自由度计算凸轮与连杆机构
西南石油大学《机械设计基础》(II)48学时作业参考
第二章 平面机构的自由度和速度分析习 题2-2抄画图2-26所示机构简图,补注构件号、运动副符号、计算自由度F 。
若有局部自由度、复合铰链、虚约束,请在图上明确指出。
解:活动构件n=4A 处为复合铰链,3’处为虚约束,无局部自由度。
2214243 23=⨯-⨯-⨯=--=HL P P n F(a) 周转轮系解:活动构件n=82为无局部自由度,无复合铰链,无虚约束11111283 23=⨯-⨯-⨯=--=HL P P n F(b) 锯木机机构解:活动构件n=6D 处为复合铰链,有3个转动副,无虚约束,无局部自由度。
1317263 23=⨯-⨯-⨯=--=HL P P n F(c) 连杆齿轮组合机构解:活动构件n=9无复合铰链,无虚约束,无局部自由度。
10113293 23=⨯-⨯-⨯=--=HL P P n F(d) 多杆机构解:活动构件n=7A 、B 、C 、D 处为复合铰链,四处的转动副数均为2,无虚约束,无局部自由度。
2318273 23=⨯-⨯-⨯=--=HL P P n F(e) 连杆齿轮组合机构解:活动构件n=7滚子5和9处存在局部自由度,同时D’处为虚约束,无复合铰链。
1219273 23=⨯-⨯-⨯=--=HL P P n F(f) 凸轮连杆机构图2-26 几种机构运动简图2-3画出图2-27所示机构的运动简图并计算自由度F 。
试找出原动件,并标以箭头。
解:活动构件n=3无复合铰链,无局部自由度,无虚约束。
1014233 23=⨯-⨯-⨯=--=HL P P n F图2-27(a )解:活动构件n=4无复合铰链,无局部自由度,无虚约束。
1115243 23=⨯-⨯-⨯=--=HL P P n F图2-27(b )解:活动构件n=3无复合铰链,无局部自由度,无虚约束。
1014233 23=⨯-⨯-⨯=--=HL P P n F图2-27(c )图2-27 几种机构运动简图2-4试绘制图2-28所示机构的运动简图,并计算其机构的自由度F 。
机械原理例题第二章机构分析
12
基本概念题
13
1.选择题:
1)当机构的自由度F>0,且 有确定的相对运动。
B 原动件数,则该机构即具
A.小于
B.等于 C.大于 D.大于或等于
2)有两个平面机构的自由度都等于1,现用一个带有两铰
链的运动构件将他们串成一个平面机构,则其自由度等 于 B。
A.0 B.1 C.2
3)机构中的构件是由一个或多个零件所组成,这些零件间 B产生任何相对运动。
选取比例尺作机构运动简图, 如图所示。
求自由度: n = 3, Pl = 4, ph =0,
F = 3n - 2pl - ph = 3×3-2×4-0 = 1
21
2-16:计算图示机构的自由度: (a)齿轮——连杆组合机构
4
A 3
B
C 2
4
1
D
解:
A点是三构件相铰接的复 合铰链;
n = 4, pl = 5, ph = 1 F = 3n - 2pl - ph
= 3×8-2×11-1 = 1 高副低代
n = 9, pl = 13, ph = 0 F = 3n - 2pl - ph = 3×9-2×13 = 1 机构的组成: 该机构为Ⅲ级机构。
30
n = 9, pl = 12, ph = 2 F = 3n - 2pl - ph
= 3×9-2×12-2 =1
3
例3:图示机构中,AB∥=EF ∥=CD,试计算机构自由度。
G H
C D
I
解:
C处为复合铰链, m=3;
E
B G处为局部自由度;有一个
虚约束。
F A
I处有一个高副虚约束。
机构ABCDEF为平行四边形机 构,构件EF及引入的约束为虚 约束。
项目一 平面机构的自由度计算
• 计算时应将齿轮3及其引入的约束去掉来计算
• 同理,将齿轮2当作虚约束去掉,完全一样 • 目的:为了改善构件的受力情况 动画
2 1 5 4 3
F=3n-2PL-PH =3 3-2 2 -2
=3
50
51
机械设计基础 —— 平面连杆机构
4、两构件上联接点的轨迹重合
6
低副:转动副、移动副(面接触) 低自由度
限制沿X,Y轴运动,只能绕O轴 转动.2个约束,一个自由度.
y
限制沿Y轴移动和O轴转动,只能 沿X轴移动,2个约束,一个自由度.
y x
o
x
o7Biblioteka 移动副 转动副21
2 1
8
高副:齿轮副、凸轮副(点、线接触)
保留2个自由度,带进1个约束.
高自由度
n
n
t
t
t
n
B C B
C
D
D
A
E
A
C
B A E
F =3n-2pl-ph = 3 2-2 3-0=0
F =3n-2pl-ph = 3 3-2 5-0= -1
F =3n-2pl-ph = 3 4-2 5-0= 2
F=0,刚性桁架,构件之间无相对运动 原动件数小于F,各构件无确定的相对运动 原动件数大于F,在机构的薄弱处遭到破坏
57
例4:平炉渣口堵赛机构 F=3n-2PL-PH
=3 6 - 2 8 -1
=1
7
7 1 2
6 5
3
4
58
例5:锯木机机构 F=3n-2PL-PH
9 9 7
8
5
4 3 6 2 9 1
机械原理习题参考答案
习题参考答案第二章机构的结构分析2-2 图2-38所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。
4351 2解答:原机构自由度F=3⨯3- 2 ⨯4-1 = 0,结构均可:1为滚子;2为摆杆;3为滑块;4为滑杆;5为齿轮及凸轮;6为连杆;7为齿轮及偏心轮;8为机架;9为压头。
试绘制其机构运动简图,并计算其自由度。
O齿轮及偏心轮ωA齿轮及凸轮BEFDC压头机架连杆滑杆滑块摆杆滚子解答:n=7; P l =9; P h =2,F=3⨯7-2 ⨯9-2 = 12-6 试计算图2-42所示凸轮—连杆组合机构的自由度。
解答:a) n=7; P l =9; P h =2,F=3⨯7-2 ⨯9-2 =1 L 处存在局部自由度,D 处存在虚约束b) n=5; P l =6; P h =2,F=3⨯5-2 ⨯6-2 =1 E 、B 处存在局部自由度,F 、C 处存在虚约束b)a)A EMDFELKJIFBCCDBA2-7 试计算图2-43所示齿轮—连杆组合机构的自由度。
BDCA(a)CDBA(b)解答:a) n=4; P l =5; P h =1,F=3⨯4-2 ⨯5-1=1 A 处存在复合铰链b) n=6; P l =7; P h =3,F=3⨯6-2 ⨯7-3=1 B 、C 、D 处存在复合铰链2-8 试计算图2-44所示刹车机构的自由度。
并就刹车过程说明此机构自由度的变化情况。
解答:① 当未刹车时,F=3⨯6-2 ⨯8=2② 在刹车瞬时,F=3⨯5-2⨯7=1,此时构件EFG 和车轮接触成为一体,位置保持不变,可看作为机架。
③ 完全刹死以后,F=3⨯4-2⨯6=0,此时构件EFG 、HIJ 和车轮接触成为一体,位置保持不变,可看作为机架。
凸轮连杆机构自由度计算
凸轮连杆机构自由度计算1. 引言说到机械结构,大家一定听说过“凸轮连杆机构”吧!别看名字挺复杂,其实它就是一种让机器动起来的神奇组合。
就像我们身边的各种设备,无论是汽车的发动机,还是玩具里的小马达,背后都少不了这些精妙的设计。
不过,今天我们要聊的重点是自由度的计算,这个听上去有点儿高大上的概念,其实也没那么复杂,咱们一起来捋一捋。
2. 自由度的概念2.1 什么是自由度?自由度,顾名思义,就是一个机构可以独立运动的方式。
想象一下,咱们的手臂,它可以上下、左右、前后动,这些不同的运动方式就是自由度。
如果一个机构能在空间中随心所欲地动,那它的自由度就高;反之,受限制的运动就说明自由度低。
2.2 为什么要计算自由度?计算自由度,简单来说,就是为了知道这个机构能不能实现我们想要的动作。
就像买菜的时候,知道什么菜好吃,什么菜不适合,能省不少事儿。
想象一下,如果你设计的机器连转个圈都费劲,那可真是自讨苦吃。
因此,算清楚自由度,能帮助我们优化设计,避免不必要的麻烦。
3. 自由度计算的基本原则3.1 凯普拉定理要计算自由度,咱们得先了解个名叫“凯普拉定理”的东西。
这可是工程师们的金科玉律!根据这个定理,自由度的计算公式是这样的:F = 3(N 1) 2J H。
其中,F代表自由度,N是机构的零件数量,J是关节的数量,H是约束数量。
3.2 各种因素影响自由度这个公式就像做菜时的配方,不同的食材组合会影响最终的味道。
零件多了,能动的方式就多;关节多了,反而可能让动作变得笨拙;而约束条件就像一个个小绳子,把自由度给拴住了。
比如说,你如果在家里装了个重重的门,开关门的自由度自然就少了,动起来麻烦多了。
4. 实际应用4.1 机械手臂说到实际应用,我们可以看看机械手臂。
现代工业中,这玩意儿可是个大热门!机械手臂的设计需要精准的自由度计算,才能保证它可以灵活地抓取各种物品。
想象一下,咱们的手臂能做的事儿,机械手臂也得做到,比如说转动、抓握、移动等等。
01-022013机构自由度计算试题答案
01-022013机构⾃由度计算试题答案⼀、填空题1. 平⾯运动副的最⼤约束数为____2_____,最⼩约束数为_____1_____。
2.平⾯机构中若引⼊⼀个⾼副将带⼊_____1____个约束,⽽引⼊⼀个低副将带⼊_____2____个约束。
平⾯机构中约束数与⾃由度数的关系是_约束数+⾃由度数=3_。
3. 在机器中,零件是最⼩制造的单元,构件是最⼩运动的单元。
4. 点或线接触的运动副称为⾼副,如齿轮副、凸轮副等。
5.机器中的构件可以是单⼀的零件,也可以是由多个零件装配成的刚性结构。
6.两个构件相互接触形成的具有确定相对运动的⼀种联接称为运动副。
7.⾯接触的运动副称为低副,如转动副、移动副等。
8.把两个以上的构件通过运动副的联接⽽构成的相对可动的系统称为是运动链,若运动链的各构件构成了⾸末封闭的系统称为闭链,若运动链的构件未构成⾸末封闭的系统称为开链。
9.平⾯机构是指组成机构的各个构件均在同⼀平⾯内运动。
10.在平⾯机构中,平⾯低副提供 2 个约束,平⾯⾼副提供 1 个约束。
11.机构具有确定运动时所必须给定的独⽴运动参数的数⽬称为机构的⾃由度。
12.机构具有确定运动的条件是机构的原动件数等于⾃由度数。
⼆、简答题1. 机构具有确定运动的条件是什么?答:1.要有原动件;2.⾃由度⼤于0;3.原动件个数等于⾃由度数。
2. 何谓复合铰链、局部⾃由度和虚约束?在计算机构⾃由度时应如何处理?答:复合铰链是三个或更多个构件组成两个或更多个共轴线的转动副。
在有些机构中, 其某些构件所能产⽣的局部运动并不影响其他构件的运动, 我们把这些构件所能产⽣的这种局部运动的⾃由度称为局部⾃由度。
虚约束是在机构中与其他约束重复⽽不起限制运动作⽤的约束。
在计算机构⾃由度时, K个构件汇交⽽成的复合铰链应具有(K-1)个转动副,同时应将机构中的局部⾃由度、虚约束除去不计。
三、计算题1. 试计算图1所⽰凸轮——连杆组合机构的⾃由度。
机构自由度计算通用公式分析
因此,对含有局部自由的机构,应首先去除局部自由度,再对机
组成的平面六杆机构与 78 构件组成的螺旋机构,通过串联而组成 构进行计算。否则,计算所得自由度数比实际自由度数多,与实际机
的空间机构。其中活动构件 n=7,所有运动副均为 5 级副,P5=9。 械的运动情况不符。
则:F=6*7-5*9=-3。机构不能运动。
结论显然与实际情况不符。
则 F=(1*6+2*2)-(3+3+2)=2
2.2 多封闭环机构
结果与实际情况不相符。
图 2 所示机构,是由凸轮机构与连杆机构组合而成的平面机
分析发现,此机构中滚子 3 相对摆杆 2 的转动为局部自由度,
构,该机构通过凸轮 1 带动推杆 2 绕 C 点摆动,从而通过滑块 4 推 对机构的运动不起作用。若去除局部自由度,将滚子 3 与构件 2 固
数。
进行计算。
3.1 公共约束
基金项目:唐山学院机械工程省级实验教学示范中心。 作者简介:韩忠义(1966,1-),女,副教授,主要研究方向为非标机械设计、产品优化设计等。
转动副所产生的约束为虚约束。若去除虚约束,则该机构为简单的
铰链四杆机构,只有 1 个封闭环,则 P5=4,m=3。
图3
图4
则 F=1*4-3=1 结果正确。
3 自由度计算通用公式
因此,对含虚约束的机构,应首先去除产生虚约束的构件及运
美国学者 F.富雷汀斯廷提出机构自由度计算通用公式
动副再进行自由度计算。
束数;F’- 局部自由度数;i-i 级运动副引入的约束数;Pi-i 级运动副 环,分别由构件 124,423 组成;图 3 所示机构含有 3 个封闭环中,分
的个数。
别由构件 1234,1456,1678 组成。
2016新编12.自由度计算凸轮与连杆机构
平面机构自由度计算:1.计算题2图所示机构的自由度,若含有复合铰链、局部自由度和虚约束.请明确指出。
3.4.5.6.凸轮机构:下图所示尖顶直动从动件盘形凸轮机构,凸轮为圆盘,圆心在A点,回转中心在O点,从动杆导路向右偏置,试回答:(1)在图上标出凸轮的合理转向。
(2)在图上画出基圆,偏距圆。
(3)画出图中B0点的压力角 及位移S。
(4)画出从动件的升程H。
B0OA2.3.4.设计一偏置式直动尖底从动件盘形凸轮机构。
已知从动件的运动规律S=S(ϕ)如图(a )所示,凸轮的基圆、回转方向及从动件的初始位置如图(b )所示,在图中的基圆圆周上已给出了12个等分点。
[说明]: ①图中的比例尺mmmm 1,mmmm 11S=μ=μ;②作图过程不必作文字说明,但必须保留作图线。
如图所示铰链四杆机构中,已知各杆长度A B15m m l =,B C 48m m l =,C D 55m m l =,A D 45m m l =。
(1)判断该铰链四杆机构的类型。
(2)若AB 为原动件,用作图法标出从动件CD 的最大摆角ϕ,机构的极位夹角θ。
(请保留作图痕迹)(3)试回答该机构在什么情况下会出现死点。
A DBC干部教育培训工作总结[干部教育培训工作总结] 年干部教育培训工作,在县委的正确领导下,根据市委组织部提出的任务和要求,结合我县实际,以兴起学习贯彻“三个代表”重要思想新高潮为重点,全面启动“大教育、大培训”工作,取得了一定的成效,干部教育培训工作总结。
现总结报告如下:一、基本情况全县共有干部**人,其中中共党员**人,大学本科以上学历**人,大专学历**人,中专学历**人,高中及以下学历**人。
**年,以县委党校、县行政学校为主阵地,举办各类培训**期,培训在职干部**人,占在职干部总数的**.*%,培训农村党员、干部**人,其中:举办科级领导干部轮训班*期,培训**人;举办科级领导干部“三个代表”重要思想专题学习班*期,培训**人;举办科级以下公务员培训班*期,培训**人;举办企业经营管理者培训班*期,培训**人;举办专业技术人员培训班*期,培训**人;举办非中共党员干部培训班*期,培训**人;举办理论骨干培训班*期,培训**人;举办妇女干部培训班*期,培训**人;举办基层团干培训班*期,培训**人;举办农村党支部书记、村主任培训班各*期,培训**人,达到了每年培训在职干部五分之一的要求,超额完成了培训任务。
机构自由度的计算(1)
• 2.1 机器的组成及其设计方法 • 2.2 机构、构件及运动副 • 2.3 平面机构运动简图 • 2.4 平面机构自由度的计算
活塞泵的机构运动简图
F=3n-2pL-ph=3x4-2x5-1=1
曲柄、连杆、齿扇、 齿条活塞、机架。
曲柄为原动件, 其余为从动件, 当曲柄匀速转动时, 活塞在汽缸中往复移 动。
3、颚式破碎机
颚式破碎机简图分析
F=3n-2pl-ph=3x3-2x4=1
2.4 平面机构自由度的计算
一、机构具有确定运动的条件 二、计算机构自由度 三、计算机构自由度时应注意的问题
1.复合铰链 2.局部自由度 3、虚约束
2.4 平面机构自由度的计算
一、机构具有确定运动的条件 因为一个原动件只能提供一个独立运动参数,所以, 机构的自由度数等于机构的原动件数,既机构有多
凸轮机构自由度计算
四杆机构的自由度计算
n=2 pL=2 ph=1 F=3n-(2pL+ph)=1
n=3 pL=4 ph=0 F=3n-(2pL+ph) =1
原动件数=机构自由度
铰链五杆机构
n=4 pL=5 ph=0 F=3n-(2pL+ph)=2
原动件数<机构自由度数,机构 运动不确定(任意乱动)
感谢下 载
或两构件组成多个轴线重合的移动副 (4)与运动无关的对称部分,如多个行星轮
虚约束改善受力
举例 6
F=3n-2pl-ph =3x5-2x7=1
3.8
F=3n-2pl-ph =3x8-2x11-1=1
F=3n-2pl-ph =3x4-2x4-2=2
小结:掌握机构自由度的计算方法; 机构具有确定运动的条件; 基本杆组拆分的原则及方法。
工业设计机械基础第7章常用机构
M
B 3 O3
n = 3, Pl =4, Ph =0 F = 3×3 - 2×4 – 0 = 1
与实际相符
n = 3, Pl=4, Ph =0
F = 3×3 - 2×4 – 0 = 1
2)两构件形成多个具有相同作用的运动副。 (1)两构件组成多个移动副,且导路相互平行或重合时,只有一个 移动副起约束作用,其余为虚约束。
2
1
◆处理方法:计算中只计入一处高副。
F=3n-2Pl-Ph=3x2-2x2-1=1
3、机构中对运动不起独立作用的对称部分,将产生虚约束。
◆处理方法:计算中应将对称部分除去不计。
图7-11 运动简图中构件的表示方法 a)二运动副构件示例 b)三运动副构件示例
常用机构运动简图 国标GB/T 4460-1984 给出了典型机构的运动简图, 表7-1为摘自该国标的部分常用机构的运动简图。
2.转动副 构件组成转动副时,如下图表示。 图垂直于回转轴线用图a表示; 图不垂直于回转轴线时用图b表示。 表示转动副的圆圈,圆心须与回转轴线重合。 一个构件具有多个转动副时,则应在两条交叉处涂黑,或在其内 画上斜线。
F=3n-2Pl-Ph=3x3-2x4-0=1
◆处理方法:计算中只计入一 个移动副。
F=3n-2Pl-Ph=3x1-2x1=1
(2) 两构件组成多个转动副,且轴线重合,只有一个转动副起 约束作用,其余为约束。
◆处理方法:计算中只计入一个转动副。
(3)两构件组成多处接触点公法线重合的高副,只考虑一处高副。
图7-5 液体搅拌机 1—机架 2—曲柄 3—连杆 4—摇杆
⑶从动件 机构中由原动件驱动的其他构件。 若从动件直接实现机构的功能,称为执行件;若从动件把运动输出本 机构,称为输出构件。 图7-5中连杆3、摇杆4都是从动件。
机构自由度计算 (2)
机构中为什么要使用虚约束?
使用虚约束时要注意什么问题? 保证满足虚约束存在的几何条件,在机械设计中 使用虚约束时,机械制造的精度要提高。
三、平面机构具有确定运动的条件 1. F≥1或F>0
2. F=原动件数目
判断图示机构能否运动?
2
An
1 nB
O
3 2
但是,当他们的公法线方向不重 合时,必须各自计算其高副数。
n
n
AB n
n
n
n
A
B
n
n
DOF=3N-2PL- = 34 -26=0 Ph
B
2 EC
B2
1
A
4F
31
5
A D
4F
AB CD BC AD BE AF
CD
C
3
D
B
2
1
A
4F
AB CD BC AD
EC
B
31
A D
4
BE AF
C 3
4 D
B2 A1
本PPT课件仅供学习交流使用 请学习完毕自行删除
本PPT课件仅供学习交流使用 请学习完毕自行删除
本PPT课件仅供学习交流使用 请学习完毕自行删除
3 1
2
Ex.1: 计算如下齿轮连杆机构的3) and 2根 杆(4 and 5).
B 1
A
2 C
E 4
F5
D 63
C 是构件 2、4、5组成的复合铰链,
D 是构件 3、5、6组成的复合铰链.
F=3n-2PL-Ph
B 1
A
=3 - -2 =
《连杆机构自由度计算》的教学设计
《连杆机构自由度计算》的教学设计作者:谢双义何娇郑国秀侯小琴张波来源:《科技风》2018年第18期摘要:针对高职学生的知识面及思维特点,对连杆机构自由度的计算教学进行了启发式的课堂教学设计。
在教学过程中,让同学们带着问题进行学习,突出学生在教学过程中的主体作用,加强教师的引导作用,以循序渐进的方式让同学们牢牢掌握相关知识点。
关键词:连杆机构;自由度;教学设计1 绪论平面连杆机构广泛应用于各种机械、仪表和机电产品中,因为这种机构具有以下优点:运动副单位面积压力小,且有利于润滑,故摩擦损失小,同时较容易获得高的加工制造精度。
而在平面连杆机构的设计中,要想其运动规律符合设计人员的预期,其自由度的计算就尤为重要,同时该知识点也是教学过程中的一大难点,经过该知识点的学习也可以为后续齿轮机构和凸轮机构等的分析和设计奠定一定基础。
2 教学目标了解基本的连杆机构概念,并掌握简单机构自由度是的计算。
培养学生分析问题和解决问题的能力。
激发学生学习乐趣,帮助其构建理论与实际相结合的思维模式。
3 教学过程教学设计主要强调的是学生的参与、探索、归纳、动手等多方面的能力,引导他们将理论与实践相结合,本次课的教学设计如图1 所示。
旧知复习:教师针对过往知识点进行提问。
设置的问题既是对已学习知识的复习又可以为本节课的学习提供支撑。
学生展示与讲解:在课前要求学生利用简易材料制作一个连杆机构,并邀请学生到讲台为大家进行相应的展示和讲解。
教师评价与总结:针对同学们的演示与讲解,教师要给予充分的肯定,并做进一步的归纳和总结。
问题引入:让同学们观看三种不同的连杆机构运动,提问为什么会造成这种现象?教师讲解:首先讲解何为机构自由度,然后通过做4个不同的习题,让学生对机构具有确定运动的条件进行自我归纳。
练习1得出自由度为0,得出静定桁架概念。
练习2得出自由度为1,得出超静定桁架概念。
练习3得出自由度为1,但是机构被破坏,对同学进行提问。
通过练习4得出自由度为2,但是机构的运动不确定,对同学进行提问。
机械原理第八版课后练习答案(西工大版)(孙恒等)
解:1)以选定的比例尺μ机械运动简图(图 b) 2)求 vc 定出瞬心 p12 的位置(图 b) 因 p13为构件 3 的绝对瞬心,则有 ω3=vB/lBp13=ω2lAB/μl.Bp13=10×0.06/0.003×78=2.56(rad/s) vc=μcp13ω3=0.003×52×2.56=0.4(m/s)
2-15 试绘制图 n 所示仿人手型机械手的食指机构的机构运动简图(以手掌 8 作为相对 固定的机架),井计算自由度。 (1)取比倒尺肌作机构运动简图 (2)计算自由度
解:
f 37210 1
2-18 图示为一刹车机构。刹车时,操作杆 j 向右拉,通过构件 2、3、4、5、6 使两闸瓦刹住 车轮。试计算机构的自由度,并就刹车过程说明此机构自由度的变化情况。(注;车轮不属于 刹车机构中的构件。 (1)未刹车时,刹车机构的自由度 2)闸瓦 G、J 之一剃紧车轮时.刹车机构的自由度 3)闸瓦 G、J 同时刹紧车轮时,刹车机构的自由度
解:(1) n=11, p1=17, ph=0, p`=2p1`+ph-3n`=2, F`=0 F=3n-(2p1+ph-p`)-F`=3×11-(2×17+0-2)-0=1 (2) 去掉虚约束后 F=3n-(2pl+ph) =3×5-(2×7+0) =1 (d)A、B、C 处为复合铰链。自由度为:F=3n-(2p1+ph-p`)-F`=3×6-(2×7+3)-0=1
<机械原理>第八版
西工大教研室编
第2章
2-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的? 答:参考教材 5~7 页。 2-2 机构运动简图有何用处?它能表示出原机构哪些方面的特征? 答:机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,而且也可用来进 行动力分析。 2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构 的运动将发生什么情况? 答:参考教材 12~13 页。 2-4 何谓最小阻力定律?试举出在机械工程中应用最小阻力定律的 1、2 个实例。 2-5 在计算平面机构的自由度时,应注意哪些事项? 答:参考教材 15~17 页。 2-6 在图 2-20 所示的机构中,在铰链 C、B、D 处,被连接的两构件上连接点的轨迹都是重 合的,那么能说该机构有三个虚约束吗?为什么? 答:不能,因为在铰链 C、B、D 中任何一处,被连接的两构件上连接点的轨迹重合是由于其 他两处的作用,所以只能算一处。 2-7 何谓机构的组成原理?何谓基本杆组?它具有什么特性?如何确定基本杆组的级别及机构 的级别? 答:参考教材 18~19 页。 2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么? 答:参考教材 20~21 页。 2-9 任选三个你身边已有的或能观察到的下列常用装置(或其他装置),试画出其机构运动简 图,并计算其自由度。1)折叠桌或折叠椅;2)酒瓶软木塞开盖器;3)衣柜上的弹簧合页;4) 可调臂台灯机构;5)剥线钳;6)磁带式录放音机功能键操纵机构;7)洗衣机定时器机构;8) 轿车挡风玻璃雨刷机构;9)公共汽车自动开闭门机构;10)挖掘机机械臂机构;…。 2-10 请说出你自己身上腿部的髋关节、膝关节和踝关节分别可视为何种运动副?试画出仿腿 部机构的机构运动简图,并计算其自由度。 2-11 图示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮 j 输入,使轴 A 连续 回转;而固装在轴^上的凸轮 2 与杠杆 3 组成的凸轮机构使冲头 4 上下运动,以达到冲压的目 的。试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方 案。 1)取比例尺绘制机构运动简图 2)分析是否能实现设计意图
自由度(原理)
2
2
2
1
1
1
(a)
(b)
(c)
移动副的表示方法
1
2 1
2 (a)
1 2
1 2
(b)
21 1
2
(c)
两副构件 三副构件
运动副 名称
常用运动副的符号 运动副符号
两运动构件构成的运动副 两构件之一为固定时的运动副
转 动 平副 面 运 动 副移 动 副
22
1
1
2
1 2 1
2
2
1
1
2
1 2 1
22
22
1
F=3n - 2PL - PH =3×10 - 2×14 =2
A----复合铰链
6) 计算机构自由度,指出复合铰链,局部自由度, 虚约束,说明机构具有确定运动的条件
F=3n - 2PL - PH =3×6- 2×7 - 2
=2
C---复合铰链 G---局部自由度 FE---虚约束 G I ----虚约束
H
8
7
G
J
10
6
B
9
C
1
K 11 L
2
A
D E3
4
F
5
虚约束
复合铰链
局部自由度
I
H
8
7
J
G
6
B
10
9
C
1
11
K
L
2
A
E 3D
4
F
5
n8; PL11; PH1 F3n2PLPH 3821111
例6
=1
钢板剪切机
2.局部自由度
1)定义:构件局部运动所产生的自由度。
机构自由度计算
4 自由度计算小结Fra bibliotek自由度计算公式:
F=3n-2pl-ph 机构自由度=3×活动构件数-(2×低副数+1×高副数)
计算步骤:
确定活动构件数目 确定运动副种类和数目
确定特殊结构: 局部自由度、虚约束、复合铰链
计算、验证自由度
几种特殊结构的处理:
1、复合铰链—计算在内
2、局部自由度—排除 3、虚约束--重复约束—排除
y
1
O 2 x
y
o
R=2
y o
R=2
x
xt
n n
R=1
t
结论: 平面低副引入 2个约束 平面高副引入 1个约束
(3) 平面机构自由度计算公式
如果:活动构件数:n 低副数: pl 高副数: ph 未连接前总自由度: 3n 连接后引入的总约束数: 2pl+ph
y 1
O 2 x
机构自由度F: F=3n - ( 2pl + ph ) F=3n - 2pl - ph
2 构件的表示方法
杆、轴类构件
机架
同一构件
两副构件 三副构件
3 运动副的表示方法
转动副
移动副
高副(齿轮副、 凸轮副)
2
4 运动简图的绘制方法
步骤:
确定构件数目及原动件、输出构件 各构件间构成何种运动副?(注意微动部分) 选定比例尺、投影面,确定原动件某一位置,按规定
符号绘制运动简图 标明机架、原动件和作图比例尺
3 2
1
机构中的虚约束都是在一定的几何条件下出
机构的自由度计算公式
机构的自由度计算公式一、机构自由度的基本概念。
1. 定义。
- 机构的自由度是指机构具有的独立运动的数目。
它是衡量机构运动灵活性的一个重要指标。
例如,一个平面机构能够在平面内进行独立运动的方式数量就是它的自由度。
二、平面机构自由度的计算公式。
1. 一般公式。
- 对于平面机构,自由度计算公式为F = 3n - 2P_L-P_H。
- 其中,n为机构中活动构件的数目。
这里的活动构件是指能够相对运动的构件,例如在一个简单的曲柄滑块机构中,曲柄、连杆和滑块都是活动构件。
- P_L为低副的数目。
低副是指两构件之间以面接触而构成的运动副,常见的低副有转动副(如轴与轴承之间的连接,允许相对转动)和移动副(如滑块与导轨之间的连接,允许相对移动)。
- P_H为高副的数目。
高副是指两构件之间以点或线接触而构成的运动副,例如齿轮的啮合(轮齿之间为线接触)、凸轮与从动件之间的接触(点或线接触)。
2. 计算示例。
- 以曲柄滑块机构为例,它有3个活动构件(n = 3),4个低副(P_L=4,包括曲柄与机架之间的转动副、连杆与曲柄之间的转动副、连杆与滑块之间的转动副、滑块与导轨之间的移动副),没有高副(P_H = 0)。
- 根据自由度计算公式F=3n - 2P_L-P_H,可得F = 3×3-2×4 - 0=9 - 8=1,这表明曲柄滑块机构具有1个自由度,即它只有一种独立的运动方式。
3. 特殊情况说明。
- 当计算出的自由度F≤slant0时,机构一般不能运动或者是具有特殊的结构约束情况。
例如,如果F = 0,机构就成为一个刚性桁架结构,各构件之间相对位置固定,不能产生相对运动。
- 在计算自由度时,要准确判断活动构件、低副和高副的数量,有时可能存在虚约束的情况。
虚约束是一种对机构运动不起实际约束作用的约束,在计算自由度时需要去除虚约束的影响,否则会得出错误的自由度结果。
例如,在平行四边形机构中,如果存在一些对运动不起实际限制作用的约束,在计算自由度时需要正确识别并处理这些虚约束。
空间机构的自由度计算
2.5.2空间机构的自由度计算同平面机构自由度计算公式推导过程一样,空间机构的自由度 = 所有活动构件自由度 - 所有运动副引入的约束数,其公式为:F=6n-5P5-4P4-3P3-2P2-P1式中:n为活动构件数; P1、P2、P3、P4、P5分别为1~5级运动副的个数。
(a) (b)图2.5.2-1图(a)所示为自动驾驶仪操纵装置内的空间四杆机构。
活塞2相对气缸运动后通过连杆3使摇杆4作定轴转动。
构件1、2组成圆柱副,构件2、3和构件4、1分别组成转动副,构件3、4组成球面副,其运动示意图如图(b)所示。
试计算该机构的自由度。
解: n=3, P5=2, P4=1, P3=1F=6n-5P5-4P4-3P3-2P2-P=6×3-5×2-4×1-3×1=1.图(a)所示为某飞机起落架的收放机构。
构件1为原动件,构件1、2和2、3分别组成3级球副,构件1、4和3、4分别组成5级移动副和转动副,其运动示意图如图(b)所示。
试计算该机构的自由度并判断其运动是否确定。
解: n=3, P5=2, P3=2F=6n-5P5-4P4-3P3-2P2-P=6×3-5×2-3×2=1.计算结果表明需要2个原动件机构的运动才能得以确定。
而实际上该机构在1个原动件的带动下运动就能确定了。
上述问题出现在何处?(a) (b)图2.5.2-2构件2的两端同构件1、3分别组成球副,这样使得构件2可以绕自身轴线转动,而这个转动(自由度)对整个机构的运动没有影响,对比平面凸轮机构中滚子的转动一样,称为局部自由度。
图2.5.2-3 对于局部自由度也有两种处理方法:①. 修正自由度计算公式:F=6n-5P5-4P4-3P3-2P2-P1-k 式中:k为局部自由度数。
这样例题2的机构的自由度应为:F=6n-5P5-4P4-3P3-2P2-P1-k=6×3-5×2-3×2-1=1具有确定的运动。
机械机构自由度计算方法
机构自由度计算方法机构自由度的计算例子机构自由度的计算是机构的结构分析的重要内容。
任何一个机构设计好以后,需要做的第一件事情就是计算机构的自由度。
机构自由度的计算公式是:F=3 n-2p i -p h。
公式本身简单,只需要数出活动构件的数目n,低副的数目p i,高副的数目p h,则自由度就很容易计算了。
使用该公式有一个前提,就是要先判断出一些特殊情况:复合铰链,局部自由度和虚约束,在把这些情况都弄清楚后,再用上述公式计算,才可以得到正确的结果。
下面举一个例子,说明机构自由度的计算方法。
计算图示机构的自由度,并判断该机构是否具有确定运动。
如有复合铰链、局部自由度、虚约束,请直接在题图中标出。
拿到该机构以后,第一步就是找到凸轮M发现推杆DB尖端有一个滚子,此滚子就是局部自由度。
局部自由度几乎永远出现在滚子推杆的凸轮机构中。
对于该局部自由度,处理方法是把该滚子B与BD杆焊接在一起,成为一个整体。
接着考察虚约束。
虚约束中最常见的就是某一个构件和机架之间有导路重合或者平行的移动副。
这里FH构件就在F,G,H三个地方有三个移动副与机架相联,而这三个移动副导路重合。
此时只有一个起作用,其它的就是虚约束。
对于虚约束,只保留其中一个,其它的全部拿掉。
最后考虑复合铰链。
复合铰链出现在转动副的地方,如果在转动副处有2个以上的构件相联,则该铰链就是复合铰链。
从上图可以看出,J点有三个构件IJ,KJ,JL相连,所以J是复合铰链。
对于复合铰链,在计算转动副的数目时,在此处留心即可,注意这里的转动副数目等于相连的构件数目减 1.综上所述,把局部自由度,虚约束,复合铰链表示出来的结果见下图篡合铳链这样,把滚子B和BD焊接在一起,从而去掉局部自由度;而去掉G, H这两个虚约束;J点有两个转动副。
下面进入公式的计算。
活动构件:齿轮A,齿轮M,连杆IJ,连杆KJ,连杆JL,滑块L,连杆BD(焊接了滚子B),连杆DE连杆FH。
共计9个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面机构自由度计算:
1.
计算题2图所示机构的自由度,若含有复合铰链、局部自由度和虚约束.请明确指出。
3.
4.
5.
6.
凸轮机构:
下图所示尖顶直动从动件盘形凸轮机构,凸轮为圆盘,圆心在A点,回转中心在O点,从动杆导路向右偏置,试回答:
(1)在图上标出凸轮的合理转向。
(2)在图上画出基圆,偏距圆。
(3)画出图中B0点的压力角 及位移S。
(4)画出从动件的升程H。
B0
O
A
2.
3.
4.
设计一偏置式直动尖底从动件盘形凸轮机构。
已知从动件的运动规律S=S(ϕ)如图(a )所示,凸轮的基圆、回转方向及从动件的初始位置如图(b )所示,在图中的基圆圆周上已给出了12个等分点。
[说明]: ①图中的比例尺mm
mm 1,mm
mm 11S =μ=μ;
②作图过程不必作文字说明,但必须保留作图线。
如图所示铰链四杆机构中,已知各杆长度AB 15mm l =,BC 48mm l =,CD 55mm l =,
AD 45mm l =。
(1)判断该铰链四杆机构的类型。
(2)若AB 为原动件,用作图法标出从动件CD 的最大摆角ϕ,机构的极位夹角θ。
(请保留
作图痕迹)
(3)试回答该机构在什么情况下会出现死点。
A
D
B
C。