sndway测量仪说明书

合集下载

测量仪器说明书

测量仪器说明书

目录一、GeoPluse浅地层剖面仪操作规程 (1)1、仪器简介 (1)1)功能简介 (1)2)系统配置 (1)2、GeoPluse浅地层剖面仪系统配置连接 (1)1)换能器安装 (1)2)5430A收发机与5210A接收机连接 (2)3)接通电源 (4)3、5210A与5430A收发机功能键简介 (4)1)5430A收发机功能键简介 (5)2)5210A接收机功能键简介 (5)4、数据采集后处理 (7)二、Knudsen 320Ms双频测深仪操作规程 (14)1、仪器简介 (14)1)工作原理 (14)2)功能简介 (14)2、系统配置连接 (15)1)换能器连接 (15)2)Knudsen 320Ms主机与电脑的连接 (15)3)接通电源 (16)3、Knudsen 320Ms菜单结构 (16)4、数据采集后处理 (21)三、TideMaster型潮位仪操作规程 (29)1、仪器硬件设置 (29)1)主要设备仪器 (29)2)操作及安装使用 (31)2、临时验潮站站址选择原则 (31)3、仪器的软件设置 (31)四、GPS操作规程 (41)1、工作原理 (41)2、基准站操作 (41)1)仪器架设 (41)2)用手簿启动基准站 (44)3、Trimble SPS461 GPS罗经设置及使用说明 (46)1)网络连接方法设置461 (46)2)SPS461 信标机定位定向仪液晶屏设置说明 (51)五、海底管线铺设导航、定位技术 (64)1、GPS定位原理 (64)2、海洋定位技术 (65)1)差分GPS技术 (65)2)信标差分技术 (65)3、GPS 控制网及基准站的设立解算 (66)1)基准站的选定和设立 (66)2)GPS控制网的布设、施测和解算 (67)3)测区的坐标七参数的解算 (68)4)利用转化参数转换坐标 (69)4、海底管道施工导航定位技术 (69)1)海底管线临时定位桩施工 (69)2)铺管船法海底管线铺设导航定位 (71)六、海底管线预、后调查方案 (75)1、概述 (75)1)项目概述 (75)2)海底管线状态简介 (75)2、使用检测仪器进行海底管线铺设后调查内容 (76)1)海底管线外观检查 (76)2)经处理后的完工调查 (77)3、后调查作业设备及选用原则 (77)1)测深设备 (77)2)旁侧声纳 (78)3)浅地层剖面仪 (78)4、调查作业施工 (79)1)作业准备 (79)2)计划线布设 (79)3)作业方法和步骤 (80)4)作业注意事项 (82)5、数据采集、记录以及报告 (83)1)数据采集 (83)2)数据处理 (84)6、组织机构与职责 (85)一、GeoPluse浅地层剖面仪操作规程1、仪器简介1)功能简介使用GeoPluse浅地层剖面,得到几十米深的纵断面工程地质图,探明海底泥层的构成、岩性、断层位置以及有无埋设其他管道等,然后将所取得的几条走向资料进行对比,以确定最优的路由。

便携式氨氮测定仪操作手册说明书

便携式氨氮测定仪操作手册说明书

软件版本V3.40-20201127便携式氨氮测定仪操作手册哈维森(苏州)环境科技有限公司Harveson(SuZhou)Environmental Technology Co.,Ltd.目录1 概述 ........................................................................................................... -2 -2 仪器原理与结构........................................................................................ -3 -3 仪器设置.................................................................................................... - 5 -4 仪器操作.................................................................................................... - 6 -5 仪器测量.................................................................................................... - 7 -6 仪器曲线校准............................................................................................ - 8 -7 仪器配置.................................................................................................... - 9 -8 仪器维护.................................................................................................... - 9 -1 概述1.1产品用途及特点MP218便携式氨氮测定仪广泛应用于地表水、地下水、生活污水和工业废水测定,不仅适用于野外以及现场快速水质应急检测,也适用于实验室的水质分析。

胜利仪器 VICTOR 824数字噪音计说明书

胜利仪器 VICTOR 824数字噪音计说明书

VICTOR 824 数字式声级计使用手册VICTOR 824 数字式声级计使用手册一.适用范围:发挥本机坚固耐健康防治及各种坏境噪音测量。

如等各种场合之噪音测量应用。

二.功能说明:15dB1IEC651TYPE2ANS S14TYPE2230~1303A C 4A C 5AC DC X Y 三、规格:a 15dB 94dB@1kHz b)315H z c)50d B在您使用本产品前,请详细阅读说明书,它将教你正确的操作方法,以便能用之优良性能。

此声级计可用来做噪音工程,品质控制,工厂、办公室、交通道路、家庭、音响 此产品是高精度声级计,精度可达±.、本声级计符合国际委员会 和美国国家标准 . 。

、测量范围:分贝。

、和权衡网路选择。

、快速/慢速之反应速率选择,以及(模拟人耳)、(机器噪音)模式的响应特性,使得测量更准确。

、和类比信号输出,可连接至频率分析仪或-轴记录器做数据统计分析。

)精确度:±.(以参考音压为准,)频率响应:.动态范围:~8.5kHz 1l)FAST SLOW()m 12n MAX o)9V p 10q 0RH r 0动态特征:(快速),慢速之反应速率)麦克风:/英寸电容式麦克风)最大值锁定:电源:电池一个)开机自检时间:秒)工作温湿度:~+40℃,10~80%)储存温湿度:~+60℃,10~70%RH s)尺寸:(200×63×30)mm t)重量:约210g (含电池)e)A C f )数位显示:5位数,解析度0.1dB ,取样率为2次/秒g )类比刻画显示:一刻画代表1dB ,取样率为2次/秒h )测量档位:30~80分贝,50~100分贝,60~110分贝,80~130分贝i )过载指示“OVER ”、“UNDER ”符号表示j )AC 信号输出:0.707Vrms /每档刻满刻度,输出阻抗约600Ωk )DC 信号输出:10mV/dB,输出阻抗100Ω频率加权特性:和特性四、校正方法:☆请使用标准音源1、状态设定:频率加权A ,时间加权:快特性(FAST),档位:60110分贝档2、将麦克风头小心插入标准音源(94 dB @1kHz) 1/2英寸的孔内3、打开标准音源(94 dB @1kHz)的电源开关,使用一字批调整电位器是LCD 显示为94.0☆本仪表出厂前已调校好,建议校正周期为一年。

胜利仪器 VICTOR 7502S 智能电缆综合探测仪说明书

胜利仪器 VICTOR 7502S 智能电缆综合探测仪说明书

目录安全须知 (1)一.简介 (2)二.技术规格 (3)三.结构 (6)四.仪器操作 (7)1.接收机基本操作 (7)1.1电缆线路探测界面 (7)1.2电缆识别界面 (7)1.3仪表设置 (8)2.发射机基本操作 (10)2.1管线探测或电缆识别的信号发射 (10)2.2仪表设置 (10)1.直连法 (11)1.1界面介绍 (12)1.2直连接线 (12)1.2.1测量金属管道时的接线方式 (12)1.2.2测量停运电缆时的接线方式 (13)1.2.2.1芯线-大地接法(抗干扰能力强,推荐使用) (13)1.2.2.2护层-大地接法(有潜在问题,不建议使用) (13)1.2.2.3相线-护层接法(接线简单,但难以排除邻线干扰) (14)1.2.2.4相间接法 (15)1.3发射频率的选择 (15)1.4输出功率调节 (16)2.耦合法 (16)2.1界面介绍 (17)2.2卡钳耦合接线 (17)2.3频率选择 (19)2.4输出功率调节 (19)3.感应法 (19)3.1界面介绍 (19)3.2发射机的放置 (20)3.3频率选择 (21)3.4功率调节 (21)4.零线/地线/护层注入法 (21)六.接收机的探测 (23)1.管线探测 (23)1.1设定接收频率 (23)1.2增益调整 (23)1.3选择测量模式 (23)1.4关于导线巡航模式界面的介绍 (24)1.5关于经典定位界面的介绍 (25)1.6关于信号畸变测试模式界面的介绍 (27)1.7电流方向判定 (27)1.8利用声音输出辅助跟踪 (28)2.区域探测 (29)2.1无源探查 (29)2.2放射探查 (29)2.3综合探查 (30)3.精确定位 (30)4.深度测量 (31)4.1自动测量深度和电流 (31)4.2音谷45°法手动深度测量 (33)4.3宽峰80%法手动深度测量 (33)5.电缆识别 (33)5.1信号发射方法的选择 (34)5.2界面介绍 (34)5.3标定 (34)5.4识别过程 (35)5.5多线缆识别 (39)七.线接地故障定位(选配功能) (39)八.其他功能介绍 (45)1.扫频测试 (45)1.1扫频测试界面介绍 (45)1.2现场使用 (45)九.电池管理 (45)十.装箱单 (46)安全须知感谢您购买了本公司的智能电缆综合探测仪,为了更好地使用本产品,请一定:——详细阅读本用户手册,操作者必须完全理解手册说明并能熟练操作本仪表后才能进行实际测试。

迪威仪表工业室状监测仪说明书

迪威仪表工业室状监测仪说明书

VISIT OUR WEBSITES: • • .au58SpECifiCATiONSService: Air or nonconductive, nonexplosive gases.Accuracy: ±0.5% FS, ±0.25% FS (optional).Temperature Limits: 32 to 120°F (0 to 50°C).Humidity Limits:5 to 95% relative humidity (non-condensing).Altitude:6561 ft (2000 meters) max.Thermal Effects: ±0.03% FS/°F (± 0.05% FS/°C).pressure Limits: ±15 in w.c. (±3.7 kPa).Supply Voltage:Order code A (24 VAC): 18 to 32 VAC, 50 to 60 Hz;Order code B (120 VAC): 85 to 265 VAC, 50 to 60 Hz;Main supply voltage fluctuations up to 10%.power Requirements: 5 W.power Consumption (Voltage output): 5 W.Output Signal: Selectable 4 to 20 mA (2-wire), 0 to 5 VDC (3-wire), or 0to 10 VDC (3-wire).Loop Resistance (4 to 20 mA output):0 to 510 Ω.Electrical Connection: Removable terminal block.process Connections: Barbed fittings for 3/16˝ ID tubing.Enclosure Rating:NEMA 1 (IP20) rated for indoor applications.Housing:Fire retardant plastic.Mounting: Mount to standard double gang metal electrical box using 4x4˝ plaster ring adapter.Dimensions:8˝ H x 5.4˝ W x 1.8˝ D (20.3 H x 13.7 W x 4.1 D cm).Weight: 1.5 lb (680 g).Communications:BACnet MSTP ASC optional.Agency Approvals: CE, CSA (RSM only).The Series RSM Room Status Monitor is designed for critical low differential pressure applications that require stringent pressure monitoring and alarming. The Series RSM can be configured to monitor positive or negative pressure in protected environments and hospital isolation rooms per CDC guidelines. The RSM is a complete system that includes a backlit RGB LCD display with a graphic user interface which enables access to pressure,security, calibration, and alarm setup. The touch-screen displays menus that guide the user through setup, as well as setting up password protection. Red and green LED's and a local audible alarm (with time delay feature) alert personnel to system status. The RSM has a NEMA 1 (IP20) rated fire retardant plastic for indoor applications. True differential pressure is displayed with a resolution of 0.001 in w.c. The very low pressure capacitance is dead ended and avoids the potential for cross contamination of the room and reference space as well as eliminating drift that results from fouling of flow based sensors, which by nature have a flow path connecting the protected and reference spaces.Additionally, there are two levels of password protection available as well as optional BACnet MSTP communication.AppLiCATiONS• Hospital isolation wards • Pharmaceutical • Manufacturing • Clean rooms • Research labs • Animal facilities ACCESSORYA-285, Remote Alarm Annunciator with Visible/Audible Alarmand Acknowledge Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$220.00nn Items are net priced and are not subject to any discount.All Models Listed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$999.00n Note:For optional BACnet communication change end from -A to -C for 24 VAC power or from -B to -D for 120 VAC power models.。

大型直行测量仪器用户指南说明书

大型直行测量仪器用户指南说明书

A Method of Calculating Measuring Interval forLarge-Size StraightnessShengzhou Luline 1:Mechanical and Electrical Engineering line 2: Harbin Institute of Technologyline 3: Harbin, Chinaline4:e-mail:*****************Zhongxi Shaoline 1:Mechanical and Electrical Engineering line 2: Harbin Institute of Technologyline 3: Harbin, Chinaline4:e-mail:*********************Weishun Wangline 1:Research and Development Center line 2: Qiqihar Heavy CNC Equipment CORP. LTDline 3: Qiqihar, Chinaline4:e-mail:138****************Hongya Fuline 1:Mechanical and Electrical Engineering line 2: Harbin Institute of Technologyline 3: Harbin, Chinaline4:e-mail:****************.cnAbstract—Accurately straightness measuring has a direct relation to the promotion of the machine precision. In the process of straightness measurement, since the measuring interval has a great impact on the accuracy and efficiency of large-size straightness measurement, and there is no detailed measurement interval calculation method at present, it is necessary to make a deeply research to the measuring interval. This paper gives theoretical derivation to the measuring interval based on the Nyquist sampling theorem. Maximum frequency M and the number of measuring points in one period N are determined based on measurement tolerance, and then calculate the optimal theoretical measuring interval. Finally, measure the straightess of the guide rail under diferent measuring interval including the optimal one. Validate the calculation method through the straightess measuring experiment. The experimental results show that the optimal theoretical measuring interval derived in this paper is suitable, which proves the correctness of the calculating method.Keywords-Straightness; Measuring interval; Large-size; Accuracy; Optimal theoretical measuring interval.I.I NTRODUCTIONStraightness tolerance is one of the geometric tolerances which are specified in the national standard and the international organization for standardization (ISO), and it is mainly used to control the shape error of straight line in plane or space[1]. The accurate measurement and evaluation of the straightness error is very important to eligibility judgment and guarantee of geometry parts with the straightness tolerance requirements[2]. Straightness measurement usually adopts the method of equal intervals measurement to measure the measured object through the measuring interval. There isn’t convincingly theoretical basis about the definition of the measuring interval in the related standard of country and enterprise[3], while the definition mostly depends on the experience of the technician[4][5]. The large measuring interval brings few measuring points,which will result in part of information losing that can cause the shape of the measured object cannot be accurately measured. Conversely, if the measuring interval is too small and the measuring points are too many, it will bring some interference information and useless data, especially for large-size straightness measurement, therefore this will cause low measuring efficiency and untrusted measuring results. So it is necessary to make a deeply theoretical analysis about how to choose the straightness measuring interval of large-size, and to choose suitable measuring interval in measurement of large-size under the premise of measurement requirement,aiming to improve the efficiency of straightness measurement and evaluation and to ensure the credibility of the measurement results.II.T HE DETERMINATION OF MEASURING INTERVAL IN LARGE-SIZE STRAIGHTNESS MEASUREMENTA.Nyquist sampling theoremAt present, the theoretical basis of determining the measuring interval is the Nyquist sampling theorem at home and abroad [6], the content of the theorem is as follows: If the maximum frequency of a continuous single value analog is M and the sampling frequency is 2M, it will completely determine the analog waveform. It means that there must be sampled at least twice times in one changing cycle of the maximum frequency. The sampling period now is presented by Eq.(1)12M∆<(1) where ∆and M respectively stand for sampling period and the maximum frequency of single value analog.International Conference on Chemical, Material and Food Engineering (CMFE-2015)The measuring interval corresponds to the sampling period of the signal in the time domain[7]. By the Nyquist sampling theorem, the number of measuring points in total length K can be determined by the maximum frequency M and the number of sampling in one changing cycle N of the maximum frequency. With the total measurement length L, the measuring interval can be determined as Eq.(2)=L L K MN∆= (2)where L,K,M and N respectively represent total measuring length, theoretical optimum measurement points in total measurement length, the maximum frequency and the number of sampling N in one changing cycle of the maximum frequency(2N >).It is observed that the measuring interval ∆ can be determined by total measurement length L, the maximum frequency M of the signal of the surface shape of the measured guide rail and the number of measuring points N in one changing cycle of the maximum frequency. Figure.1 describes the calculation process of theoretical measuringLarge-size StraightnessB. The determination of the maximum frequency MSince the determination of the maximum frequency of surface profile signal M is related with the measurement tolerance δ, there needs to introduce the measurement tolerance δ. The purpose of straightness measurement is to truly express the measured surface shape. The measurement errors from the measuring method and instrument will cause that the machining errors of the measured object cannot be accurately measured, so we should try to reduce measuring errors which mainly refers to errors from the method. Inpractice, the measurement method of equal interval is often used in straightness measurement, but the uncertainty of measuring interval brings the uncertainty of the position of measuring. The measuring errors from the method are mainly caused by mismatching between the measurement points and the extreme values points of the measured surface profile, and the measurement tolerance δ is used to restrict the measuring errors especially from measuring methods. Literature [8] points out that measurement tolerance δ relate with tolerance grade level and size of the measured object. By selecting the appropriate measurement tolerance δ based on the characteristics of the measured object, we can determine the maximum frequency M of the measured object surface shape of the signal.The error signal of the surface profile in the measured guide rail contains geometrical form error 、 surface waviness and surface roughness. In terms of frequency and amplitude, the low frequency and large amplitude makes the geometrical form error be the major factor affecting the surface appearance. The surface roughness frequency is high and amplitude is small. The frequency and amplitude of the surface wave are between both the above[9]. In the actual measurement, because of the difference of measured surface, the maximum frequency M of surface profile signal is not the same. The specific way to determine the M is to find out the former M order harmonic components of the measured surface profile signal, then compare each order harmonic amplitude with the measurement tolerance δ, find the maximum frequency M whose amplitude is above the measurement tolerance δ.In summary, according to the selected measuring interval determined by the total length L of the measured object and related national standards, measure the object and get the measurement data, and then modify the data through least square method to eliminate the influence of the installation inclination of the measured surface. Process the revised data by Fourier transform and data X(k) after Fourier transform which is described as Eq.(3)21()[()]()j ikn ni X k DFT x i x i eπ−−===∑ (3)where x(i) and n respectively represent the original measurement data and the total number of measuring points. Compare each order harmonic amplitude C i with the measurement tolerance δ, find the harmonic C m whose amplitude is above the measurement tolerance δ and order is the highest, then the maximum frequency is M.C. The determination of the number of meauring points in one cycle NIn the process of straightness measurement,the extreme values ultimately determine the straightness error value. Any one periodic signal can be formed by a number of sinusoidal signals, so we can assume that the measured surface profile is a sine wave, its period is T and its amplitude is a as Figure.2 describes, then we can see B and D is the determinant to straightness error value. As can be seen from Figure.2, thedecrease of the measuring interval will make the measurement points much closer to the extreme values points and then finally decrease the deviation caused by the mismatching between the measurement points and the extreme values points. But the decrease of the measuring interval and the increasing of the measurement points reduce the measurement efficiency and increase the amount of calculation, there is need to discuss the optimum number of Y PositionAssume that the number of measuring points in one changing cycle of the maximum frequency on the measured surface is N, the amplitude of the frequency component is a and its period T=2π,so the measuring interval is 2π/N . The measuring starting point is zero A, and B fall between K and K+1(K=0,1,2……N ), then the difference between K and B ∆Y K. and K and B ∆Y K+1 are determined as Eq.(4) and Eq.(5)sin(2/)Y a a K N K π∆=− (4)sin(2(+1)/)+1Y a a K N K π=−∆ (5) In actual measurement, the position of the measured point is unknown. Assume that the actual positions of the measured points and the measuring point position deviation is △X, then the difference of B value and K and K+1 point measurements are respectively determined as Eq.(6) and Eq.(7) sin((2/N)X)K Y a a K π∆=−+∆ (6) 1sin((2(1)/N)X)K Y a a K π+∆=−++∆ (7) Point B is between point K and point K+1, so when the actual position of measuring point changes, the variation trend of ΔY K and ΔY K+1 is just the opposite, one increases, another reduces. It can be proved that the limitation of measurement error caused by the mismatching between the measurement points and the extreme values points.ΔY K =ΔY K+1, the change of the actual measurement point △X is as Eq.(8) (42)/(2)X N K N π∆=−− (8) Take Eq.(8) into Eq.(6) and Eq.(7), the limit of measurement error near B is as Eq.(9) max (1cos(/N))B Y a π∆=− (9) Similarly, the limit of measurement error near the extreme value point D is as Eq.(10) max (1cos(/N))D Y a π∆=− (10)Therefore, the limit of straightness measurement error ΔY max caused by mismatching between the measurement points and the extreme values points are determined as Eq.(11)max max max2(1cos(/N))B D Y Y Y a π∆=∆+∆=−(11)As can be seen from Eq(11), with the number of measuring points N increasing,limit error of straightness measurement gets smaller. Therefore, as long as we know the amplitude of the maximum frequency of the measured surface signal a , we can get the number of measuring in one cycle of the maximum frequency N with measurement tolerance δ.D. Determination of straightness measuring interval Δ Combine the maximum frequency M and the number of sampling in one changing cycle of the maximum frequency N , we can get the number of measuring points K in the total measuring length which descibes the determination of theoretically optimal measuring points as Eq.(12) =K MN(12) And theoretically optimal measuring interval in total measurement length is determined as Eq.(13)=L L K MN∆= (13)III. E XPERIMENTAL VERIFICATION TO THE CALCULATIONMETHOD FOR MEASURING INTERVAL OF L ARGESTRAIGHTNESS Theoretically optimal measuring interval can be deduced according to the large-size straightness measuring interval calculation method with the original experimental data obtained. Validate the theoretically optimal measuring interval derived in this paper is reasonable, through measuring the straightness by different measuring interval including the optimal one.The measuring object in experiment is straightness within the vertical plane of the 5m guide rail whose accuracy index T is 0.02mm and the measuring instruments is Renishaw XL-80 laser interferometer. In order to eliminate the effect of the tilt of the rail to straightness measurements, use the least squares method to assess the straightness. It is recommended that the measurement tolerance δ in the calculation can be T/5~T/10.Figure.3 Measuring the Straightness of Guide Rail The length of bridgeboard used in straightness measurement are 160mm,500mm,750mm and 1000mm. Figure.3 describes straightness measurement by Renishaw XL-80 laser interferometer. TABLE 1 describes the impact of different measurement tolerance δto the measuring intervals that are derived.TABLE 1 The Impact of Different Measurement Tolerance δ to theMeasuring IntervalsMeasurement tolerance Theoretically optimal measuring interval [mm] δ=T/10 544δ=T/8 544δ=T/6 620δ=T/5 620As can be seen from TABLE 1, the theoretically optimal measuring interval derived under the case of δ=T/10 is 544mm, so the raw data obtained by the 160mm can be used to calculate as true values. TABLE 2 below describes the results of straightness measurement under the case of different measuring intervals by laser interferometer.TABLE 2 Straightness under Different Measuring IntervalsMeasuring interval [mm] Straightness [μm]160 40.922500 43.782750 33.81000 26.846The theoretically optimal measuring interval derived is about 550mm, and the interval less than 550mm can be used in practical. Taking the purpose of measuring efficiency and true expression of the straightness of the measured object into account, we can choose 500mm as measuring interval. As can be seen from TABLE 2, the results of straightness measurement got under the case of interval 160mm and 500mm are basically the same, while the results are significantly smaller under the case of interval 750mm and 1000mm, so the interval 500mm can be the optimal measuring interval.IV.C ONCLUSIONThis article proposes a calculation method for the large-size straightness measuring interval based on Nyquist sampling theorem. The results of validation experiments indicate that the method is feasible. According to the rail experimented, the interval 500mm through theoretical derivation can be its optimal measuring interval. Because the measurement tolerance δis from experiment in this paper, the subsequent research should give theoretical derivation and inspect the relationship between the measurement tolerance δ and measurement length.A CKNOWLEDGMENTThis work is supported by the National Science and Technology Major Project of China (2013ZX04013-011-09) and Heilongjiang Postdoctoral Fund in 2013 (LBH-Z13209). The authors would like to express their appreciation to the contribution of Xiaozhong Lou and Zhonghe Xu, who are the engineers at Qiqihar Heavy CNC Equipment CO., LTD, for offering help in experiments.R EFERENCES[1] F.G. Huang. The Number of Measurement Extraction Points forStraightness Error Evaluation[J]. Journal of Huaqiao university: Natural Science Edition, 2011, 32(6): 615-617.[2] F.G. Huang and Y.J. Zheng. Research straightness error measurementsampling scheme[J].Tool and Technology, 2007,10:95-98.[3]X.F. Hou. Research of Sampling Spacing in Measuring StraightnessBased on CMM[J].Tool and Technology, 2008, 42(6): 102-103. [4]M. M. Dowling, P. M. Griffin, K.-L. Tsui and C. Zhou. StatisticalIssues in Geometric Feature Inspection Using Coordinate Measuring Machines. Tchnometrics, 1997,39(1)3~24.[5] A. Weckenmann, H. Eitzert, M. Garmer and H. Weber. Functionality-Oriented Evaluation and Sampling Strategy in Coordinate Metrology.Precision Engineering,1995,17:244~252.[6]Y.H Zheng, L.N. Zhang and K.W. Qing. Extraction scheme of the newgeneration GPS and its application research[J]. Machinery Design & Manufacture, 2008 (6): 193-194.[7]L.L. Huang, L.X. Wang, Yu Wang, H.L. Wang and F.G. Huang.Extraction of Straightness Error Signal with Harmonic Analysis. [J].Journal of Huaqiao university: Natural Science Edition, ,2014,01:7-10.[8]Z Li and Z.G. Xu and X.Q.Jiang. Interchangeability andMeasurement Technology——Geometrical Product Specifications and Verification(Higher Education Press,China 2004). pp.67.[9] B.Fei, Y.J. Fan and WenXiong Xu. Adaptive Sampling Method——Anew method used in measuring the shape error[J]. Journal of Applied Sciences, 1994, 12(4): 423-430.[10]F.X Zhang and H. Zhao. Theoretical research between sample step anddeviation shape in straightness measurement[J]. Aiavtion method & measurement technology. 1995, 15(2): 9-11.。

地下管线探测仪的使用说明书

地下管线探测仪的使用说明书

地线管线探测仪使用说明书河南汇龙合金材料有限公司基本功能n 能快速有效地确定地下的光缆、电缆及金属管线的走向和深度,及确定外皮故障。

n 确定电缆(管道)的走向,具有信号强度指示、左右箭头指示、罗盘方向指示。

n 具有电流方向指示,防止串线干扰。

n 数字直读显示电缆(光缆)的深度:0-25米,3米内精度5%,8米内精度10%n 具有故障检测专用模式,可用于探测外皮故障及电缆的破坏处n 发射机功率达到20W,埋深可达到地下25米,n 高清液晶彩屏显示n 相位功能解决串信号问题,n 罗盘指示,可一眼找出路径及位置n 实时自动显示深度,机器自动提示方位n 信号识别:从信号幅度、信号方向、信号相位三个维度进行光缆、电缆的准确识别。

电流方向指示:具有独特技术,可显示跟踪信号的电流方向、相位,有效提高查找路技术指标发射机技术参数本机为多频大功率发射机,以恒功率输出、自动匹配外部负载,保证本机工作在最佳状态。

具有欧姆表功能,能探测外部电压及测试持续的环路电阻,可协助判断故障性质。

1) 可供选择频率:输出31种频率的正弦交流信号,分别是98Hz、128Hz、256Hz、480Hz、491Hz、512Hz、577Hz、640 Hz、815Hz、982Hz、1.02kHz、1.17KHz、1.45KHz、1.52KHz、4.1KHz、8.01KHz、8KHz、8.44KHz、9.5KHz、9.82 KHz、29.4KHz、33 KHz、38 KHz、65.5 KHz、78.1KHz、80.43 KHz、82.3KHz、83.1KHz、89KHz、133KHz、200KHz,故障检测及管线识别信号FFLOW、FFHIGH,电流方向信号SS Low、SS High。

2) 具有FF故障检测频率,可同时发出路由跟踪信号和故障定位信号3) 欧姆表功能,可检测外部电阻、外部危险电压提示4) 三种信号发射方式(直连法耦合法感应法)5) 自动负载调整6) 输出功率可调,低档、中档、高档、满档四种档位。

sndway测量仪说明书

sndway测量仪说明书
按onadjust按钮镜内显示将中心圆对准待测目标不能为强吸收光线的目标如玻璃mode一般置于标准状态再次持续按下onadjust按钮3秒钟左右目标距离显示若不适用15秒后自动关机
sndway测量仪说明书
1.调节测距仪目镜视度,使视场内的物体清晰。
2.按‘ON/ADJUST'按钮,镜内显示‘+’,将中心圆对准待测目标(不能为强吸收光线的目标如玻璃),‘MODE’一般置于标准状态,再次持续按下‘ON/ADJUST'按钮3秒钟左右,目标距离显示,若不适用15秒后自动关机。
3.每按‘MODE’按钮一次,即可改变模式。接通电源时,处于上次的使用模式。

施迈茨线性尺与数显仪型录说明书

施迈茨线性尺与数显仪型录说明书

2D ImageCorrelation EncoderDigimaticScale UnitsLinear ScalesABS AT500-SABS AT500-HABS ST700AT1100MICSYS-SA1HST-F11Fiber ScaleVertical single-function typeVertical multi-functiontype572-561 SDV-15E[Scale units][Display units]System DiagramSingle-function type with high dust/water resistanceSingle-function typeMulti-function typeMulti-function type (double reading)SD-D (Horizontal)SDV-D (Vertical)SD-GEC Counter *3No. 542-007ASD-E (Horizontal)SDV-E (Vertical)SD-F (Horizontal)SDV-F (Vertical)Digimatic mini-processor DP-1VANo. 264-505AMultiplexer MIG-4USBNo. 64AAB387Input Tool (USB keyboard signal conversion model)No. 264-016-10Tolerance judgment output *1RS-232C/USB outputUSB keyboard signal conversion* 1: Select the tolerance judgment output or digimatic output when setting the parameters.* 2: Connecting cable with the water-proof type output switch can be used only for SD-G or Water-proof Digital Caliper CD-15/20/30PM equipped with external output function.* 3: Connecting of SD series and DP-1VR/MIG-UUSB/IT-012U is also available without passing through the EC counter.In this case, connect these units and SD series with the cables used for the connection with the EC counter.* Connection to an RS-232C conversion type (IT-007R ) or a PS/2 keyboard signal conversion type (IT-005D ) input tool is also available.Connecting cable with the water-proof type output switch*2 40”/ 1m : No.05CZA624 80”/ 2m : No.05CZA625Connecting cable with the output switch 1m : No.959149 2m : No.959150Connecting cable with the output switchConnecting cable 40”/ 1m : No.93693780”/ 2m : No.96501440”/ 1m : No.905338 80”/ 2m : No.905409 40”/ 1m : No.905689 80”/ 2m : No.90569040”/ 1m : No.905691 80”/ 2m : No.905692 40”/ 1m : No.905693 80”/ 2m : No.905694Refer to page G-20 for details.Palm-sized printer for printing and statistical analysisInterface unit for the RS-232C/USBconversion and output RS-232C/USB outputUSB Interface unit that converts and transfers data into spreadsheets*2*3*3*309AAA207 09AAA198Scale unitsKA Counter KLD200 CounterAbsolute systemSeparate type (Exposed)Assembly type (Enclosed)ABS 1100General Purpose ABS AT300series Slim spar type ABS AT500seriesSlim spar typeABS ST700Compact-typeseriesMICSYSGeneral-purpose type High Speed Amplifiers supporting Mitutoyo ENSIS interface *3Nikki Denso Co.,Ltd. VCII/VC/VPS series*3Servoland corporation SVF Series*3PMAC Japan Co., Ltd. UMAC-Turbo PMAC2*3FANUC Ltd.NC control unit*3Mitsubishi Electric Corporation MITSUBISHI CNC series*3Mitsubishi Electric CorporationMELSERVO series*3Panasonic Corporation, Motor Business UnitMINAS series*3YASKAWA Electric CorporationΣ-V/Σ-III Series*3Siemens AG SINAMICS/SINUMERIK series(supporting DRIVE-CLiQ)*3: Please contact each manufacturer for details.*1: 1Vp-p differential output typeSeparate type (Exposed)With square wave signal / sinusoidal signal simultaneous outputAT216-T/AT216-TL Pulse signalunit PSU-200Pulse signalunit PSU-200KA Counter KLD200 Counter Assembly type (Enclosed)Incremental systemWith square wave signal outputAT211*2Standard type Slim spar type AT203With sinusoidal signal outputAT113AT116AT112-F AT103Standard type Various NC controllers*2: 1Vp-p differential sinusoidal signal output types also available. Please contact us for details*4: Adapter available to connect to KA CounterStandard type ST24Compact type ST422/ST46-EZA ST-13002D EncoderABS AT715Standard type High accuracy type ST36*2*4Slim spar and high speed typeUltra compact typeST-F11General-purpose typeAT402E *1Slim spar type Super slim spar type Economy and slim spar type Linear Scale System DiagramLinear ScalesDesigned to capture positional coordinates from slides on machine tools and precision instruments including semiconductor production equipment.Name Type Page AT1100General-purpose Spar H-12AT300Standard Spar H-13 AT-715Slim Spar (IP67)H-14 AT500Slim Spar H-15ABS ST700General Purpose Compact type(Exposed)H-16ST1300High Seep High Accuracy(Exposed)H-17 MICSYS2D Image Encoder (Exposed)H-18 AT103Standard H-19AT113Slim Spar type H-20AT112-F Super Slim part type H-21 AT116Economy and Slim Spar H-22 AT402E General-purpose H-23 AT203Standard type H-24 AT216T/AT217-TL Slim Spar H-25 AT211Slim spar type high speed H-26 ST24Standard Type (Exposed)H-27 ST422/ST46-EZA Compact type (Exposed)H-28-29 ST36High Accuracy type (Exposed)H-30ST-F11Ultra Compact-Fiber scale(Exposed)H-31-322315.744.53.2(1.5)191Mi16(54)36.51.5±0.2222-R2.51.5±.2g method BMiddle support (V)adjustableBlock spacer2-ø7ø14 Countersunk, depth 6.524Countersunk, depth 6.5AA0.1Middle support position L5L695.5(3.76")37.5 (1.476")Over 3m8(3.15")37.5 (1.476")Up to 3mUnit: mm (inch)52(2.5")22 (.87")Unit: mm (inch)15.4 (.606")44.5(1.752")Unit: mm (inch)AR190.5±0.2254582014.3AT112F AT211AT715AT1100AT103 / AT300 / AT203AT500AT402E AT113 / AT116 / AT216T / AT217TL3727.6(14.8)1339.82585H-11/ / 8060±0.2SERIES 539 — Slim Spar TypeSPECIFICATIONS174-183AABS AT500-SABS AT500-HScale base typeSERIES 539 — Standard Type 174-183AKA counter, KLD• Dimensionally compatible with AT116174-183A• Connectable to the KA counter, KLD counterPSU-200.174-183AConnectable to the KA counter, KLD counter orPSU-200.174-183ASPECIFICATIONS5µm resolutionAT211-A AT211-B• The thickness of the detector head isonly 7.5 mm. The metal tape scale type has a mounting surface area of 12.5 by 9.325 mm, allowing use in applications where a space-saving design is important.• Drawings are available on requestSPECIFICATIONS•Double-end fixing tentioned design•Double-sided adhesive tape fixing designModelST46-EZADetection method Reflective photoelectlic linear encoder Signal strength checking andNC sideLinear Scales ST36Processor LED Indicators ST-F11ST- F11B ST- F11CDiffraction interference , reflection-type linear encoder4 μm2 μm2-phase-shifted square wave (+ reset input)2-phase-shifted square wave 2-phase-shifted sine wave10 nm / 50 nm / 100 nm (switchable)4" / 100 mm±1 μm, ±2 μm (custom-holder type)800 mm/s (For the sine wave) Perpendicular (S-Type) 5x9.6x12Dimensions of Detector HeadsModel Number Output Signal Scale Material Detector Orientationto ScaleFiber LengthST-F11B-100A-S02 2 Phase Square Quartz Glass Parallel2mST-F11B-100A-S03 2 Phase Square Quartz Glass Parallel3m SPECIFICATIONSPSU-400EAPSU-400EVH-34Linear ScalesQuick Guide to Precision Measuring Instruments■ Absolute systemA measurement mode in which every point measurement is made relative to a fixed origin point.■ Incremental systemA measurement mode in which every point measurement is made relative to a certain stored reference point.■ Origin offsetA function that enables the origin point of a coordinate system to be translated to another point offset from the fixed origin point. For this function to work, a system needs a permanently stored origin point.■ Restoring the origin pointA function that stops each axis of a machine accurately in position specific to the machine while slowing it with the aid of integrated limit switches.■ Sequence controlA type of control that sequentially performs control steps according to a prescribed order.■ Numerical controlA way of controlling the movements of a machine by encodedcommands created and implemented with the aid of a computer (CNC). A sequence of commands typically forms a ‘part program’ that instructs a machine to perform a complete operation on a workpiece.■ Binary outputRefers to output of data in binary form (ones and zeros) that represent numbers as integer powers of 2.■ RS-232CAn interface standard that uses an asynchronous method of serial transmission of data over an unbalanced transmission line for data exchange between transmitters located relatively close to each other. It is a means of communication mainly used for connecting a personal computer with peripherals.■ Line driver outputThis output features fast operating speeds of several tens to several hundreds of nanoseconds and a relatively long transmission distance of several hundreds of meters. A differential-voltmeter line driver (RS422A compatible) is used as an I/F to the NC controller in the linear scale system.■ BCDA notation of expressing the numerals 0 through 9 for each digit of a decimal number by means of four-bit binary sequence. Data transmission is one-way output by means of TTL or open collector.■ RS-422An interface standard that uses serial transmission of bits in differential form over a balanced transmission line. RS-422 is superior in its data transmission characteristics and in its capability of operating with only a single power supply of +5V.■ AccuracyThe accuracy specification of a scale is given in terms of the maximum error to be expected between the indicated and true positions at any point, within the range of that scale, at a temperature of 20ºC. Since there is no international standard defined for scale units, each manufacturer has a specific way of specifying accuracy. The accuracy specifications given in our catalog have been determined using laser interferometry.■ Narrow range accuracyScale gratings on a scale unit normally adopt 20μm pitch though it varies according to the kind of scale. The narrow range accuracy refers to the accuracy determined by measuring one pitch of each grating at the limit of resolution (1μm for example).GlossaryTests for Evaluating Linear Scales1. Testing within the service temperature rangeConfirms that there is no performance abnormality of a unit within the service temperature range and that data output is according to the standard.2. Temperature cycle (dynamic characteristics) testConfirms that there is no performance abnormality of a unit during temperature cycling while operating and that data output is according to the standard.3. Vibration test (Sweep test)Confirms that there is no performance abnormality of a unit while subject to vibrations of a frequency ranging from 30Hz to 300Hz with a maximum acceleration of 29.42m/s 2.4. Vibration test (Acceleration test)Confirms that there is no performance abnormality of a unit subject to vibrations at a specific, non-resonant frequency. (Approx. 98.07m/s 2)5. Noise testThe noise test conforms to EMC Directive EN61326-1+A1:1998.6. Package drop testThis test conforms to JIS Z 0200 (Heavy duty material drop test)H-35Upon supply of power to a linear scale, position readings from three capacitance-type sub-scales (COArse, MEDium and FINe) and one from a photoelectric sub-scale (OPTical) are taken. These sub-scales use such a combination of pitches, and are so positioned relative to each other, that the readings at any one position form a unique set and allow a microprocessor to calculate the position of the read head on the scale to a resolution of 0.05μm (0.005μm).■ Principle of the Absolute Linear Scale (Example: ABS AT300, 500-S/H)AT5003768mmOPTCOAMED FIN E l e c t r o s t a t i c c a p a c i t a n c e t y p eP h o t o -e l e c t r o n i c t y p e3768mm58.88mm 0.92mm 20µm(512)(512)(400)(4096)0.05µm 0.005µm7.36mm0.115mm(512)Approx. 1.8µmResolutionSignal cycle (interpolation)ComputerDigital counterLaser length measuring machine counterLaser sourceInterferometer Optical axis oflaser beamCube cornerFixtureScale unit Movable tableThe accuracy of the scale at each point is defined in terms of an error value that is calculated using the following formula:Error = Value indicated by laser inspection system− Corresponding value indicated by the linear scale A graph in which the error at each point in the effective positioning range is plotted is called an accuracy diagram.There are two methods used to specify the accuracy of a scale, unbalanced or balanced, described below.Positional Indication accuracyThe accuracy of a linear scale is determined by comparing the positional value indicated by the linear scale with the corresponding value from a laser length measuring machine at regular intervals using the accuracy inspection system as shown in the figure below. As the temperature of the inspection environment is 20˚C, the accuracy of the scale applies only in an environment at this temperature. Other inspection temperatures may be used to comply with internal standards.(1) Unbalanced accuracy specification - maximum minus minimum errorThis method simply specifies the maximum error minus the minimum error from the accuracy graph, as shown below. It is of the form: E = (α+ βL)μm. L is the effective range (mm), and α and β are factors specified for each model.For example, if a particular type of scale has an accuracy specification of(3 + 3L ———1000)μm and an effective range of 1000mm, E is 6μm.Scale error at any point in range relative to start of rangeErrorEffective rangeX Measuring pointMaximum difference in scale error: E(µm)(2) Balanced accuracy specification - plus and minus about the mean errorThis method specifies the maximum error relative to the mean error fromthe accuracy graph. It is of the form: e = E ± — 2(μm). This is mainly used in separate-type (retrofit) scale unit specifications.ErrorEffective rangeX Measuring pointMaximum error aboutmean error E : ±— (µm)2Mean errorA linear scale detects displacement based on graduations of constant pitch. Two-phase sinusoidal signals with the same pitch as thegraduations are obtained by detecting the graduations. Interpolating these signals in the electrical circuit makes it possible to read a value smaller than the graduations by generating pulse signals that correspond to the desired resolution. For example, if the graduation pitch is 20μm, interpolated values can generate a resolution of 1μm. The accuracy of this processing is not error-free and is calledinterpolation accuracy. The linear scale's overall positional accuracy specification depends both on the pitch error of the graduations and interpolation accuracy.■ Specifying Linear Scale AccuracyOverview of Accuracy Inspection Systemcustomers with unique applications.Custom Solutions, contact: • Inline/near line part inspection and gaging • Factory automation • Data management • Fixture design/build• 3D CAD concepts/renderings。

SND中文说明书

SND中文说明书

前言
感谢您选用“LNTECH(莱恩)”牌光电保护装置! 光电保护装置又称为光电保护器、安全光幕、安全光栅等,本说明书中仅使用“光电保 护装置”这一名称。
光电保护装置主要用于机械加工设备、危险工作区域,防止机械设备对操作者的伤害 和误入危险区域造成的人身伤害,保护人身安全。
本装置仅保护发光器与受光器(SNC/D/E系列)之间的矩形光幕区域。如果其安装位置 不正确,或不按说明书与相关安全作业条例操作,或机床执行机构故障,都可能使其无法 起到保护作用。因此,安装本装置之前,请仔细阅读说明书,充分理解有关事项,尤其是 说明书中标出的“警告”、“注意”等内容;在使用过程中,请正确理解光电保护装置的 工作性能,严格按照本说明书所提出的要求,制定相应的安全作业条例。
本说明书仅介绍光电保护装置在压力机上的应用,其它方面的应用,可参照本说明 书。
本说明书内容解释权归山东莱恩光电科技有限公司,阅读或使用本说明书时,如有不明 之处,请与本公司联系。
禁止事项: 1) 禁止擅自复印、转载本使用说明书的部分或全部内容。 2) 关于本使用说明书的内容,将来可能因装置改良等原因而进行修改,恕
2 基本介绍
2 . 1 术 语 …………………………………………………………………………………………… 3 2 . 2 用 途 …………………………………………………………………………………………… 4 2 . 3 特 点 …………………………………………………………………………………………… 4 2.4 检测精度与光轴间距的关系…………………………………………………………………4 2 . 5 技 术 参 数 ……………………………………………………………………………………… 5 2 . 6 规 格 说 明 ……………………………………………………………………………………… 6 2.7 工作示意图……………………………………………………………………………………6 2.8 认证标志及技术标牌…………………………………………………………………………7

胜利仪器 VICTOR 63G 四通道振动分析仪说明书

胜利仪器 VICTOR 63G 四通道振动分析仪说明书

一、产品概述VICTOR63G振动分析仪在硬件接口方面能够实现4通道振动+1通道转速测量,支持多种传感器的接入,如涡流、速度、加速度、ICP加速度、ICP速度、光电传感器(转速测量)。

覆盖振动测量所有类型传感器,同时仪表本身提供-24VDC电源,便于涡流传感器的供电,无需额外使用电源转接箱;同时,在显示方面,采用真彩色大屏幕液晶屏(800X480RGB),显示内容丰富,显示图像清晰全面;仪表配备大容量可充电Li电池,提高仪表续航能力(5~6小时正常运行);在软件方面能够实现振动数据的特征值提取、振动时域波形的实时显示、振动信号的频谱分析、波德图、转速曲线、历史曲线打开与展示;能实现振动信号的同步采集和非同步采集,设置灵活,便于操作;同时,仪表具备实时振动原始波形数据的录波能力,存储容量达到32GB,能够记录下连续的原始录波数据,存储为单文件形式便于后期从仪表内部通过USB接口拷贝到PC机进行更为全面的振动数据分析,由PC机配套软件打开分析查看;仪表本身内部嵌入了多种动平衡计算工具,充分满足旋转机械动平衡试验的需求。

VICTOR63G振动分析仪能够使电动机、风机、涡流机、螺旋桨和泵的转子等旋转机械部件实现高精度的单面、双平面平衡。

设置菜单清晰、全面,采用图形数据表示法的显示界面易于操作。

利用多种计算方式确定不平衡力的幅度和位置,包括单平面影响系数法、双平面影响系数法、双平面谐分量法。

同时,也适合瞬态信号测试,如叶片的敲击信号、落锤试验等瞬态信号、甩负荷等信号捕获记录,其100K高速同步采样率能保证瞬态信号的完美捕获和录制。

二、组成及技术指标1.信号输入:电涡流传感器磁电式速度传感器ICP型磁电式速度传感器加速度传感器ICP型加速度传感器1路键相信号配接光电传感器或涡流传感器2.测量范围:转速范围:6~80000转/分振幅范围:位移:0~2000μm(峰峰值)速度:0.1~800mm/s(峰峰值)加速度:0.1~100g(峰峰值)相位:0~360°3.振动分析:可提供数据列表、时域波形、频谱图、波德图、历史曲线图、转速曲线图等多种振动监测、分析图表。

胜利仪器 VICTOR 7500A电缆识别仪说明书

胜利仪器 VICTOR 7500A电缆识别仪说明书

目录安全须知 (3)一.简介 (4)二.技术规格 (5)1.基准条件和工作条件 (5)2.发射机规格.......................................................错误!未定义书签。

3.接收机规格 (7)三.结构 (9)四.操作 (10)1.基本操作 (10)2.发射机操作 (11)2.1.停电识别仪器自检试验 (12)2.2.停电电缆识别的接线方法 (13)2.3.带电识别仪器自检试验 (16)2.4.带电电缆识别的接线方法 (18)3.接收机操作 (21)3.1.标定 (21)3.2.带电电缆识别 (23)3.3.停电电缆识别 (27)3.4.电压测量 (30)3.5.电流测量 (30)五.电池管理 (31)六.装箱单 (32)安全须知●有电!危险!操作者须经严格培训并获得国家相关电工操作认证才能使用本仪表进行现场测试。

注意本仪表面板及背板的标贴文字及图标。

●操作者必须完全理解手册说明并能熟练操作本仪表后才能进行现场测试。

●使用前应确认仪表及附件完好,仪表、测试线绝缘层无破损、无裸露及断线才能使用。

●注意本仪表所规定的测量范围及使用环境。

●耦合钳在发射信号时,产生啸叫声属于正常现象。

●耦合钳在发射信号时,会产生较大的磁吸力,此时禁止打开钳口,必须关闭发射机电源后才可以打开钳口。

●使用直连输出模式时,严禁将红黑测试线接入正在运行的电力电缆。

●为确保人身安全,对已确定的电缆,在维修开锯前,一定要扎钉试验。

●仪表后盖及电池盖板没有盖好禁止使用。

●确定导线的连接插头已紧密地插入接口内。

●仪表于潮湿状态下,请勿使用,或更换电池。

●禁止在易燃及危险场所测试。

●测试线须撤离被测导线后才能从仪表上拔出,不能触摸输出插孔,以免触电。

●请勿在强电磁环境下使用,以免影响仪器正常工作。

●仪表在使用中,机壳或测试线发生断裂而造成金属外露时,请停止使用。

●请勿于高温潮湿,有结露的场所及日光直射下长时间放置和存放仪表。

胜利仪器 VICTOR 6418A接地电阻在线检测仪 说明书

胜利仪器 VICTOR 6418A接地电阻在线检测仪 说明书

目录警告 (1)一.简介 (2)二.量程及精度 (2)三.技术规格 (3)四.结构尺寸 (4)五.测量原理 (5)六.液晶显示 (7)七.操作方法 (7)八.通讯方式 (12)九.配置工具及协议下载 (13)十.装箱单 (13)警告感谢您购买了本公司的VICTOR6418A接触式在线接地电阻测试仪,为了更好地使用本产品,请一定:——详细阅读本手册。

——严格遵守本手册所列出的安全规则及注意事项。

◆适用于接地电阻、地线电压在线监测。

◆需要先做好辅助地极,再安装检测仪。

◆注意本检测仪所规定的测量范围及使用环境。

◆防雨淋、防水浸安装。

◆室外安装请加装防护装置。

◆产品外壳为非金属材质,有潜在静电电荷危险,危险场所防止摩擦,清洁时请用湿布擦拭。

◆拆卸、校准、维修本检测仪,必须由有授权资格的人员操作。

◆由于本检测仪原因,继续使用会带来危险时,应立即停止使用,并马上封存由有授权资格的机构处理。

一.简介VICTOR6418A接触式在线接地电阻测试仪是我公司十多年致力于“接地电阻检测技术研究”的又一高新技术产品,采用三线法或二线法测试接地电阻,采用平均值整流法测试接地电压,在线检测、实时监测。

用户可以选择RS232或RS485通讯,并可根据提供的MODBUS通讯协议进行二次开发、组建网络、实现远程多点在线监测等。

VICTOR6418A接触式在线接地电阻测试仪由超大LCD显示,非常直观;可以通过其按键设置报警临界值,具有声光报警指示;可确保各钟场所接地电阻值实时在线监测的高精度、高稳定性、高可靠性。

VICTOR6418A接触式在线接地电阻测试仪适用于输电线路杆塔接地,公路设备接地,气象防雷接地,通讯基站接地,铁路设施接地,建筑仓库接地,电气设备接地等。

二.量程及精度测量功能量程精度分辨率接地电阻0.01Ω~20Ω±2%rdg±3dgt(辅助接地电阻100Ω±5%,对地电压<10V)0.01Ω0.1Ω~200Ω0.1Ω1Ω~2000Ω1Ω接地电压0~600V AC±2%rdg±3dgt1V (注:23℃±5℃,75%rh以下)三.技术规格待机:25mA Max功耗测量:400mA Max报警提示声光报警当电源电压低于10V时,电源电压低符号显示,提醒更电源电压换电源。

深达威激光测距仪50米 说明书米

深达威激光测距仪50米 说明书米

激光测距仪带速度测量功能的SNDWAYSW-600A,SW-1000A,SW-1500A具有距离、速度、坡度和高度测量功能的多功能设备操作说明该产品的设计符合标准:GB/T14267-2009广东制造,货号:00000950安全说明使用前仔细阅读安全要求和操作说明在使用该设备之前,请阅读所有的安全和操作说明。

任何未在这些说明中描述的措施都可能导致设备发生故障,影响测量的准确性或对用户或第三方造成伤害。

请勿自行打开或修理该装置。

严禁对激光发射器的功能做任何修改或调整。

妥善存放设备,不要让儿童接触到它,避免未经授权的人使用。

切勿将激光发射器对准自己或旁人,对准你身体的任何部位或任何高度反射的物体。

该设备的电磁辐射会对其他电子设备造成干扰。

不要在飞机上或医疗设备附近使用本装置。

不要在爆炸性或易燃性环境中使用本设备。

不要将废旧电池和无法使用的电器与家庭垃圾一起处理。

请按照现行法律和关于处理此类设备的规定来处理设备。

如果您在使用过程中遇到任何问题或疑问,请立即联系您的SNDWAY官方代表,我们将尽快帮助您解决问题。

感谢你购买SNDWAY手持式激光测距仪!带倾斜测量功能的SNDWAY多功能激光测距仪是一款集双筒望远镜和激光测距仪功能于一体的便携式激光倾斜测距仪。

主要应用。

•对于物体的详细检查,测量静态物体或低速移动且在可视范围内的物体。

该仪器的特点是测量精度高,测量速度快,可检测参数的可视化。

经济性:提供自动断电和低耗电。

•多功能激光测距仪结合了最新技术,可同时显示物体的距离和倾角。

在确定与物体的距离时,它可以显示到目标点的线路与地面的角度(仰角定义为正,俯角定义为负),相对高度和可见地平线的范围。

激光发射器的功率足够低,对人眼来说很安全。

它能够测量任何物体的范围,其体积小、重量轻,便于携带。

它由一个可充电的锂离子电池供电。

测距仪广泛用于电力设施(复杂的测量和扫描功能可以方便地检查远处的物体,如电力线和电线杆)、高速铁路、公用事业、林业设计、建筑、互联网通信设计、通信线路的检查和维修等,在开放的乡村和高尔夫、狩猎和野营旅行中使用。

测深仪说明书07.10.22

测深仪说明书07.10.22

目录第一章回声测深仪概述 (2)§1.1 回声测深原理 (3)§1.2 水底信号识别技术 (3)第二章 HD-16工程型测深仪 (6)§2.1 性能指标及特点 (6)§2.2 配置 (7)§2.3 连接和安装 (8)§2.4 面板操作 (8)§2.5 监控软件操作 (13)第三章 HD-27T/HD-28T测深仪 (15)§3.1 性能指标及特点 (15)§3.2 配置 (17)§3.3安装连接图 (18)§3.4 测深主界面 (19)§3.5 参数及环境设置 (22)§3.6 开始测深(或记录) (27)§3.7 回放、查找和打印 (28)§3.8 水深输出格式 (29)§3.9 定标控制 (30)§3.10 使用机内海洋测量软件 (30)第四章 HD-30T多通道测深仪 (34)§4.1 性能指标和特点 (34)§4.2 配置 (35)§4.3 测深主界面 (37)§4.4 参数及环境设置 (38)§4.5 使用机内多通道海洋测量软件 (40)第五章水深测量资料后处理 (44)§5.1 动态吃水和测深仪改正准备 (44)§5.2 原始采集水深取样 (45)§5.3 水位改正 (46)§5.4 数据格式转换 (47)附件:一键恢复说明 (47)中海达测深仪操作手册第一章回声测深仪概述海洋声学仪器发展迄今为止,出现突飞猛进的技术飞跃,国际上推出许多先进的海洋声学设备,如:多波束海底成像系统、侧扫声纳、浅层剖面仪、水下声标应答器等等,而测深仪只是声学仪器家族中最常用的一种设备。

目前国际上大多型号的测深仪还是采用机械记录针式或热敏记录方式。

丹麦的E-sea sound率先采用了数字成像测深仪,但价格昂贵(每台售价双频机在30万人民币以上),而且只能存储30分钟的图像数据。

数字式超声波探伤仪使用说明书

数字式超声波探伤仪使用说明书

TUD5100数字式超声波探伤仪使用说明书2015-05-28 第一版目录序言 (1)1 简介 (2)1.1 安全提示 (2)1.2 功能特点 (2)1.3 技术参数 (3)1.4 仪器主机 (4)1.5 显示界面简介 (5)1.6 按键介绍 (6)1.7 菜单结构 (8)1.8 指示灯 (8)1.9 充电说明 (9)1.9.1 供电方式 (9)1.9.2 充电方式 (9)2 基本操作 (11)2.1 开关机 (11)2.2 探头连接 (11)2.3 旋轮操作 (11)2.4 探头参数设置 (12)2.5 增益调节 (12)2.6 检测范围调节 (12)2.7 声速和零偏校准 (13)2.8 闸门调节 (13)2.9 读数设置 (13)2.10 发射参数调节 (14)2.11 回波介绍 (14)2.12 恢复出厂设置 (14)2.13 冻结 (14)2.14 省电设置和待机设置 (14)2.15 参数界面的操作 (14)3 调校操作及其举例 (16)3.1单晶直探头校准 (16)3.1.1已知材料声速、零点的校准 (16)3.1.2未知材料声速、零点的校准 (17)3.2斜探头校准 (18)3.2.1斜探头材料声速、探头零偏、探头前沿校准 (18)3.2.2斜探头角度/K值的校准 (20)3.3双晶探头校准 (22)4 DAC/A VG曲线 (23)4.1 DAC曲线 (23)4.1.1 DAC曲线制作 (23)4.1.2 DAC曲线偏移 (26)4.1.3 DAC曲线调整 (27)4.1.4 DAC曲线设置 (27)4.1.5 DAC曲线显示 (28)4. 2 A VG曲线 (28)4.2.1单点A VG 曲线制作 (28)4.2.2多点A VG制作 (30)4.2.3 A VG曲线调整 (32)4.2.4 A VG曲线偏移 (33)4.2.5 A VG曲线设置 (33)4.2.6 A VG曲线显示 (33)5 探伤辅助功能应用 (34)5.1 裂纹测深 (34)5.2 视频 (34)5.3 波峰记忆 (36)5.4 回波包络 (36)5.5 孔径 (36)5.6 通讯 (37)5.7 报警 (37)5.8 通道 (37)5.9 波形 (38)5.10 曲面修正 (39)5.11焊缝示意功能 (39)5.12 扫描功能 (40)5.13 AWS功能 (41)5.14 展宽 (41)6 检测精度的影响因素及缺陷评估 (42)6.1 使用超声探伤仪的必要条件 (42)6.2 影响检测精度的因素 (42)6.3 缺陷评估方法 (42)6.3.1 缺陷边界法 (42)6.3.2 回波显示比较法 (42)7 维修与保养 (44)7.1 使用注意事项 (44)7.2 保养与维护 (44)7.3 一般故障及排除 (44)附录 (45)附录1:名词术语 (45)附录2:与超声波探伤有关的国家标准与行业标准 (46)序言感谢您使用我公司的超声波探伤仪产品,您能成为我们的用户,是我们莫大的荣幸。

胜利仪器 VICTOR 822可燃气体检测仪说明书

胜利仪器 VICTOR 822可燃气体检测仪说明书

CA BDE\i i巳JOR®眶而II I�器A 严禁在危险环境下拆开仪器-A 严禁在爆炸环境中拆卸电池.1111血型型号:VICTOR8221此检测仪可在有限的空间里利用其细长的鹅颈管探测气体泄漏A 本产品符合如下规程和校准,JJG693-2004, GB3836. 1-2010源,具有报警,单手操作及其它便利功能。

被广泛地用于环境检测、石油化工、污水处理、农业研究、医疗制药等检测领域.GB3836. 4-2010, GB4208...目115富莲在自E坦·-阳哥刮目�可燃气体检测仪使用说明书A 表明此操作须参照说明书进行,注意安全。

〈巨符合欧盟标准防暴标志:Ex iB 118 T3 Gb ’-灵敏度高,快速响应-可将漏气通过报警灯指示出来’-高灵敏度传感器可测试徽’l、漏气源』30厘米长的鹅颈管,,方便快速查找漏气源.,探头重置/可探测控制’罩-�础量�Iii田姻自it•⑤电源指示灯⑥开/关机接键⑦灵敏度调节旋钮⑧电池门①探头帽和内置传感器②鹅颈管’�毒由主罢’③喇叭孔④报警指示灯罩为了您的安全,请在使用本仪器前仔细阅读本手册.A表明此操作会对使用者造成物质危险,注意安全。

(S) 表明此操作可能会导致仪表损坏,小心操作.22正面A 警告!若可能发生爆炸事故. ,关闭可能存在的气体源·-保持被困地区通风,无易燃危险.,不要打开电源开关.,撤退该地区人员.,在安全位置给有关当局打电话在自常工作中,请保持工作环境遇凤,通风能确保可燃气体不会大容量的聚集a.!回回医三在事E霉事章罢E 主Ji!..不正确的操作或使用环境,可能会引发安全事故。

A在氧气浓度过高或过低环境中,可能造成测量不准确。

(S)有其它杂质气体或水蒸气时,可能会影响可燃气体传感器的E常测量.(S)传感器的窗孔必须保持清洁,若有脏泻,会造成测量不准确.A更换电池时,注意不能将电池装反,否则会造成漏电危险,引发安全事故。

检测仪器操作说明

检测仪器操作说明

检测仪器操作说明维保检测仪器操作规程为了提高维保人员实际操作水平,全面提升维保工作,更好地服务于广大客户。

根据维保检测仪器功能、检测对象、国家标准等制定检测仪器操作规程。

一、设备名称:秒表名称:秒表量程:量程不小于15min;精度:0.1s应用范围:防火卷帘、消防电梯、火灾自动报警系统响应时间,应急灯及疏散指示时间,各消防设施联动时间等。

操作说明:1、检查仪器是否在检定有效期内。

2、使用前检查是否完好,开启关闭及各项功能正常。

3、每单项检测应重复两次,求平均值。

4、仪器使用后应置于干燥适宜的环境存放。

规范标准:*自动发电机组自动启动正常工作时间不应大于30s;*火灾自动报警系统响应时间不应大于30s;*湿式系统开启末端泄水装置5min内自动启动消防水泵;*干式系统开启末端试水装置1min内出水压力不应低于0.05MPa;*预作用系统火灾报警器确认火灾后2min,末端试水装置的出水压力不低于0.05MPa ;*泡沫系统做联动实验时从接到信号到喷射不宜(小于)1min;*气体灭火系统做模拟启动实验时应有20—30s延时;*应急照明灯工作时间不应小于20min,建筑高度超过100的建筑不应小于30min;*疏散指示标志应急工作时间不应小于30min;*消防电梯迫降时间不应大于60s。

二、设备名称:卷尺名称:卷尺量程:量程不小于30m;精度:1mm应用范围:测量室内、外消火栓间距、消防水带长度及设备设施高度、宽度等。

操作说明:1、检查仪器是否在检定有效期内。

外观完好、开启灵活。

2、在测量时需反复测量被测项目两次,求取平均值。

规范标准:1火灾探测器周围0.5m内不应有遮挡物。

2.手报距离地面1.3—1.5m。

3.从一个防火分区内任何一点到最近一个手报距离不大于 30m。

4.壁挂式火灾报警控制器底边距地面1.3—1.5m,靠近门轴一侧不小于0.5m,正面操作距离不小于1.5m。

5.柜式火灾报警控制器,当设备单列时正面操作距离不小于1.5m,双列时不小于2m,距墙维修距离不小于1.0m,其底高出地面0.1-0.2m。

胜利仪器 VICTOR 320S经济型手持测温热像仪说明书

胜利仪器 VICTOR 320S经济型手持测温热像仪说明书

VICTOR320S红外热成像仪使用手册.深圳市驿生胜利科技有限公司关于本产品本手册描述的产品仅供中国大陆地区销售和使用。

本产品只能在购买地所在国家或地区享受售后服务及维保方案。

关于本手册本手册仅作为相关产品的指导说明,可能与实际产品存在差异,请以实物为准。

因产品版本升级或其他需要,本公司可能对本手册进行更新,如您需要最新版手册,请您联系我们。

我们建议您在专业人员的指导下使用本手册。

我们建议您在专业人员的指导下使用本手册。

商标声明本手册涉及的其他商标由其所有人各自拥有。

责任声明●在法律允许的最大范围内,本手册以及所描述的产品(包含其硬件、软件、固件等)均“按照现状”提供,可能存在瑕疵或错误。

本公司不提供任何形式的明示或默示保证,包括但不限于适销性、质量满意度、适合特定目的等保证;亦不对使用本手册或使用本公司产品导致的任何特殊、附带、偶然或间接的损害进行赔偿,包括但不限于商业利润损失、系统故障、数据或文档丢失产生的损失。

●您知悉互联网的开放性特点,您将产品接入互联网可能存在网络攻击、黑客攻击、病毒感染等风险,本公司不对因此造成的产品工作异常、信息泄露等问题承担责任,但本公司将及时为您提供产品相关技术支持。

●使用本产品时,请您严格遵循适用的法律法规,避免侵犯第三方权利,包括但不限于公开权、知识产权、数据权利或其他隐私权。

您亦不得将本产品用于大规模杀伤性武器、生化武器、核爆炸或任何不安全的核能利用或侵犯人权的用途。

●使用本产品时,请您严格遵循适用的法律法规,避免侵犯第三方权利,包括但不限于公开权、知识产权、数据权利或其他隐私权。

您亦不得将本产品用于大规模杀伤性武器、生化武器、核爆炸或任何不安全的核能利用或侵犯人权的用途。

●如本手册内容与适用的法律相冲突,则以法律规定为准。

前言本节内容的目的是确保用户通过本手册能够正确使用产品,以避免操作中的危险或财产损失。

在使用此产品之前,请认真阅读产品手册并妥善保存以备日后参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sndway测量仪说明书
深达威的是不,最上边大的按钮按一下,出现红点后,瞄准测得距离目标,按一下就会出现距离这个是即时显示根管工作针的位置,精确的检测出根尖的位置的测量仪,要根据不同厂家的商品来看的。

建议咨询商家。

微型根管测量仪,微型根管测量仪价格-深圳市为超贸易
根管长度测量仪/root apex
根管测量仪-护肤品-口腔
sndway测量仪说明书|《根管测量仪使用说明书》|根管测量仪-护肤品-口腔中海达V8 参考说明书(1)0(2分)(2)不变(2分)(3)B(2分)(4)340m/s (4分)解析:同学将铜铃放到甲的左边,并与乙在一条直线上,则铜铃离甲越远,液晶显示屏的数值不变。

验证温度越高,声速越大,把铜铃给介绍的最好详细点根管治疗仪,是用于清洁扩大根管作用,比手工的更加方便精准。

适合2次治疗或者根管难以扩开的牙髓。

根管测量仪,测量根管长度,可以使充填更加到位。

根管测量仪怎么使用?
根管测量仪怎么使用?根管测量仪是牙医进行根管治疗用到的一个医疗器械,根管治疗是针对牙齿、牙髓、根尖病变的一个治疗过程。

根管治疗术是通过清除根管内的坏死物质,进行适当的消毒,充填根管,以去除根管内容物对根尖周围组织的不工地上有个GPS测量仪,但是说明书没有,我也从来没用过这种仪器,但是让我去复测定位,头疼的很,请问哪里能下载一个说明书,型号一定要是Trimble(天宝) R8型的。

谢谢了!!我想要知道接地电阻使用方法,最好是图文教程。

(1)使用接地电阻测试仪准备工作1)熟读接地电阻测量仪的使用说明书,应全面了解仪器的结构、性能及使用方法。

2)备齐测量时所必须的工具及全部仪器附件,并将仪器和接地探针擦拭干净,特别是接地探针,一定不知道大家都在用什么型号的根管测量仪那种好森田登市柏我看好了一台韩国的豪华型的不知道那位用过把心得一起分享一下啊楼主你好:本人说句粗鲁的话,根管测量仪,有的话只能说是锦上添花。

在基层的大夫大多数都在用普通的设备为患者服务。

并且都能得到患者满意和承认!打铁需要身板硬!根管的治疗需要准确的掌握根管的解剖!系统的学习
根管长度测量仪_康买:牙科一站式服务的领航者!
日本森田根管测量仪
日本森田牙科根管测量仪
得悦根管测量仪-企汇网
根管测量仪口腔材料口腔设备
让根管治疗效果更好——vdw-raypex5根管测量仪根管长度测量仪raypex5
【根管测量仪】价格,厂家
根管测量仪_好搜百科
raypex4根管测量仪
根管治疗仪or-n103
根管测量仪
根管测量仪设备材料-医疗器材网
德国vdw根管测量仪
根管长度测量仪propex
日本森田根管测量仪
得悦根管测量仪测定不受根管环境的影响
数字根管测量仪
>> 根管治疗,测量仪
【供应得悦根管测量仪rootpi3型】-黄页88网【根管长度测量仪】价格
【根管测量仪-3价格_根管测量仪-3厂家】
vi根管长度测量仪说明书
02口腔根管测量仪_佛山市南海17若医疗器械有限日本森田根管测量仪sm-dp-zx(图)
宇森coxo的根管测量仪购买指南
ii根管长度测量仪。

相关文档
最新文档