P(A) × P(B)。
3.常见类型(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。
解题时应根据题目给出的条件,利用计算公式进行计算。
(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个条件的组合数。
解题时应根据题目所给条件,使用排列组合公式进行计算。
(3)事件的复合:求两个或多个事件复合后的概率。
解题时应根据题目所给条件,利用计算公式进行计算。
二、统计题统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。
下面将从数据收集与整理、统计指标和抽样调查等方面对统计题进行详解。
1.数据收集与整理统计题要求学生根据给定的数据进行分析和计算。
在实际情境中,常见的数据收集方法有观察、问卷调查、实验等。
解题时应根据题目所给的数据,进行整理和清晰的分类。
2.统计指标统计指标是对统计数据进行度量和描述的指标。
常见的统计指标有均值、中位数、众数、标准差等。
解题时应根据题目所要求的统计指标,运用相应的公式进行计算。
高考数学专题2024概率与统计历年题目解析
高考数学专题2024概率与统计历年题目解析概率与统计作为高考数学的重要部分,占据了相当大的比重。
掌握概率与统计的相关知识对于考生来说是至关重要的。
本文将通过对2024年高考概率与统计专题历年题目的解析,帮助考生更好地理解和掌握这一部分知识点。
一、选择题解析选择题是高考中常见的题型,对于考生来说,熟练掌握解题技巧是很重要的。
题目1:某班有30名学生,其中男生占总人数的40%。
已知从该班随机抽取一名学生,他是男生的概率是多少?解析:根据题目可知男生的人数为30 × 40% = 12人,所以男生的概率是12/30 = 2/5。
题目2:某工厂生产零件,每天生产150个。
已知每个零件的质量标准为99%,A同学随机抽样抽取2个零件,请问这两个零件都合格的概率是多少?解析:每个零件合格的概率为99% × 1/100 = 0.99。
因为是随机抽取,所以这两个零件都合格的概率为0.99 × 0.99 = 0.9801。
二、解答题解析解答题在概率与统计中也占据重要地位,考察学生的综合应用能力和解题能力。
题目3:某校学生的身高服从正态分布,其中男生的平均身高为170cm,标准差为5cm;女生的平均身高为165cm,标准差为4cm。
已知该校男女生比例为2:3,请问在该校随机抽取一个学生,他身高超过175cm的概率是多少?解析:根据题目可知男生的概率为2/5,女生的概率为3/5。
设男生身高超过175cm的概率为p1,女生身高超过175cm的概率为p2。
根据正态分布的性质,可以计算出男生身高超过175cm的概率为0.5 × (1 - p1) = 2/5,女生身高超过175cm的概率为0.5 × (1 - p2) = 3/5。
解方程得到p1 = 1/5,p2 = 2/5,所以在该校随机抽取一个学生,他身高超过175cm的概率为(2/5) × (1/5) + (3/5) × (2/5) = 11/25。
统计与概率全章总结(答案版)
统计与概率全章总结一、知识结构图知识结构图二、知识结构(一)随机抽样 1.总体与个体总体:一般把所考察的对象的某一数值指标的全体构成的集合看作总体; 个体:构成总体的每一个元素作为个体. 2.样本和样本容量样本:从总体中抽出若干个体所组成的集合叫做样本; 样本容量:样本中所含个体的个数叫做样本容量.,t ,∑个层,在每层中用简单随样抽取,t )个个体(二)数据的数字特征1.最值1;反应数据中的极端数据.2.平均数:反映了一组数据的平均水平,与各个数据都相关,定量地反映了数据的集中趋势所处的水平.平均数是频率直方图的平衡点.所以是最重要的统计量,在统计评价中倍受重视。
计算方法:11ni i x x n ==∑,12,,,n ax b ax b ax b +++的平均数为ax b +.3. 中位数与百分位数:①中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;②百分位数:一组数的%((0,100))p p ∈分位数指的是满足下列条件的一个数值:至少有%p 的数据不大于该值,至少有(100)%p -不小于该值.直观意义:一组数据的%p 分位数指的是:将这组数据从小到大的顺序排列后,处于%p 位置的数.按照定义:%p 分位数不唯一,为了追求唯一,特别约定一个计算规则:设一组数按照从小到大排列后为12,,,n x x x ,计算%,i np =如果i 不是整数,设0i 为大于i 的最小整数,取0i x 为%p 分位数;如果i 是整数,取12i i x x ++为%p 分位数.4.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.5. 样本方差:2211()ni i s x x n ==-∑,描述了一组数据围绕平均数波动的大小.数据越分散,方差越大。
注意:(1)12,,,,0n x a x a x a a +++≠其中,的方差仍为2s ,即数据平移不影响方差;(2)12,,,0n kx b kx b kx b k +++≠,其中的方差为22k s ,标准差为ks .6.样本标准差:s =,其直观意义与方差相同。
高中数学的解析概率与统计解析
高中数学的解析概率与统计解析解析概率与统计是高中数学中的重要内容之一,通过对数据的收集和分析,可以帮助我们了解事件的发生规律和结果的概率分布。
本文将围绕解析概率与统计展开论述,从基本概念、解析方法和应用实例三个方面进行介绍。
一、基本概念解析概率与统计的基本概念是研究和描述随机事件和现象的数量关系。
其中,概率是指某个事件发生的可能性大小,以0到1之间的数值表示;而统计则是通过数据的收集和分析,研究事件的规律性和总体特征。
解析概率与统计的基本原理是建立在大量实验和数据样本的基础上,通过概率论和数理统计的方法,对事件进行解析和推断。
二、解析方法1. 随机事件的概率分析随机事件是指在特定条件下的一次试验中,可能发生或不发生的事件。
在解析概率与统计中,我们需要确定事件发生的概率大小。
常用方法包括古典概型、几何概型、四则概率和条件概率等。
以掷骰子为例,古典概型是指对于每个可能结果而言,它们发生的概率相等。
而几何概型则是通过图形的面积或长度来确定概率。
四则概率则是指通过求事件发生的可能数和总的样本空间数的比值来计算。
条件概率则是在已知一定条件下,事件发生的概率。
2. 统计分析方法统计分析是解析概率与统计的重要环节,主要通过数据的收集和分析,获取事件的规律性和总体特征。
常见的统计分析方法包括频数分布、统计图表和中心位置度量等。
频数分布是指将数据按照一定的间隔或组别进行分类,并统计每个类别中的频数。
统计图表则是通过图形的可视化方式展示数据的分布规律,例如直方图、饼图和散点图等。
中心位置度量包括平均数、中位数和众数等,用于反映数据集中趋势和集中程度。
三、应用实例解析概率与统计在现实生活和学科中都有广泛的应用。
例如,在生物学中,通过解析概率与统计可以研究基因的遗传规律和种群的变异情况;在经济学中,可以通过统计数据进行市场分析和预测;在医学中,可以通过统计方法进行药效评价和疾病预防。
此外,在高考数学中,解析概率与统计也是常见的考点之一。
专题六 概率与统计问题专题精讲课件 理 新人教A版课件
分别参加 2 次、3 次、4 次考试的概率.
高考题型突破
题型一
求事件的概率
【例 1】 某项专业技术认证考试按科目 A 和科目 B 依次进行,
思只维有启当迪科目准A确成地绩分合析格事时件,类才型可,继正续确参地加运科用目概B率的公考式试,.是已解决 这知类每问个题科的目关只键允.许有一次补考机会,两个科目成绩均合格方
数学 R A(理)
专题六 高考中的概率 与统计问题
第十二章 概率、随机变量及其分布
考点自测
题号
1 2 3 4 5
答案 C
C
A
C 3 5
自我检测 查缺补漏
解析
高考题型突破
题型一
求事件的概率
【例 1】 某项专业技术认证考试按科目 A 和科目 B 依次进行,
只有当科目 A 成绩合格时,才可继续参加科目 B 的考试.已
高考题型突破
题型二
求离散型随机变量的均值与方差
【例 2】 李先生家在 H 小区,他在 C 科技园
区工作,从家开车到公司上班有 L1,L2 两 思条维路启线迪(如图走),L1路或线L2L遇1 上到有红灯A1的,次A2数,都A3是三独个立路重口复,试各验路问口题遇, 可到结红合灯二的项概分率布均求为其12;概路率线,L选2 何上条有路B线1,是B2要两利个用路均口值,的各大路小口判 定遇.到注红意灯三的个概转率化依:次为34,35. ((11))转若化走为路P线3(1L)+1,P求3(0)最的多值遇;到 1 次红灯的概率;
(2(2)X)若可走取路0线,1,2L转2,化求为遇独到立红事灯件次的数积X事的件数的学概期率望;; (3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生
(3分)转析化上为述比两较条路E(线X)中、,E(选Y)择的哪大条小路.线上班更好些,并说明理由.
统计和概率(全)(知识点习题与答案解析
统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
概率论与数理统计 6.1 大数定律
EXi , i 1,2, , 则序列X1, , Xn , 服从大数定律,
即对 0,
lim
n
P
1 n
n i 1
Xi
1,
亦即
1
n
n i
Xi
P .
辛钦
辛钦大数定律去掉了方差存在的条件,但增加了iid这一前提, 此定律就是日常生活中经常使用的算术平均值法则的理论依据。
例1:设X1, , Xn , 是i.i.d.r.v.序列,其共同 分布列为
它的一个特例。下面是大数定律的一般形式:
定义:设X1, , Xn , 是一个r.v.序列,若对 0,
均有
lim
n
P
1 n
n i 1
1n X i n i1 EX i
1.
称r.v.序列X1, , Xn , 服从大数定律。
定理3(Khinchin大数定律): 设X1, , Xn , 是i.i.d.r.v.序列,
试验下的客观规律,也为用频率来近似概率提供了理论依据。
注1:如果事件A发生的概率很小,则由贝努利定律,事件A 发生的频率也很小,即事件A很少发生,也就是说,概率很小
的事件在一次试验中几乎是不会发生的,此 即 小概率原理。
注2:这里 X 与p之间任意接近不同于微积分中的极限概念, n
是一种新的收敛概念。
定义:设Y1, ,Yn , ,是r.v.序列,a为常数,若对 0,
lim
n
P ( Yn
a
)
1,
称Yn依概率收敛于a, 记作Yn P a.
贝努利大数定律也可以记为:
X P p. n
定理2 (Chebyshev大数定律) : 设X1, , Xn , 是两两不相关 的r.v.序列,且方差是一致有界的,即存在常数C, 使得
高中数学经典概率与统计(解析版)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
初二数学中的统计与概率问题解析
初二数学中的统计与概率问题解析统计与概率是数学中重要的分支之一,也是初中数学的重点内容之一。
通过统计与概率的学习,我们可以掌握处理数据和分析概率的方法,提高我们的数据处理能力和问题解决能力。
本文将对初二数学中的统计与概率问题进行解析,帮助同学们更好地理解和应用这一知识点。
一、统计问题解析统计是对大量数据进行收集、整理、分析和解读的过程。
在初二数学中,常见的统计问题包括数据的收集和整理、频数统计、众数、中位数、平均数等的计算,以及柱状图、折线图、饼图等图表的绘制和分析。
首先,对于数据的收集和整理,我们需要学会合理地选择数据来源,并进行有效的数据整理。
假设我们要统计班级同学的身高情况,我们可以先制定一个调查表,记录每位同学的身高,并将数据整理成表格或列表,方便后续的计算和分析。
其次,频数统计是统计问题中常见的操作。
频数指的是某一数据在总体中出现的次数。
我们可以通过计算频数来了解某个数据的重要程度或发生的可能性。
例如,我们统计了课堂上同学们在某个数学问题中选取的不同答案,并计算出每个答案的频数,就可以了解答案的分布情况和同学们的认识程度。
接下来,我们还需要掌握计算众数、中位数和平均数的方法。
众数是一组数据中出现次数最多的数值,中位数是一组数据按大小排列后,处于中间位置的数值,平均数是一组数据之和除以数据的个数。
通过计算众数、中位数和平均数,我们可以了解数据的集中趋势和分布情况,为问题的进一步分析提供依据。
最后,在统计问题中,图表的绘制和分析也是重要的一环。
柱状图可以直观地展示各个数据的大小和差异;折线图可以展示数据的变化趋势和规律;饼图可以展示不同数据占总体的比例。
通过观察和分析图表,我们可以更好地理解数据的特征和规律,进一步深入研究问题。
二、概率问题解析概率是研究随机事件发生可能性的数学方法,在初二数学中,我们主要学习了事件、样本空间、概率和事件的计算方法。
首先,我们需要理解事件和样本空间的概念。
事件是指我们研究的问题中发生的一种情况,样本空间是指所有可能出现的情况的集合。
初中数学专题复习——统计与概率(附带答案及详细解析考点解读)
初中数学专题复习——统计与概率一、单选题(共18题;共36分)1.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是s2甲=6.4,乙同学的方差是s2乙=8.2,那么这两名同学跳高成绩比较稳定的是()A. 甲B. 乙C. 甲乙一样D. 无法确定2.(2020·鹿邑模拟)在四张大小、材质完全相同的卡片上写有“翼、装、飞、行”四个字,将四张卡片放置于暗箱内摇匀后先后随机抽取两张,则两张卡片上的汉字恰为“飞”,“行”二字的概率是()A. 18B. 16C. 14D. 123.(2019九上·乐亭期中)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A. 平均数B. 中位数C. 众数D. 方差4.(2017·海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A. 15,14B. 15,15C. 16,14D. 16,155.(2018·万全模拟)下列说法中,正确的是()A. 检测我市正在销售的酸奶的质量,应该采用抽样调查的方式B. 在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D. “打开电视机,正在播放少儿节目”是必然事件6.下列事件是必然事件的为()A. 明天太阳从西方升起B. 掷一枚硬币,正面朝上C. 打开电视机,正在播放“河池新闻”D. 任意﹣个三角形,它的内角和等于180°7.(2018九上·东台月考)盒子中装有2个红球和4个绿球,每个球除颜色外完全相同,从盒子中任意摸出一个球,是绿球的概率是( )A. 14B. 13C. 23D. 128.(2017七下·西华期末)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是( ).A. ①B. ②C. ③D. ④ 9.(2018·辽阳)学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:则这些学生得分的中位数是( )A. 89B. 91C. 93D. 96 10.(2019七上·高州期末)下列调查中,适合采用抽样调查的是( )A. 对乘坐高铁的乘客进行安检B. 调查本班学生的身高C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查D. 调查一批英雄牌钢笔的使用寿命11.以下问题,不适合用普查的是( )A. 了解一批灯泡的使用寿命B. 中学生参加高考时的体检C. 了解全校学生的课外读书时间D. 旅客上飞机前的安检12.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S 甲2=27,S 乙2=19.6,S 丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( )A. 甲团B. 乙团C. 丙团D. 甲或乙团 13.(2017·乐清模拟)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A. 134石B. 169石C. 338石D. 1365石 14.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( )A. 该班人数最多的身高段的学生数为7人B. 该班身高最高段的学生数为7人C. 该班身高最高段的学生数为20人D. 该班身高低于160.5cm 的学生数为15人 15.(2017八下·钦州期末)数据0,﹣1,6,1,x 的众数为﹣1,则这组数据的方差是( ) A. 2 B. 345 C. √2 D. 26516.(2017八上·西安期末)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性( ).A. 甲的稳定性大B. 乙的稳定性大C. 甲、乙稳定性一样大D. 无法比较17.如图,直线a ∥b ,直线c 与a 、b 都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是A. 35B. 25C. 15D. 2318.(2017八下·大冶期末)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A. 20B. 28C. 30D. 31二、填空题(共16题;共16分)19.学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:则11名队员投进篮框的球数的中位数是________ 个.20.(2020八下·洪泽期中)在整数20200520中,数字“0”出现的频率是________.21.(2012·锦州)已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.22.小亮家上个月支出伙食费用800元,教育费用200元,其他费用500元,本月小亮家这三项费用分别增长了10%,30%和20%,小亮家本月的总费用比上个月增长的百分比是________.23.(2019九下·杭州期中)在2,-2,0三个整数中,任取一个,恰好使分式x+2有意义的概x−2率是________。
中考数学专题知识点题型复习训练及答案解析(经典珍藏版):06统计与概率的基本概念
( 2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结 果叫方差,通常用 s2 来表示,计算公式是:
s2 [( x1 ) 2+( x2 ) 2+… +(xn )2](可简单记忆为“方差等于差方的平均数” )
( 3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为(
)
A . 70 分, 70 分
B. 80 分, 80 分
C. 70 分, 80 分
D . 80 分, 70 分
5.( 2016?成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,
各组的平时成绩的平均数 (单位:分)及方差 s2 如表所示:
较合适的依据应是月销售量的(
)
A .平均数
B .极差数
C.最小值
D .中位数和众数
4.某车间需加工一批零件,车间 20 名工人每天加工零件数如表所示:
每天加工零件
4
5
6
7
8
数
人数
3
6
5
4
2
每天加工零件数的中位数和众数为(
备考中考一轮复习点对点必考题型
题型 6 统计与概率基本概念 考点解析
1.全面调查与抽样调查 1、统计调查的方法有全面调查(即普查)和抽样调查. 2、全面调查与抽样调查的优缺点: ① 全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某 些调查不宜用全面调查. ② 抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系 到对总体估计的准确程度. 3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但 花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如: 个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使 用寿命就只能采取抽样调查, 而不能将整批灯泡全部用于实验. 其三,有些被调查的对象无法进行普查. 如: 某一天,全国人均讲话的次数,便无法进行普查. 2.条形统计图 ( 1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把 这些直条排列起来. ( 2)特点:从条形图可以很容易看出数据的大小,便于比较. ( 3)制作条形图的一般步骤: ① 根据图纸的大小,画出两条互相垂直的射线. ② 在水平射线上,适当分配条形的位置,确定直条的宽度和间隔. ③ 在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少. ④ 按照数据大小,画出长短不同的直条,并注明数量. 3.折线统计图 ( 1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接 起来.以折线的上升或下降来表示统计数量增减变化. ( 2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况. ( 3)绘制折线图的步骤 ① 根据统计资料整理数据.
6专题六统计与概率
专题六统计与概率解题方法技巧1.统计图表的应用当各数据之间彼此是独立的,这时我们可选择条形统计图,它能清楚表示出各部分的具体数目;当给出的数据是占整体的百分比情况时,用扇形统计图;当要反映事物的变化时,用折线统计图.应用图表获取信息,可以解决生活中的实际问题.此类题型是中考重点考查题型,解题关键是读懂图或表,从图表中提取有价值的信息解题.例l 某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点).请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?2.概率的计算与应用预测较简单问题中某些事件发生的概率是课程改革后的新增内容,且贴近生活实际,它是与高中数学知识接轨的重要体现,故也是中考的必考内容,概率一般用P表示,必然事件发生的概率为1,即P(必然事件)=1,不可能事件发生的概率为0,即P(不可能事件)=0,如果A为不确定事件,那么0<P(A)<1,用图表示,如图所示.求概率时一般应用树状图或列表法列出所有等可能结果与有关结果,然后利用概率计算公式求概率.评判某项活动是否“合算”,游戏是否“公平”是概率的一个极为重要的应用,同时也是中考题的重要题型,此类题目通常先计算事件的概率,利用概率的大小作出评判并解决问题,例 2 为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.甲先摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分;得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)这个游戏是否公平?请说明理由. 热点试题归类考点1 样本与总体1.某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀.估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )A .50人B .64人C .90人D .96人2.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )A .2013年昆明市九年级学生是总体B .每一名九年级学生是个体C .1000名九年级学生是总体的一个样本D .样本容量是10003.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.4.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A .这1000名考生是总体的一个样本B .近4万名考生是总体C .每位考生的数学成绩是个体D .1000名考生是样本容量 考点2 平均数、众数、中位数1则这组数据的中位数和众数分别是( )A .164和163B .105和163C .105和164D .163和164 2.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( ) A .10,10 B .10,12.5 C .11, D .11,10 3.数据1,2,5,3,5,3,3的中位数是( )A .lB .2C .3D .54.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是( )A .平均数是58B .中位数是58C .极差是40D .众数是605.一组数据:0,1,2,3,3,5,5,10的中位数是()A.B.3 C.D.56.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5A.小时B.小时C.小时D.7小时7太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城27 27 28 28 27 29 28 28 30 30 31该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃8.某选手在青歌赛中的得分如下(单位:分):,,,,,,,则这位选手得分的众数和中位数分别是()A.,B.,99.60 C.,D..9.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22B.24C.25D.2710.种菜能手李大叔种植了一批新品种黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是()A.,20 B.15,5C.,14 D.13,1411.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105. 则这七天空气质量指数的平均数是()A.B.77 C.82 D.12.在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,9413.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表成绩(m)人数 1 2 4 3 3 2 这些运动员跳高成绩的中位数和众数分别是()A.,B.,1.70 C.,D.3,414.在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数是()A.47 B.48 C.D.4915.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数16.数据0,1,1,3,3,4的中位数和平均数分别是()A.2和B.2和2 C.1和2 D.3和217则该校篮球队12名同学身高的众数是(单位:cm)( )A.192 B.188 C.186 D.18018.一组数据2,4,x, 1的平均数为3,则x的值是.19.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.C.6 D.720则孔明射击成绩的中位数是()A.6 B.7 C.8 D.921.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:,,,,,,则这组数据的众数是()A.B.C.D.22.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5 B.6 C.7 D.823.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,9524.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.,3 B.3,4 C.3,D.4,325.某校七年级有5名同学参加射击比赛,成绩分别为7,8,9,10,8(单位:环),则这5名同学成绩的众数是()A .7B .8C .9D .1026.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是( ) A .126,126 B .130,134 C .126,130 D .118,152 27年龄 13 14 15 人数474则该校女子排球队队员的平均年龄是 岁.28.在2013年的体育中考中,某校6名学生的分数分别是27,28,29,28,26,28.这组数据的众数是 .29.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 . 30.杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为1x ,2x 2,则21x x -= 分.杭州市某4所高中最低录取分数线统计表 学校 2011年 2012年 杭州A 中 438 442 杭州B 中 435 442 杭州C 中 435 439 杭州D 中43543931.今年4月20日在雅安市芦山县发生了级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是 元.32.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)4 3 2 1 0 人数24211则这10名学生周末利用网络进行学习的平均时间是 小时.33.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为 序号 项目 1 2 3 4 5 6 笔试成绩/分 85 92 84 90 84 80 面试成绩/分908886908085根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是 分,众数是 分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比; (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.34.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵,将各类的人数绘制成扇形图(如图①)和条形图(如图②),经确认扇形图是正确的,而条形图尚有一处错误. 回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是12nx x x x n+++=;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7; 第三步:45675.54x +++==(棵). ①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.考点3 极差、方差与标准差1.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是236S =甲,230S =乙,则两组成绩的稳定性( ) A .甲组比乙组的成绩稳定 B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定 2.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99. 68环,甲的方差是,乙的方差是0. 21,则下列说法中,正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人成绩的稳定性相同 D .无法确定谁的成绩更稳定3.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为,(2)班成绩的方差为15. 由此可知( ) A .(1)班比(2)班的成绩稳定 B .(2)班比(1)班的成绩稳定 C .两个班的成绩一样稳定 D .无法确定哪班的成绩更稳定4.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的( )A .平均数B .方差C .频数分布D .中位数5则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁6.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为: 16 9 14 11 12 10 16 8 17 19 则这组数据的中位数和极差分别是( )A .13,16B .14,11C .12,11D .13,117.已知:甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,下列结论中正确的是( ) A .甲组数据比乙组数据的波动大 B .乙组数据比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲乙两组数据的波动大小不能比较 8.甲、乙、丙三个旅行团的游客人数都相等且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是 1.4S =2甲,218.8S =乙,225S =丙,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A .甲队B .乙队C .丙队D .哪一个都可以 9.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下: 1.69m x =甲,1.69m x =乙,20.0006S =甲,20.00315S =乙,则这两名运动员中 的成绩更稳定.10.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:,,,,,.(单位:m ),这六次成绩的平均数为,方差为160,如果李刚再跳两次,成绩分别为,,则李刚这8次跳远成绩的方差 (填“变大”、“不变”或“变小”).考点4 统计图(表)1.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确的是()A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72。
2023年新高考重难点汇编重难点:概率与统计(解析版)
新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数。
重难点04概率与统计新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
2023中考九年级数学分类讲解 - 第十四讲 统计与概率(含答案)(全国通用版)
第十四讲统计与概率专项一数据的收集知识清单1. 调查方式总体:所要考察的对象的叫做总体.个体:组成总体的考察对象叫做个体.样本:从总体中抽取的叫做总体的样本.样本容量:样本中所包括的叫做样本容量.考点例析例1以下调查中,最适合采用全面调查的是()A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D.调查春节联欢晚会收视率分析:当调查范围小或准确性要求高时适宜用全面调查,据此逐项判断即可.归纳:选择全面调查还是抽样调查要根据所要考察的对象的特征灵活选用.一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,选择抽样调查.对于精确度要求高的调查,事关重大的调查往往选用全面调查.例2某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A. 总体是该校4000名学生的体重B. 个体是每一个学生C. 样本是抽取的400名学生的体重D. 样本容量是400分析:根据总体、个体、样本、样本容量的定义,首先找出考察的对象,找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.归纳:总体、个体、样本,考察的对象是相同的,不同的是考察范围的大小,样本容量是样本中包含个体的数目,没有单位.跟踪训练1.下列调查中,适宜采用抽样调查的是()A. 调查某班学生的身高情况B. 调查亚运会100 m游泳决赛运动员兴奋剂的使用情况C. 调查某批汽车的抗撞击能力D. 调查一架“歼10”隐形战斗机各零部件的质量2.要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是.专项二统计图(表)知识清单常用统计图的特点考点例析例1 自疫情暴发以来,中共中央文明办发布了关于“文明用餐”的倡议,为积极响应,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们的家庭用餐使用公筷情况进行统计,统计分类为以下四种:A. 完全使用;B. 多数时间使用;C. 偶尔使用;D. 完全不使用.将数据进行整理后,绘制了两幅不完整的统计图(如图1).图1根据以上信息,解答下列问题:(1)本次抽取的学生总人数共有人;(2)补全条形统计图;(3)求扇形统计图中A对应的扇形的圆心角度数.分析:(1)根据B类的人数和所占的百分比,可以求得总人数;(2)根据(1)中的结果,可以计算出D类的人数,从而将条形统计图补充完整;(3)利用360°乘以A类所占百分比可得A类对应扇形的圆心角度数.解:跟踪训练1.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()A. 样本容量为400B. 类型D所对应的扇形的圆心角为36°C. 类型C所占百分比为30%D. 类型B的人数为120人第1题图第3题图2.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.3.为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021-2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成如下不完整的统计图表.课程篮球足球排球乒乓球人数m2130n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数. 第4题图专项三数据的分析知识清单名称定义意义应用(nx x+-考点例析例1 为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4∶3∶3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为分.分析:利用加权平均数计算公式计算总成绩即可.归纳:数据的权能够反映数据的相对重要程度.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等).在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.加权平均数权的表现形式通常有三种:整数、百分数、比.本题权是以比的形式出现.例2 学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A. 16,15B. 11,15C. 8,8.5D. 8,9分析:根据中位数和众数的定义即可得解.归纳:确定中位数之前要将该组数据按照从小到大或从大到小的顺序排列,若数据个数为奇数,则位于最中间的数即为中位数;若数据个数为偶数,则位于最中间的两个数的平均数即为该组数据的中位数.需注意,一组数据的众数有时不止一个.例3 有甲、乙两组数据,如下表所示:甲、乙两组数据的方差分别为2s甲,2s乙,则2s甲2s乙.(填“>”,“<”或“=”)分析:根据方差的定义求解.归纳:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.跟踪训练1.为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A. 众数是82B. 中位数是84C. 方差是84D. 平均数是852.一组数据:1,3,3,2,若添加一个数据3,则不发生变化的统计量是()A. 平均数B. 中位数C. 众数D. 方差3.某中学规定学生的学期体育成绩满分为100分,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80,则小彤这学期的体育成绩是分.4.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.专项四事件的分类知识清单1. 确定事件事先能肯定它一定的事件称为必然事件,必然事件发生的概率是.事先能肯定它一定的事件是不可能事件,不可能事件发生的概率是. 事件和事件都是确定事件.2. 随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.如果A为不确定事件(随机事件),那么< P (A )< .考点例析例 下列事件是必然事件的是( ) A. 没有水分,种子发芽B. 如果a ,b 都是实数,那么a+b=b+aC. 打开电视,正在播广告D. 投掷一枚质地均匀的硬币,正面向上分析:事先能肯定它一定会发生的事件称为必然事件,根据概念得到结论.跟踪训练1. 不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是( )A. 摸出的2个球中至少有1个红球B. 摸出的2个球都是白球C. 摸出的2个球中有1个红球、1个白球D. 摸出的2个球都是红球2.“成语”是中华文化的瑰宝,是中华文化的微缩景观. 下列成语:①“水中捞月”,①“守株待兔”,①“百步穿杨”,①“瓮中捉鳖”.其中,描述的事件是不可能事件的是( ) A. ①B. ①C. ①D. ①3.“一个不透明的袋中装有三个球,分别标有1,2,x 这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x 的值可能是( ) A. 7B. 6C. 5D. 44.“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则( ) A. P=0B. 0<P<1C. P=1D. P>1专项五 概率的计算知识清单1. 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=nm . 2. 在几何图形中求概率时,P (A )=积(长度、体积)全部结果构成的区域面积)的区域面积(长度、体构成事件A .3. 用列表法或画树状图法求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性相等,那么我们可以通过列举试验结果的方法,求出随机事件的概率.(1)列表法:当一次试验涉及两次操作,且可能出现的结果数目较多时,可以采用列表法表示出所有等可能的结果,再根据概率公式计算.(2)画树状图法:当一次试验涉及两次或两次以上操作时,可以采用画树状图法表示出所有等可能的结果,再根据概率公式计算.考点例析例1 如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( ) A.2720 B.278 C. 92 D. 274分析:将正方体分割后共可得27个小正方体. 将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的有8个,利用概率公式计算即可.归纳:求一个简单随机事件的概率,大致分为以下步骤:①分析该事件所有等可能的结果数,记作n ;①在其中找出包含A 的结果数,记作m ;①利用概率公式P (A )=nm计算. 需要注意的是计算结果是一个最简分数或小数.例2 某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A ,B ,C 依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.分析:(1)根据概率公式直接得出答案;(2)根据题意先列表或画树状图列出所有等可能的结果,小辰和小安选择同一种型号免洗洗手液的结果为3,然后根据概率公式求解可得. 解:归纳:列表法或画树状图法可以清晰地表示出随机事件的所有可能出现的结果,解题时可以以事件中的操作次数为依据,选择适当的方法求概率.例1和例2中都涉及两次操作,选列表法或画树状图法均可.若题目中涉及三次操作,为了不重不漏地列出所有可能的结果,宜采用画树状图法.跟踪训练1.骰子各面上的点数分别是1,2,3,4,5,6. 投掷一枚骰子,朝上一面的点数是偶数的概率是( ) A.61 B.41 C. 21D. 12.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .第2题图3.从-2,4,5这3个数中,任取两个数作为点P 的坐标,则点P 在第四象限的概率是 .4.随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”)第4题图请你根据统计图中所提供的信息解答下列问题: (1)获奖总人数为 人,m= ; (2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有1名男生,3名女生)中随机抽取2名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有1名男生和1名女生的概率.5.现有A ,B 两个不透明的袋子,A 袋的4个小球分别标有数字1,2,3,4;B 袋的3个小球分别标有数字1,2,3.(每个袋中的小球除数字外,其余完全相同)(1)从A ,B 两个袋中各随机摸出一个小球,则两个小球上数字相同的概率是 ______;(2)甲、乙两人玩摸球游戏,规则是:甲从A 袋中随机摸出一个小球,乙从B 袋中随机摸出一个小球,若甲、乙两人摸到小球的数字之和为奇数时,则甲胜;否则乙胜,用列表或树状图的方法说明这个规则对甲、乙两人是否公平.专项六 用频率估计概率知识清单一般地,在大量重复试验中,如果事件A 发生的频率nm稳定于某个常数p ,那么可以用这个常数p 估计事件A 发生的概率. 试验次数越多,得到概率的估计值越精确.例“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60 000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15 000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?分析:(1)利用免费发放的景点吉祥物数量除以参与这种游戏的游客人数即可得;(2)设纸箱中白球的数量为x个,先利用频率估计概率可得随机摸出一个球是红球的概率,再利用概率公式列出方程,解方程即可得.解:跟踪训练1.某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A. 0.90B. 0.82C. 0.85D. 0.842.动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有只,现年20岁的这种动物活到25岁的概率是.专项一 数据的收集例1 C 例2 D 1. C 2. ①②③④专项二 统计图(表)例 (1)50(2)D 类人数为50-10-20-16=4(人),补图略. (3)A 对应的扇形的圆心角度数为1050×360°=72°. 1. C 2. 0.33. 解:(1)参加这次调查的学生人数为30÷25%=120(人),则篮球人数m=120×30%=36(人),乒乓球人数n=120-(36+21+30)=33(人). (2)“足球”对应的扇形圆心角度数为360°×21120=63°. 专项三 数据的分析例1 89 例2 C 例3 > 1. C 2. C 3. 83 4. 甲专项四 事件的分类例 B 1. A2. A3. D4. C专项五 概率的计算例1 B 例2 (1)13(2)列表如下:由表可得,共有9种等可能的结果,小辰和小安选择同一种型号免洗洗手液的结果有3种,所以P (小辰和小安选择同一种型号免洗洗手液)=39=31. 1. C2.92 3. 31第11页4. 解:(1)40 30(2)C 等级12人,补图略.(3)画树状图如图所示:由图可得,共有12种等可能的结果,抽取同学中恰有1名男生和1名女生的结果有6种,所以P (抽取同学中恰有1名男生和112. 5. 解:(1)41 (2)画树状图如图所示:由图可得,共有12种等可能的结果,两人摸到小球的数字之和为奇数有6种,两人摸到小球的数字之和为偶数的有6种,所以P (甲获胜)=P (乙获胜)=612=12.所以游戏规则公平. 专项六 用频率估计概率例 (1)15 000÷6000=0.25.(2)设纸箱中白球的数量为x 个.根据题意,得1212x=0.25,解得x=36. 经检验,x=36是所列分式方程的解,且符合题意.答:估计纸箱中白球的数量接近36个.1. B2. 0.8a85。
高考数学中的概率与统计问题解析
高考数学中的概率与统计问题解析在高考数学中,概率与统计是必考内容之一。
因为这两个概念在现实生活中的应用非常广泛,所以掌握好这些知识不仅对考试有好处,而且对日常生活也会有很大帮助。
下面就从概率与统计两个方面,为大家详细解析高考数学中的相关问题。
一、概率概率是研究随机事件发生的可能性的一种数学方法。
在高考数学中,概率主要出现在两个方面,一是基本概念,二是题目应用。
1.1 基本概念在高考数学中,我们首先需要掌握的是概率的基本概念,包括术语的定义、公式的推导等。
下面,我们以事件的概念为例,对概率的基本概念进行解析。
(1)事件的概念事件是指一个特定的结果或者一组结果,它是随机试验中的某种可能结果。
例如,抛硬币出现正面或反面,就是一个随机试验,正面和反面分别是两个可能事件。
(2)样本空间和事件的关系样本空间是指随机试验所有可能结果的集合,而事件是样本空间的子集。
例如,抛硬币出现正面或反面,样本空间就是{正,反},其中正是一个事件,反也是一个事件。
(3)概率的定义概率是指某个事件发生的可能性大小,用一个实数来表示。
在高考数学中,概率的计算公式为:$$ P(A)=\frac{m}{n} $$其中,P(A)表示事件A发生的概率,m表示事件A包含的样本点的个数,n表示样本空间中的样本点的总个数。
(4)概率的性质在高考数学中,概率具有以下几个性质:- 非负性:概率不会小于0。
- 规范性:整个样本空间的概率为1。
- 可加性:当A、B是两个互不相交的事件时,它们的概率之和等于它们的并的概率,即$$ P(A \bigcup B)=P(A)+P(B) $$1.2 题目应用在高考数学中,概率的题目多种多样,基本都是考察学生对于概率概念和解决实际问题的能力。
下面,我们以两道高考真题为例,来看一下如何应用概率解题。
【例题1】已知某城市三天中降雪的概率分别为0.25、0.3、0.3,三天降雪的概率为0.15,那么这个城市至少有一天降雪的概率是多少?解析:这道题考察的是概率的不定性,也就是求至少一个事件发生的概率。
中考数学专题统计与概率(解析版)
(1)本次抽样调查了多少户贫困户?
(2)抽查了多少户C类贫困户?并补全统计图;
(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?
(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了名学生;
求 的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为;
②列表如图所示:
共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为 .
【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.
4.(2019年江西中考)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,
则a=(87+88)÷2=87.5,
b=91,
c= =5.8,
故答案为:87.5,91,5.8;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学精选考点专项突破题集(上海专用)专题6.1 统计与概率考生注意:1.本试卷含三个大题,共25题.一、选择题(每题4分,共24分)1.(2021·上海九年级专题练习)某初级中学要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各20名学生【答案】D【分析】在抽样调查中,样本的选取应注意广泛性和代表性,据此进行分析.【详解】解:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性,而本题中A、B、C三个选项都不符合条件,选择的样本有局限性.故选D.【点睛】本题主要考查了抽样调查的方式.抽样调查抽取的样本要具有代表性,即全体被调查对象都有相等的机会被抽到.2.(2017·上海崇明区·)在一次引体向上的测试中,小强等5位同学引体向上的次数分别为:6,8,9,8,9,那么关于这组数据的说法正确的是( )A.平均数是8.5 B.中位数是8.5 C.众数是8.5 D.众数是8和9【答案】D【分析】根据平均数、中位数、众数的定义判断各选项正误即可.【详解】解:A、平均数6898985++++==,此选项错误;B、6,8,8,9,9,中位数是8,此选项错误;C、6,8,9,8,9,众数是8和9,此选项错误;D、由C的判断知本选项正确;故选D.【点睛】本题考查了平均数、中位数和众数的定义,属于基础题型,熟练掌握平均数、中位数和众数的定义是解题的关键.3.(2020·上海九年级专题练习)下列事件中,必然事件是()A.在体育中考中,小明考了满分B.经过有交通信号灯的路口,遇到红灯C.抛掷两枚正方体骰子,点数和大于1D.四边形的外角和为180度.【答案】C【分析】必然事件:,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件随机事件:可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,【详解】A、在体育中考中,小明考了满分是随机事件;B、经过有交通信号灯的路口,遇到红灯是随机事件;C、抛掷两枚正方体骰子,点数和大于1是必然事件;D、四边形的外角和为180度是不可能事件,故选:C.【点睛】本题考查了必然事件和随机事件的定义,解决本类题目的关键是掌握一定会发生的,和一定不会发生的都是必然事件.4.(2021·上海九年级专题练习)对于数据:6,3,4,7,6,0,9.下列判断中正确的是()A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7【答案】C【分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:034667957++++++=,中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.5.(2021·上海九年级专题练习)下列说法正确的是()A.一组数据的平均数和中位数一定相等B.一组数据的平均数和众数一定相等;C.一组数据的标准差和方差一定不相等D.一组数据的众数一定等于该组数据中的某个数据.【答案】D【分析】根据中位数、众数、平均数和方差的概念对各选项进行判断,选出正确答案即可.【详解】解:A、一组数据的平均数和中位数不一定相等,故本选项错误,不符合题意;B、一组数据的平均数和众数不一定相等,故本选项错误,不符合题意;C、一组数据的标准差和方差有可能相等,故本选项错误,不符合题意;D、一组数据的众数一定等于该组数据中的某个数据,这种说法是正确的,故本选项正确.故选:D.【点睛】本题考查了中位数、众数、平均数和方差等知识点,属于基础题,解答本题的关键是熟练掌握各知识点的概念.6.(2021·上海九年级专题练习)一组数据共有6个正整数,分别为6、7、8、9、10、n,如果这组数据的众数和平均数相同,那么n的值为()A.6 B.7 C.8 D.9【答案】C【分析】将6、7、8、9分别代入以上数据进行验证即可.【详解】解:A、当n=6时,众数为6,66789106+++++≠6,故本选项错误;B、当n=7时,众数为7,67789106+++++≠7,故本选项错误;C、当n=8时,众数为8,67889106+++++=8,故本选项正确;D、当n=9时,众数为9,67899106+++++≠9,故本选项错误;故选:C.【点睛】本题考查了众数、平均数,知道平均数的计算方法和众数的定义是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(2021·上海九年级专题练习)布袋中装有3个红球和3个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 _________.【答案】1 2【分析】直接用红球除以小球总个数即可.【详解】解:一个布袋里装有3个红球和3个白球,则共有6个小球所以摸出一个球摸到红球的概率为:3÷6=12.故答案为12.【点睛】本题主要考查了概率公式,理解并灵活利用概率公式是解答本题的关键.8.(2020·上海静安区·九年级二模)在四张完全相同的卡片上,分别画有:正三角形、正八边形、圆和矩形.如果从中任意抽取1张卡片,那么这张卡片上所画图形既是轴对称图形又是中心对称图形的概率是_____.【答案】3 4【分析】直接利用轴对称图形和中心对称图形的定义得出符合题意的图形个数,进而得出概率.【详解】正三角形、正八边形、圆和矩形中既是轴对称图形又是中心对称图形是正八边形、圆和矩形.所以这张卡片上所画图形既是轴对称图形又是中心对称图形的概率是:34.故答案为:34.【点睛】考查了概率公式,解题关键是正确判断图形的对称性和熟记概率公式.9.(2020·上海松江区·九年级二模)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,掷一次骰子,掷的点数大于2的概率是______.【答案】2 3【分析】先求出点数大于2的数,再根据概率公式求解即可.【详解】解:∵在这6种情况中,掷的点数大于2的有3,4,5,6共4种结果,∴掷的点数大于2的概率为4263=,故答案为:23.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数之比是解答此题的关键.10.(2020·上海市民办新复兴初级中学九年级月考)从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是______.【答案】3 10【分析】先得出随意取出一个数的所有可能的结果,再找出该数为3的倍数的结果,然后利用概率公式计算即可得.【详解】从1到10的十个自然数中,随意取出一个数的所有可能的结果有10种,即1,2,3,4,5,6,7,8,9,10,它们每一种结果的可能性相等,其中,该数为3的倍数的结果有3种,即3,6,9,则该数为3的倍数的概率是310P=,故答案为:310.【点睛】本题考查了简单概率的计算,依据题意,正确列出事件的所有可能的结果是解题关键.11.(2020·上海市静安区实验中学九年级课时练习)在频率分布直方图中,小长方形的面积等于_______,各小长方形的面积和等于_______.【答案】频率 1【分析】根据频率分布图中横纵坐标的意义,横坐标表示组距,纵坐标表示频率组距,即可解答.【详解】解:∵频率分布图中横坐标表示组距,纵坐标表示频率组距,∴频率分布直方图中,小长方形的面积等于频率,各小长方形的面积和等于1.故答案为:频率,1.【点睛】本题考查了频率分布直方图的横纵坐标的意义,是一个基础题.12.(2020·上海市静安区实验中学九年级课时练习)某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.【答案】12【分析】由题意直接根据频数=频率×总数,进而可得答案.【详解】解:由题意可得成绩在81~ 90这个分数段的同学有48×0.25=12(名).故答案为:12.【点睛】本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.13.(2019·上海市继光初级中学九年级三模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为_____.【答案】92%【分析】根据抽取的学生一分钟跳绳的达标率,即可估计该校初三毕业生一分钟跳绳的达标率.【详解】解:∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为503150--×100%=92%,故答案为:92%【点睛】本题考查的是频数分布表的知识,准确读表、从中获取准确的信息是解题的关键,注意用样本估计总体的运用.14.(2019·上海闵行区·中考模拟)一射击运动员在一次射击练习中打出的成绩表中所示:那么这个射击运动员这次成绩的中位数是______.【答案】8.5【分析】根据中位数的定义即可得到结果.【详解】根据表中数据可知:运动员在一次射击比赛中的成绩位于中间的两个数为8、9所以这次成绩的中位数为8+92,即8.5 故答案为:8.5【点睛】本题考查的是中位数,解答本题的关键是熟练掌握将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.15.(2021·上海九年级专题练习)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为__________.【答案】92% 【分析】根据第一组数据,频数÷频率=抽查的学生人数(样本容量),进而算出第四组的频数b ,要求初三毕业生一分钟跳绳次数的达标率即为第三、四组频数和÷样本容量,即可求得答案.【详解】∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为503150--×100%=92%,故答案为92% 【点睛】本题考查了随机抽样调查中样本容量,频数以及频率的求法,牢固掌握即可解题.16.(2021·上海九年级专题练习)若1、x 、2、3的平均数是3,那么这组数据的方差是__________. 【答案】72【分析】根据数据的平均数求出x ,再根据方差的计算公式解答.【详解】由题意得12343x +++=⨯,解得x=6,∴这组数据的方差=22221(13)(63)(23)(33)4⎡⎤⨯-+-+-+-⎣⎦=72,故答案为:72. 【点睛】此题考查已知一组数据的平均数求未知数,方差的计算公式,熟记公式是解题的关键.17.(2021·上海九年级专题练习)某班40名学生右眼视力的检查结果如下表所示,该班学生右眼视力的中位数是__________.【答案】0.7【分析】一组数据奇数个时最中间的数据是该组数据的中位数,一组数据是偶数个时中间两个数的平均数是该组数据的中位数,根据中位数确定的方法解答.【详解】在40个数据中,最中间第19个和20个数据分别是:0.7、0.7,∴该班学生右眼视力的中位数是1(0.70.7)20.7⨯+=。