概率论课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1解答
1. 写出下列随机试验的样本空间Ω:
(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;
(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.
解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为
{|0,1,2,
,100}i
i n n
Ω==.
(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为
{10|0,1,2,}k k Ω=+=,
或写成{10,11,12,
}.Ω=
(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为
{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.
(3)取直角坐标系,则有2
2
{(,)|1}x y x y Ω=+<,若取极坐标系,则有
{(,)|01,02π}ρθρθΩ=≤<≤<.
2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生.
解:(1)ABC 或A B C --或()A B C -;
(2)ABC ABC ABC ;
(3)A
B C 或ABC
ABC
ABC
ABC
ABC
ABC
ABC ;
(4)ABC ABC
ABC .
(5)AB AC BC 或ABC ABC ABC
ABC ;
(6)ABC
ABC
ABC
ABC .
3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:
(1)AB ;(2)A B -;(3)A B -;(4)A B .
解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;
(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}A
B x x x =≤<<≤或.
4. 一个样本空间有三个样本点, 其对应的概率分别为2
2,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以
2241 1.p p p ++-=
解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以
3p =-5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;
(3)()P AB .
解:(1)由()()()()P A
B P A P B P AB =+-得
()()()()030.50.80P AB P A P B P A B =+-=+-=.
(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P A
B =-=-=-=
6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P A
B P A P B P AB =-=-=--+得
()()1P A P B +=,从而()1.P B p =-
7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,
()P BC =0.4且AB =Φ,求()P A B C .
解:
()
()()()()()()()0.40.50.600.20.400.9.
P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=
8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为3
4个.
以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有3
4A 种方法,故
3
4136
().416
A P A ==
2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,
放法总数为211
343C C C 种,故
21134323
9
().416
C C C P A == 3A 表示3个球放入同一个杯子中,共有1
4C 种放法,故
1
4331
().416
C P A ==
9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?
解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为
498748798741
1098790
P ⨯⨯⨯-⨯⨯+⨯⨯=
=
⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.
解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .
(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .
(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217
551010
=
+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .
(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一张小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.
解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,
所以 23
342/1/2P A A =⨯=.
12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.
解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为7
9.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各
有一位乘客离开电梯”.所以包含79
A 个样本点,于是77
9
9
)(A A P =.
13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一