零指数幂与负整数指数幂教案
初中数学中零指数幂与负整指数幂详解教案
初中数学中零指数幂与负整指数幂详解教案一、背景知识在数学中,指数是一种表示乘方的数学运算符号,它用于表示底数(基数)上幂次(指数)的运算。
一个数a的b次方,可以表示为ab,其中a是底数,b是指数。
但是,当底数为零或者负整数时,就会涉及到特殊的指数问题,这就是本次教案所要重点讲解的内容——零指数幂与负整指数幂。
对于初中学生来说,理解和掌握这些知识点是十分必要的。
二、知识点解析零指数幂:当底数为0时,幂为0,即0的任何次幂均为0。
例如:0³=0;0²=0;0¹=0;0⁰=1负整指数幂:当底数为非零实数a,指数为正整数n时,aⁿ表示a 的n次幂;当a≠0,n>0时,a−n称为a的负整数幂(倒数),它表示乘以n个因数a的倒数。
即:a⁻ⁿ = 1/aⁿ。
例如:2³=8;2²=4;2¹=2;2⁰=1;2⁻¹=1/2;2⁻²=1/4;2⁻³=1/8。
三、教学设计Step1:引入新知通过提问或者演示,引入”零指数幂“和”负整指数幂“的概念,让学生打好基础。
Step2:讲解零指数幂通过课件或者白板展示,向学生解释零指数幂的概念和特性,可以采用如下的方式进行:将0的任意次幂和其他数字的幂的结果进行比较:0³=0;2³=8;0²=0;2²=4;0¹=0;2¹=2;0⁰=1;2⁰=1;让学生通过对比发现,无论是什么数的0次幂都等于1,而0的任何次幂都等于0,这就是零指数幂的特性。
Step3:讲解负整指数幂通过课件或者白板展示,向学生解释负整指数幂的概念和特性,可以采用如下的方式进行:将一个数的正整数幂和负整数幂的结果进行比较:2³=8;2⁻³=1/8;2²=4;2⁻²=1/4;2¹=2;2⁻¹=1/2;让学生发现,当n>0时,aⁿ表示a的n次幂;当a≠0,n>0时,a−n称为a的负整数幂(倒数),它表示乘以n个因数a的倒数。
华师大版数学八年级下册《零指数幂与负整数指数幂》教学设计
华师大版数学八年级下册《零指数幂与负整数指数幂》教学设计一. 教材分析《零指数幂与负整数指数幂》是华师大版数学八年级下册的一章内容。
这一章主要介绍了零指数幂和负整数指数幂的概念及其运算性质。
教材通过具体的例子引导学生理解并掌握零指数幂和负整数指数幂的定义,再通过大量的练习让学生熟练运用其运算性质进行计算。
二. 学情分析学生在学习这一章内容之前,已经学习了有理数、实数等基础知识,对幂的概念和运算已经有了一定的了解。
但学生对负数和零的指数幂的理解可能会存在一定的困难,因此需要通过具体的例子和练习让学生加深对这两个概念的理解。
三. 教学目标1.了解零指数幂和负整数指数幂的概念。
2.掌握零指数幂和负整数指数幂的运算性质。
3.能够运用零指数幂和负整数指数幂的概念和运算性质解决实际问题。
四. 教学重难点1.零指数幂和负整数指数幂的概念。
2.零指数幂和负整数指数幂的运算性质。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生理解零指数幂和负整数指数幂的概念及其运算性质。
2.运用多媒体教学,通过动画和图片等形式展示零指数幂和负整数指数幂的运算过程,帮助学生形象地理解概念和运算性质。
3.提供大量的练习,让学生在实践中掌握零指数幂和负整数指数幂的运算。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)通过复习实数和幂的知识,引导学生思考零和负数的指数幂是什么。
2.呈现(15分钟)通过具体的例子,呈现零指数幂和负整数指数幂的定义和运算性质。
3.操练(15分钟)让学生进行一些零指数幂和负整数指数幂的计算练习,帮助学生理解和掌握其运算性质。
4.巩固(10分钟)通过一些应用题,让学生运用零指数幂和负整数指数幂的概念和运算性质解决实际问题。
5.拓展(5分钟)引导学生思考零指数幂和负整数指数幂在其他领域的应用,如科学研究、工程技术等。
6.小结(5分钟)对本节课的内容进行小结,强调零指数幂和负整数指数幂的概念及其运算性质。
七年级数学下册 零指数幂与负整数指数幂教学设计 苏科版
通过计算让学生找出规律
2.想一想P48
猜想:1=2( )
依上规律得:
左= 2÷2 = 1右= 2( 0),所以20= 1,即1 = 20
问:猜想合理吗?
教师讲述:我们知道,23÷23= 8÷8 = 1
,23÷23= 23-3=20,
所以我们规定:
a0= 1 (a≠0)
教学重点:a0= 1(a≠0), a-n= 1/ an(a≠0 ,n是负整数)公式规定的合理性。
教学难点:零指数幂、负整数指数幂的意义的理解
教学准备:皮尺、直尺、较厚的书本、计算器
教学过程
教学环节
教师活动
学生活动
设计意图
复习导入
提问:
同底数幂的除法法则是什么?
强调:法则的条件。
学生回答
(1)字母表示:
任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。
学生计算
23÷24=(2×2×2)÷(2×2×2×2)=1/2
学生计算23÷24=23-4=2-1
交流得到结论:2-1=1/2
学生举例
通过计算让学生推导出负指数幂计算公式(法则)
4.教学例2
例2:题略,详见P49
说明:强调运算过程,步骤尽可能细致些
理解公式规定的合理性,
并能与幂的运算法则一起进行运算。
作业
师布置作业:P51/3
学生独立作业
通过作业,牢固掌握本节课所学知识,并能运用知识计算。
板书:
零指数幂与负整数指数幂
零指数幂负整数指数幂
a0= 1 (a≠0) a-n= 1/ an(a≠0 ,n是正整数)
任何不等于0的数的0次幂等于1。任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。
【教案】零指数幂与负整数指数幂(3)
零指数幂与负整数指数幂 教学目标 1.知道负整数指数幂n a -=n a 1(a ≠0,n 是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.重点、难点 重点:掌握整数指数幂的运算性质.难点:会用科学计数法表示小于1的数.情感态度与价值观通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。
能利用事物之间的类比性解决问题。
教 学 过 程 教学设计 与 师生互动备 注 第一步:课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(是正整数);(2)幂的乘方:mn n m a a =)((是正整数);(3)积的乘方:n n n b a ab =)((n 是正整数); (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,是正整数,m >n);(5)商的乘方:n nn b a ba =)((n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗?4.计算当a ≠0时,53a a ÷53a a 233a a a ⋅21a ,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷53-a 2-a .于是得到2-a =21a (a ≠0)总结:负整数指数幂的运算性质:当n 是正整数时,n a -=n a 1(a ≠0).(注意:适用于m 、n 可以是全体整数.)第二步:例题讲解计算:2321326)3(------b a b a b a[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.第三步:随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算 (1) (x 32)2 (2)x 22 ·(2y)3 (3)(3x 22) 2 ÷(2y)3答案:1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81-2.(1)46y x (2)4x y(3) 7109y x第四步:课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3 答案:1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后小结 :课后反思:。
华师大版数学八年级下册16.4《零指数幂与负整数指数幂》(第2课时)教学设计
华师大版数学八年级下册16.4《零指数幂与负整数指数幂》(第2课时)教学设计一. 教材分析《零指数幂与负整数指数幂》是华师大版数学八年级下册16.4章节的内容,本节课的主要内容是让学生掌握零指数幂和负整数指数幂的定义及其性质。
这一部分内容是指数幂的基础,对于学生理解指数幂的概念和应用具有重要的意义。
教材通过例题和练习题的形式,帮助学生理解和掌握零指数幂和负整数指数幂的计算方法和应用。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对指数幂的概念和计算方法有一定的了解。
但是,对于零指数幂和负整数指数幂的理解可能会存在一定的困难。
因此,在教学过程中,需要引导学生通过已有的知识体系,理解和掌握新的概念。
三. 教学目标1.理解零指数幂和负整数指数幂的定义。
2.掌握零指数幂和负整数指数幂的计算方法。
3.能够应用零指数幂和负整数指数幂解决实际问题。
四. 教学重难点1.零指数幂和负整数指数幂的定义。
2.零指数幂和负整数指数幂的计算方法。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主发现零指数幂和负整数指数幂的定义和性质。
同时,结合例题和练习题,让学生通过实际操作,巩固所学的知识。
六. 教学准备1.PPT课件。
2.例题和练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾指数幂的概念和计算方法。
然后,提出问题:“如果一个数的指数是0或者负数,该如何计算呢?”让学生思考和讨论。
2.呈现(10分钟)根据学生的讨论,给出零指数幂和负整数指数幂的定义。
零指数幂表示一个数的0次方,等于1;负整数指数幂表示一个数的负整数次方,等于该数的倒数的正整数次方。
3.操练(10分钟)让学生通过计算一些具体的例子,来理解和掌握零指数幂和负整数指数幂的计算方法。
可以让学生分组进行讨论和计算,然后分享结果。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的知识。
可以设置一些选择题和填空题,让学生快速作出判断和填写答案。
零指数幂与负整数指数幂教案
零指数幂与负整数指数幂教案一、教学目标1. 理解零指数幂和负整数指数幂的概念。
2. 掌握计算零指数幂和负整数指数幂的方法。
3. 能够应用所学知识解决实际问题。
二、教学重点1. 零指数幂的性质及计算方法。
2. 负整数指数幂的性质及计算方法。
三、教学难点1. 理解零指数幂的概念及其特殊性质。
2. 理解负整数指数幂的概念及其特殊性质。
四、教学准备1. 教材:教科书P页。
2. 工具:黑板、粉笔。
五、教学过程【导入】1. 引入问题:如果一个正整数的指数是0,这个正整数是多少?如果一个正整数的指数是负整数,这个正整数是多少?请举例说明。
2. 学生回答问题并讨论。
【讲授】1. 零指数幂的概念:零的任何正整数次方都等于0,即0^n = 0 (n ≠ 0)。
零的零次方没有定义,即0^0 是无意义的。
2. 零指数幂的性质:a) 零的任何正整数次方都等于0,即0^n = 0 (n ≠ 0)。
b) 零的零次方没有定义,即0^0 是无意义的。
3. 负整数指数幂的概念:对于非零实数a和整数n,a^-n表示1/a^n。
4. 负整数指数幂的性质:a) a^-n = 1/a^n (a ≠ 0, n为正整数)b) a^(-m/n) = n√(1/a^m),其中a ≠ 0, m为整数,n为正整数【示例】1. 计算零指数幂:a) 0^2 = 0b) 0^3 = 0c) 0^4 = 0d) ...2. 计算负整数指数幂:a) (-2)^-3 = -1/(-2)^3 = -1/(-8) = -1/-8 = 1/8b) (-5)^-2 = -1/(-5)^2 = -1/25【练习】请计算下列各式的值:1. (-3)^-42. (-7)^-33. (-8)^-2【拓展应用】根据所学知识解决以下问题:问题:某地气温为-5℃,经过几天的降温后,气温变为-10℃。
求气温降低的倍数。
解答:设降低的倍数为x,则有(-5)^x = -10。
根据负整数指数幂的性质可得1/(-5)^{-x} = -1/10。
零指数幂与负整数指数幂教学设计
零指数幂与负整数指数幂教学设计教学设计:零指数幂与负整数指数幂一、教学目标:1. 了解零指数幂的概念及性质。
2. 学习负整数指数幂的计算方法。
3. 能够灵活运用零指数幂和负整数指数幂进行数学运算和问题解决。
二、教学准备:教师:准备教学课件、教学板书。
学生:准备课本、笔记本、铅笔、计算器。
三、教学过程:步骤一:导入引入指数幂的概念,复习正整数指数幂的运算和性质,并提出相关问题,激发学生的思考与讨论。
步骤二:介绍零指数幂的概念1. 引导学生思考:如果一个数的指数为0,这个数的幂是什么?2. 逐步解释并讨论零指数幂的概念及性质,强调任何非零数的零次幂都等于1。
3. 提供一些例题,引导学生理解和运用零指数幂的计算方法。
步骤三:讲解负整数指数幂的概念1. 引导学生思考:如果一个数的指数为负数,这个数的幂是什么?2. 逐步解释并讨论负整数指数幂的概念及性质,强调任何非零数的负整数次幂都等于该数的倒数的正整数次幂。
3. 提供一些例题,引导学生理解和运用负整数指数幂的计算方法。
步骤四:练习与巩固1. 教师出示一些练习题,供学生在课堂上尝试解答。
2. 学生互相讨论,解答问题并纠正错误。
3. 老师给予答案,供学生核对。
步骤五:拓展应用1. 学生根据学习的零指数幂和负整数指数幂的概念,解决一些实际问题。
2. 学生通过小组讨论,分享并展示解决问题的方法和答案。
3. 教师总结和点评,激发学生对数学运算应用的兴趣和思考能力。
四、课堂总结:教师对学生学习的内容进行回顾和总结,强调零指数幂和负整数指数幂的重要性和应用价值。
五、课后作业:布置一些与零指数幂和负整数指数幂相关的作业,巩固学生的学习成果。
六、课堂反思:教师对本节课的教学效果进行总结和评价,针对存在的问题进行反思和改进。
零指数幂与负整数指数幂优秀教案
零指数幂与负整数指数幂优秀教案在数学教学中,指数运算是一个重要的概念。
指数运算的结果包括正整数指数幂、零指数幂和负整数指数幂。
本教案将重点介绍零指数幂和负整数指数幂的特点及运算规律,以便帮助学生更好地理解和应用这些概念。
一、零指数幂的特点和运算规律1. 零的任何正整数指数幂都等于1:0ⁿ=1,其中n为任意正整数。
2. 零的零指数幂是没有定义的:0⁰。
3. 零的负整数指数幂也是没有定义的。
二、负整数指数幂的特点和运算规律1. 任何非零数的负整数指数幂等于该数的倒数的正整数指数幂:a⁻ⁿ=1/aⁿ,其中a为非零数,n为任意正整数。
2. 任何数的负整数指数幂等于倒数的负整数指数幂的倒数:a⁻ⁿ=1/(a⁻ⁿ),其中a为非零数,n为任意正整数。
3. 非零数的负整数指数幂和零的负整数指数幂都是没有定义的。
三、综合运用1. 零的正整数次幂为1:0ⁿ=1,其中n为正整数。
2. 零的负整数次幂没有定义。
3. 非零数的正整数次幂和负整数次幂之间的运算规律:aⁿ⁺ᵐ=aⁿ⋅aᵐ,aⁿ/aᵐ=aⁿ⁻ᵐ,其中a为非零数,n和m为任意整数。
四、教学活动设计为了帮助学生更好地理解和应用零指数幂和负整数指数幂的概念和运算规律,可以设计以下教学活动:1. 活动一:探索零指数幂的特点- 让学生观察并讨论0⁰和0ⁿ(n为正整数)的结果是否有定义,引导学生发现零指数幂的特点。
- 给学生一些数学表达式,让他们判断其中哪些是零指数幂,哪些不是,并解释原因。
- 引导学生总结出零指数幂的运算规律。
2. 活动二:探索负整数指数幂的运算规律- 让学生观察并讨论a⁻ⁿ和1/aⁿ(a为非零数,n为正整数)的关系,引导学生发现负整数指数幂的运算规律。
- 引导学生举例验证负整数指数幂的运算规律,并总结出相应的运算规律。
3. 活动三:综合运用零指数幂和负整数指数幂- 给学生一些综合性的数学表达式,让他们运用所学的知识化简、计算或解释结果。
- 设计一些小组合作活动,让学生在合作中探索更多的数学问题,比如让他们找出一组数,使得其中的数的2ⁿ结果为0或负数。
初中数学《零指数幂与负整指数幂》教案
初中数学《零指数幂与负整指数幂》教案17.5.2科学记数法教学目标:1、能较熟练地运用零指数幂与负整指数幂的性质进行有关运算。
2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。
重点难点:重点:幂的性质(指数为全体整数)并会用于运算以及用科学记数法表示一些绝对值较小的数难点:明白得和应用整数指数幂的性质。
教学过程:一、复习练习:1、;=;=,=,=。
2、不用运算器运算:(2)22-1+二、指数的范畴扩大到了全体整数.1、探索现在,我们差不多引进了零指数幂和负整数幂,指数的范畴差不多扩大到了全体整数. 那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判定下列式子是否成立.(1);(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)22、概括:指数的范畴差不多扩大到了全体整数后,幂的运算法则仍旧成立。
3、例1运算(2mn2)-3(mn-2)-5 同时把结果化为只含有正整数指数幂的形式。
解:原式=2-3m-3n-6m-5n10= m-8n4=4练习:运算下列各式,同时把结果化为只含有正整数指数幂的形式:(1)(a-3)2(ab2)-3;(2)(2mn 2)-2(m-2n-1)-3.三、科学记数法1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a10n 的形式,其中n是正整数,1∣a∣<10.例如,864000能够写成8.64105.2、类似地,我们能够利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,立即它们表示成a10-n的形式,其中n是正整数,1∣a ∣<10.3、探究:10-1=0.110-2=10-3=10 -4=10-5=归纳:10-n=例如,上面例2(2)中的0.000021 能够表示成2.110-5.4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.分析我们明白:1纳米=米.由=10-9可知,1纳米=10-9米.因此35纳米=35 10-9米.而3510-9=(3.510)10-9=35101+(-9)=3.510-8,因此那个纳米粒子的直径为3.510-8米.5、练习①用科学记数法表示:(1)0.000 03;(2)-0.0000064;(3)0.0000314;(4)2021000.②用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_________秒;(2)1毫克=_____ ____千克;(3)1微米=_________米;(4)1纳米=_________微米;(5)1平方厘米=_________平方米;(6)1毫升=_________ 立方米.本课小结:引进了零指数幂和负整数幂,指数的范畴扩大到了全体整数,幂的性质仍旧成立。
鲁教版(五四制)六年级数学下册第六章第4节《零指数幂与负整数指数幂》优秀教学案例
4.注重个体差异,关注学生在学习过程中的困惑,及时给予针对性指导,使学生真正理解并掌握零指数幂与负整数指数幂。
5.结合课后作业,巩固所学知识,提高学生的数学应用能力。
二、教学目标
(一)知识与技能
本节课结束时,学生应掌握零指数幂与负整数指数幂的概念,能够理解并解释它们在实际情境中的应用。具体包括:
1.通过生活实例引入零指数幂与负整数指数幂的概念,让学生感受数学与生活的紧密联系。
2.组织小组讨论,让学生在合作中发现规律,归纳零指数幂与负整数指数幂的性质。
3.设计具有层次性的练习题,让学生在实践中运用所学知识,提高解决问题的能力。
4.注重个体差异,关注学生在学习过程中的困惑,及时给予针对性指导,使学生真正理解并掌握零指数幂与负整数指数幂。
(二)讲授新知
在学生对零指数幂与负整数指数幂产生兴趣后,我开始讲授新知。具体包括:
1.讲解零指数幂:明确零的零次幂等于1,引导学生理解零指数幂的实际意义。
2.讲解负整数指数幂:解释负整数指数幂的含义,引导学生掌握负整数指数幂与正整数指数幂的转化方法。
3.举例说明:给出具体例子,让学生观察和分析,引导学生运用零指数幂与负整数指数幂解决问题。
1.了解零指数幂的定义,掌握零的零次幂等于1的性质。
2.理解负整数指数幂的含义,掌握负整数指数幂与正整数指数幂的转化方法。
3.能够运用零指数幂与负整数指数幂解决实际问题,如计算稀释溶液的浓度、计算物体在给定温度下的冷却速度等。
(二)过程与方法
在本节课的教学过程中,我将引导学生通过观察、思考、讨论、实践等方法,深入理解零指数幂与负整数指数幂的概念和性质。具体包括:
《零指数幂与负整数指数幂》教学课件
在热力学中,零指数幂和负整数指数 幂可以用于描述气体压力、温度等物 理量的变化规律,例如理想气体定律 。
生物用于描述生物种群的增长 和衰减规律,例如细菌繁殖、人口增 长等。
在数学问题中的应用
代数方程的求解
零指数幂和负整数指数幂可以用于求解代数方程,例如解一元二 次方程、一元高次方程等。
详细描述
通过具体例题的分析和解答,可以深入理解负整数指数幂的运算方法和应用。例如,计算(-3)^(-2)和(1/2)^(-3) 等题目,可以帮助学生更好地掌握负整数指数幂的运算规则。
04
零指数幂与负整数指数幂的应用
在实际问题中的应用
金融计算
物理学中的热力学
在金融领域,零指数幂和负整数指数 幂可以用于计算复利、折现等金融模 型,帮助投资者和决策者进行经济预 测和决策。
根据指数运算法则,a^(m+n) = a^m * a^n,这是指数运算法则的基 本性质。
03
负整数指数幂
定义与性质
总结词
负整数指数幂的定义和性质是学习数学的基础,需要掌握其 基本概念和运算规则。
详细描述
负整数指数表示的是倒数关系,即a^(-n)表示a的倒数的n次 方。负整数指数具有如下性质:a^(-n)=1/a^n,其中a≠0, n是正整数。
学习目标
掌握零指数幂和负整数指数幂的定义
01
学生能够理解并掌握零指数幂和负整数指数幂的基本定义。
掌握运算规则
02
学生能够理解并掌握零指数幂和负整数指数幂的运算规则,并
能进行简单的计算。
培养数学思维能力
03
通过学习零指数幂和负整数指数幂,培养学生的数学思维能力
,提高其解决问题的能力。
02
零指数幂与负整数指数幂优秀教案
零指数幂与负整数指数幂优秀教案一、教学目标1、知识与技能目标理解零指数幂和负整数指数幂的意义。
掌握零指数幂和负整数指数幂的运算性质,并能熟练进行相关计算。
2、过程与方法目标通过观察、类比、归纳等数学活动,经历零指数幂和负整数指数幂概念的形成过程,培养学生的数学思维能力和归纳能力。
通过运用零指数幂和负整数指数幂的运算性质解决问题,提高学生的运算能力和解决问题的能力。
3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
二、教学重难点1、教学重点零指数幂和负整数指数幂的意义和运算性质。
2、教学难点零指数幂和负整数指数幂的运算性质的理解和应用。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾正整数指数幂的运算性质:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
提出问题:当指数为零时或为负整数时,幂的运算又该如何进行呢?从而引出新课——零指数幂与负整数指数幂。
2、讲授新课(1)零指数幂计算:\(5^2÷5^2\)引导学生根据同底数幂的除法法则进行计算:\(5^2÷5^2 = 5^{2 2} = 5^0\),而\(5^2÷5^2 = 1\),所以\(5^0 = 1\)。
再让学生计算\(a^m÷a^m\)(\(a≠0\),\(m\)为正整数),得到\(a^m÷a^m = a^{m m} = a^0\),且\(a^m÷a^m = 1\),所以\(a^0 = 1\)(\(a≠0\))。
强调零指数幂的意义:任何不等于零的数的零次幂都等于\(1\)。
(2)负整数指数幂计算:\(5^2÷5^5\)引导学生根据同底数幂的除法法则进行计算:\(5^2÷5^5 = 5^{2 5} = 5^{-3}\),同时\(5^2÷5^5 =\frac{5×5}{5×5×5×5×5} =\frac{1}{5×5×5} =\frac{1}{5^3}\),所以\(5^{-3} =\frac{1}{5^3}\)。
零指数幂与负整数指数幂教学设计
零指数幂与负整数指数幂课标要求分析:了解零指数幂与负整数指数幂的意义和基本性质。
教材分析:教材中引入零指数幂与负整数指数幂的意义和性质,并明确指出他们是规定的,教材中所设计的猜想的过程,实际上是用来体会规定的合理性。
零指数幂与负整数整数幂是原正整数指数幂的性质和计算的自然延续。
学情分析:零指数幂和负整数指数幂是在学生学习了正整数指数幂有关性质的基础上进行学习的,是为了将幂的相关性质和运算能够在整数指数幂条件下也能够进行。
是数学知识的拓展和延伸。
符合数学知识的发展规律,也符合学生的认知规律。
教学目标:1、 理解零指数幂与负整数指数幂的意义和性质2、 能用零指数幂及负整指数幂的意义进行计算。
3、 通过计算,归纳学生体会a 0=1,a -p=p1a 这一规定的合理性。
重点难点关键重点:是零指数幂与负整指数幂的意义的理解 难点:是应用零指数幂与负整指数幂的意义进行运算 关键:是体会a 0=1,a -p =p1a 这一规定的合理性. 教法:启发引导。
学法:自主学习,合作探究 教学过程:零指数幂与负整数指数幂教学设计方案板书:零指数幂与负整数指数幂零指数幂负整数指数幂(a≠0 ,n是正整数)a0 = 1 (a≠0) a-n = 1a n任何不等于0 的数的0次幂等于1。
任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。
设计思路1.引入新课时,开门见山地向学生展示教学目标,先复习同底数幂的除法法则。
同时提问学生在除法法则中当指数m=n或m<n时,法则是否还成立从而引出零指数幂与负整数指数幂概念形成和它的合理性验证其目的是想让学生在上课一开始,便明确本节课的主题,从而将学生的注意力吸引到如何建立零指数幂的概念上来2.“指数”这部分内容无论对于数学的后继学习很重要;而学好这部分内容的关键是把几种指数幂的定义讲深讲透。
只要学生把握了各种指数幂的意义,指数运算就不难进行了。
3.零指数幂和负整数指数幂是通过规定来明确其意义的,在教学中,让学生了解作出这样规定的原因及其合理性,有利于学生了解这样两个基本事实:一是数学符号的意义是可规定的;二是每一个规定必须是合理,不是任意的。
七年级数学下册 11.6零指数幂与负整数指数幂教案 (新版)青岛版
零指数幂与负整数指数幂教学目标:1.通过数字游戏的自主探究,猜想零指数幂和负整数指数幂的意义,并尝试验证其规定的合理性。
2.掌握零指数幂和负整数指数幂在实际问题中的应用。
3.在经历猜想—验证的探究活动中发展推理能力,并能够流利地表达自己的观点。
教学重点:对零指数幂和负整数幂的意义的猜想和验证过程;教学难点:零指数幂和负整数指数幂的意义在实际问题中的应用以及它们的逆用。
学法指导:猜想——验证——应用学生课前知识储备:(设计意图:通过复习让学生更好的用旧知识的迁移推导新知识)用符号语言表达“同底数幂的除法法则”:————————————文字表述:————————————法则的使用条件:————————————理由:————————————情境导入:(以生动形象的动点问题导入新课,激发学生探求欲。
)数字游戏:(投影)一动点P按照“跳中点”的规则,从数轴上的数字16处出发,第一次跳到数字8处,第二次跳到4处,第三次跳到2处,按照此规律,你能依次说出其跳动到的其他数字吗?你能用2的幂的形式来表达这些数字吗?课内探究活动设计:验证猜想:(老师与学生一起完成)1.根据除法运算方法直接计算:23÷23= ()÷()=()2.根据同底数幂的除法运算性质计算:23÷23=2() = 2()结论: 20=()类比零指数幂的验证过程自主验证负整数指数幂的意义:(学生自主完成,“一帮一”小队分工、合作、交流、汇报)(1) 23÷24(2) 22÷25(3) 3÷33要求:1. 请每一小队的队员用除法运算计算,队长用同底数幂相除的法则计算。
2. 对照你们计算的结果,每一小队汇报你们发现的结论。
3. 你能用一个公式表达这一发现吗?(队员、队长分别汇报,并汇报自己小队发现的结论)问题跟进:你能发现负整数指数幂转化为常规数字的转化规律吗?“一帮一”小队交流、汇报。
自学质疑:学生自主阅读课本96页、98页,要求:• 1.用符号语言和文字用语言两种语言熟记法则。
04 课题:零指数与负整数指数幂 沪科版七年级数学下册新授课教案
课题:零指数与负整数指数幂【学习目标】1.理解零指数幂的意义,并会进行相关运算.2.理解负整数指数幂的意义,熟练进行整数指数幂的运算.【学习重点】理解零指数幂和负整数指数幂的意义,熟练进行整数指数幂的运算.【学习难点】负整数指数幂的理解和计算.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律,从猜测到探索到理解知识.方法指导:1.任意非零数的零次幂为1,底数不能为零.2.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.一、情景导入 生成问题旧知回顾:1.同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?2.试按约分或同底数幂相除两种方法计算,你有什么发现?35÷35解法一 35÷35=1. 解法二 35÷35=35-5=30,30=1.二、自学互研 生成能力知识模块一 零指数幂阅读教材P51,完成下列的问题:零指数幂的意义是什么?它是怎样得到的?答:我们约定:a0=1(a≠0).即任何一个不等于零的数的零次幂都等于1.由被除式与除式相同,可得a n÷a n=1.另一方面,由同底数幂相除法性质可得a n÷a n=a0,∴a0=1(a≠0).范例1.填空:(1)52x-3=1,则x=32;(2)若(x+b)0=1成立,则x的取值范围是x≠-b.仿例 计算:2 0150-|2|=-1.若0.000 1x=1,则x=0.知识模块二 负整数指数幂阅读教材P52,完成下列问题:负整数指数幂的意义是什么?如何得到?答:我们约定:a-p=1a p(a≠0,p是正整数).任何一个不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数.由分数约分:a m÷a n=a ma n=1a n-m=1a p(p=n-m).仿照同底数幂的除法性质进行计算,得a m÷a n=a m-n=a-p(p=n-m).学习笔记:仿例2、仿例3的计算中,当正整数指数扩充为整数指数后,幂的四个运算性质仍然适用.学生要熟练使用.行为提示:找出自己不明白的问题,先对学,再群学,对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.检测可当堂完成.教会学生整理反思. 范例2.有下列四个等式①(a-1)0=1(a≠0);②a4÷a4=a;③2x-3=1(2x)3;④3-1=13.其中正确的是④.(填序号)仿例1.填空:2-1=12;(-2)-2=14;-2-2=-14.仿例2.计算:(1)(-2xy2)-3; (2)(nm)-2; (3)40×3-2.解:(1)原式=1(-2xy2)3=-18x3y6;(2)原式=m2n2;(3)原式=1×19=19.仿例3.计算:(1)(x-5y-2z-3)2; (2)x15÷(x6·x-3)2;解:原式=x-10y-4z-6=1x10y4z6; 解:原式=x15÷x6=x9;(3)(-12x4y2)-2÷(x2y-3)2.解:原式=(-12)-2x-8y-4÷x4y-6=4x-8y-4÷x4y-6=4x-12y2=4y2x12.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 零指数幂知识模块二 负整数指数幂四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:___________________________________________2.存在困惑:____________________________________________。
零次幂与负整数指数幂教学设计
§2.3.2零次幂与负整数指数幂一、三维目标:1.知识与技能:①.进一步理解整数指数幂的运算性质,并解决一些实际问题;②.理解零指数幂和负指数幂的意义.2.过程与方法:①.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力; ②.提高学生观察、归纳、类比、概括等能力.3.情感态度与价值观:在发展推理能力和有条理的语言和符号表达能力的同时。
进一步体会学习数学的兴趣、培养学生学习数学的信心,感受数学的内在美。
二、重难点重点:负整指数幂的意义。
难点:负整指数幂的意义。
三、教学方法:启发——发现,交流——总结四、教学准备:投影图片五、学情分析:幂的运算性质学生基本掌握,学习了分式指数后,现在欲将推应用范围推广到整数范围内,其有关概念已经建立,只是运算法则能否适用,因此本节的重点和关键是抓住应用范围推广的推理。
教课书重点讨论了n m n m a a a +=⋅这条性质能否扩展到整数指数的情形,通过对不同类型的整数指数进行验证,归纳出肯定的结论。
接着又通过“探究”栏目提出:原来适合于正整数指数幂的其他运算性质,是否适合于全体整数指数幂?这里是引导学生针对负整指数以及零指数对这些性质进行验证。
进而得到肯定的结论,这些结论使得这些性质得到更加广泛的应用,从而为式的运算带来了更大的便利。
指数幂的性质应用范围拓展后,幂的运算性质可以化简为三条,记忆更加方便,式的运算又是一次质的飞跃。
六、教学流程:Ⅰ.提出问题,创设情境:问题:1.幂的意义;2.正整数指数幂的运算性质有哪些?3.零指数幂的意义.通过回顾有关幂的运算性质,帮助学生学生回顾这些运算性质得出的过程,为探索负整指数幂的意义及其运算打好基础,并从学生已有的知识经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
Ⅱ.导入新课:思考:一般地,m a 中指数m 可以是负整数吗?如果可以,那么负整指数幂 表示什么? 让学生联系学过的分式,对指数发现新的意义, 中m 是负数时,m a 这个式子可以认为是一个分式。
八年级数学下册《零指数幂与负整数指数幂》教案、教学设计
-及时批改作业,给予学生反馈,指导学生改进学习方法。
-鼓励学生主动参与作业,培养学生的学习兴趣和自主学习能力。
1.学生在探究零指数幂与负整数指数幂的过程中,可能会对它们的定义和运算性质产生疑问。教师需要耐心引导,帮助学生建立正确的概念。
2.部分学生对数学学习缺乏兴趣,课堂参与度不高。教师应通过生动有趣的实例和问题,激发学生的学习兴趣,提高学生的课堂参与度。
3.学生在数学运算过程中,可能会出现错误。教师应及时发现并纠正学生的错误,指导学生总结经验,提高运算准确性。
-及时反馈,针对学生的错误,进行针对性的讲解和指导,帮助学生查漏补缺。
4.课堂小结:
-引导学生总结零指数幂与负整数指数幂的概念和运算性质,形成知识网络。
-鼓励学生分享学习心得,培养他们的反思能力和自主学习能力。
5.课后作业:
-设计分层作业,满足不同层次学生的学习需求,让每个学生都能得到有效提高。
-鼓励学生利用网络资源、数学软件等辅助工具,探索指数幂的更多应用,拓宽视野。
4.针对不同学生的学习能力,教师应采取分层教学,关注每一个学生的成长,使他们在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
1.零指数幂的理解与运算性质的应用是本章节的重点,学生需要通过具体实例,理解零指数幂的定义,并能够灵活运用其运算性质解决问题。
-教师应通过直观的图形展示和实际操作,帮助学生形象理解零指数幂的概念,并通过多样化的问题设计,巩固学生对运算性质的掌握。
5.数学日记:要求学生撰写数学日记,记录学习零指数幂与负整数指数幂的过程中的心得体会、疑问和收获,促进学生反思性学习。
6.网络资源学习:鼓励学生利用网络资源,如在线教育平台、数学论坛等,寻找与零指数幂与负整数指数幂相关的学习资料,拓宽知识视野。
零次幂与负整数指数幂》教案
零次幂与负整数指数幂》教案零次幂与负整数指数幂教案概述该教案旨在介绍数学中的零次幂和负整数指数幂的概念、定义和计算方法。
通过本教案的研究,学生将能够理解和运用零次幂和负整数指数幂的特性和性质。
研究目标掌握零次幂的定义和性质理解负整数指数幂的定义和性质能够进行简单的零次幂和负整数指数幂的计算教学内容1.零次幂零次幂的定义和特性零的零次幂的定义和特性非零数的零次幂的定义和特性2.负整数指数幂负整数指数幂的定义和特性负整数指数幂和零次幂的关系负整数指数幂和正整数指数幂的关系教学步骤1.引入零次幂的概念,通过例子和练让学生理解零次幂的定义和性质。
2.引入负整数指数幂的概念,与零次幂进行对比,让学生理解负整数指数幂的定义和性质。
3.通过练,让学生能够熟练计算简单的零次幂和负整数指数幂。
4.总结本节课的内容,强调零次幂和负整数指数幂的重要性和应用。
资源准备教材:数学教科书或教学参考书课件:包含教学内容和示例的幻灯片或投影片练册:包含练题的练册或工作纸计算工具:计算器(可选择性使用)教学评估通过课堂练和问题答辩的形式,检查学生对零次幂和负整数指数幂的理解和应用能力。
评估学生能否正确定义和计算零次幂和负整数指数幂,并通过解释其特性和性质展示对概念的理解。
扩展活动鼓励学生进行更复杂的数学问题探究,如研究负整数指数幂和指数函数的关系,或者解决实际问题中涉及零次幂和负整数指数幂的计算。
参考资源Baker。
Alan。
(2019)。
*The Properties of ___ [英文参考资源仅供参考,具体的教学内容和示例可根据实际情况进行调整和改编。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)7-3÷7-5;(2)3-1X 36;(3)【(1/2)-5】2;(4)(-8)0÷(-8)-2
归纳:引入零指数幂和负整数指数幂后,正整数指数幂的运算性质在指数是整数时仍然适用。
4.例2计算:(1)a÷a-2;(2)(x3)-3÷x-7;(3) x0÷
解:(1)a÷a-2=a1-(-2)=a3;
10=10( ),2=2( )
猜一猜:1=10( )1=2( )
=10( ) =2( )
=10( ) =2( )
=10( ) =2( )
负整数指数幂的意义: ( ,p为正整数)或 ( ,p为正整数)
议一议
某种细胞分列时,1个细胞分裂1次为2个,分裂2次变为4个,分裂3次变为8个......你能由此说明20=1的合理性吗
(2)(x3)-3÷x-7=x3X(-3)÷x-7=x-9÷x-7=x-9-(-7)=x-2;
(3) x0÷=x0-2+(-3)=x-5.
5.例3计算:(5 X 105)X(2 X 10-6)
解:(5 X 105)X (2 X 10-6)=5 X 105X 2 X 10-6
=(5 X 2)X(105X 10-6)
=10 X 10-1
=100=1
6.练习教科书P33随堂练习。
4、课堂总结,发展潜能
a0=1(a≠0) 即:任何非0的数的0次幂都等于1。
负整数指数幂的意义: ( ,p为正整数)或 ( ,p为正整数)
五、布置作业,练习提高
1、教科书P32习题第1、2题。
2、教科书P32习题第1、2题。
板书设计
教后小记
3、举例及应用
1.例1.用小数或分数表示下列各数:
(1)10-3;(2)70X 8-2;(3)X 10-4.
解:(1)10-3=1/103=1/1000=;(2)70X 8-2=1 X 1/82=1/64;
(3)X 10-4= X 1/104= X =.
2.练习. 课本第32页随堂练习的第1题.
3.议一议
零指数幂与负整数指数幂教案
张家坡中心学校13-14学年第二学期
初一年级数学教案
课题
零指数幂与负整数指数幂
备课时间
主备人
周世维
审核人
课型
新授课
上课时间
授课人
序号
13
教学目标
1.能说出能正确地运用零指数幂与负整数指数幂的运算法则进行有关运算.
教学重点
会运用零指数幂与负整数指数幂的运算法则进行有关运算.
教学难点
会运用零指数幂与负整数指数幂的运算法则进行有关运算.
教学过程教学内容师生活动教法学法
二次备课
教学过程
一、知识要点回顾
1.复习同底数幂的除法法则。
2.做一做
(1) (2) (3) (4) =(5) = (6)(-ab)5÷(ab)2=
3.试一试
计算:32÷32103÷103am÷am(a≠0)
= (a≠0)
32÷32=3( )=3( )103÷103=10( )=10( )am÷am=a( )=a( )(a≠0)
于是规定:a0=1(a≠0)即:任何非0的数的0次幂都等于1。
2、探索,概括
想一想:10000=104,16=24
1000=10( ),8=2( )
100=10( ),4=2( )