第1章覆岩与地表移动规律

合集下载

矿山压力及岩层控制之7.采场岩层移动与控制

矿山压力及岩层控制之7.采场岩层移动与控制

矿山压力与岩层控制——采场岩层移动与控制主讲:李成伟采场岩层移动与控制C ONTENTS 第七章岩层移动引起的采动损害概述1岩层控制的关键层理论2上覆岩层移动规律3工作面底板破坏与突水4岩层移动控制技术5一、岩层移动引起的采动损害概述我国煤矿90%以上是井工垮落法开采。

垮落法采煤,开采以后必然引起岩体向采空区移动,将造成采动损害及相关问题,主要表现为:(1)形成矿山压力显现,引起采场和巷道围岩变形、垮落和来压,需对采取支护措施维护采场与巷道的生产安全。

(2)形成采动裂隙,引起周围煤岩体中的水和瓦斯的流动,导致井下瓦斯与突水事故,需要对此进行控制和利用。

1.煤层开采产生的相关问题一、岩层移动引起的采动损害概述(3)岩层移动发展到地表引起地表沉陷,导致农田、建筑设施的毁坏,当地面潜水位较高时,地表沉陷盆地内大量积水,农田无法耕种村庄被迫搬迁,引发一系列环境、经济和社会问题。

(4)由于开采对围岩的破坏,为了保护矿井生产安全,需要留设大量的煤柱,我国煤炭采出率低。

一、岩层移动引起的采动损害概述2.煤矿绿色开采理念2016年3月,国家发改委、国家能源局联合印发2016-2030能源技术革命创新行动计划;在煤炭无害化开采技术创新方面提出绿色开发与生态矿山建设,重点在绿色高效充填开采、绿色高效分选、采动损伤监测与控制、采动塌陷区治理与利用、保水开采、矿井水综合利用及深度净化处理、生态环境治理等方面开展研发与攻关。

煤炭开采岩层移动排 放 水地表塌陷土地与建筑物损害瓦斯事故排放瓦斯污染环境地下水资源流失与突水事故煤与瓦斯共 采保水开采充填开采排放矸石煤巷支护矸石井下处 理煤炭地下气 化占用农田污染环境绿色开采●“高效安全、高采出率、环境协调”绿色开采技术体系膏体材料充填超高水材料充填矸石干式充填一、岩层移动引起的采动损害概述●瓦斯抽采与利用被保护层组保护层地面钻井071421283504080120160200时间/d 抽采量/m 3/m i n20406080100抽采浓度/%抽采瓦斯量抽采瓦斯浓度远距离保护层开采(100~110m )地面钻井抽采法一、岩层移动引起的采动损害概述一、岩层移动引起的采动损害概述●瓦斯抽采与利用压缩转运✓瓦斯发电✓瓦斯罐装利用一、岩层移动引起的采动损害概述●煤炭地下气化煤炭地下气化是指其不将煤炭采出地面,而将其在地下直接气化,即将地下煤炭通过热化学反应在原地转化为可燃气体的技术。

《岩层与地表移动》课件

《岩层与地表移动》课件
地壳运动:地壳运动对岩层移动的影响
地壳运动:地壳板块之间的相互作 用,导致岩层和地表的移动
地壳侵蚀:地表受到风、水等自然 力的侵蚀,导致岩层和地表的移动
添加标题
添加标题
添加标题
添加标题
地壳形变:地壳受到外力作用,如 地震、火山等,导致岩层和地表的 移动
地壳沉积:地表受到风、水等自然 力的沉积,导致岩层和地表的移动
地表条件:地形地貌、地 表水文、植被覆盖等
环境因素:气候变化、人 类活动、自然灾害等
预测方法:数值模拟、遥 感监测、现场观测等
评估指标:位移速率、变 形量、稳定性等
风险评估:风险等级、风 险分布、风险控制措施等
地质灾害预警:预测岩层与地表移动,提前预警地质灾害 工程建设规划:评估岩层与地表移动,为工程建设提供科学依据 资源开发利用:预测岩层与地表移动,为资源开发利用提供指导 环境保护:评估岩层与地表移动,为环境保护提供科学依据
案例选择:选择具有代表性的岩层与地表移动案例 数据收集:收集相关地质、地貌、气候等数据 分析方法:采用地质力学、地貌学、地球物理等方法进行分析 结果展示:展示分析结果,包括岩层移动、地表变形、地质灾害等 结论与建议:总结案例分析的结论,提出预防和治理地质深入分析
信息
地下监测:通 过钻孔、探井 等设备获取地 下岩层移动信

综合分析:结合 遥感、地面、地 下等多种监测技 术进行综合分析, 获取更准确的地
表移动信息
数据采集:使用地质雷达、地震仪等设备进行数据采集 数据处理:对采集到的数据进行预处理,包括滤波、去噪等 数据分析:利用统计学、数学模型等方法对数据进行分析,提取有用信息 数据可视化:将分析结果以图表、图像等形式展示,便于理解和交流
启示:从案例中总结出岩层与 地表移动的规律和特点

煤矿地表移动与覆岩破坏规律及其应用

煤矿地表移动与覆岩破坏规律及其应用

煤矿地表移动与覆岩破坏规律及其应用煤矿地表移动与覆岩破坏是煤矿开采过程中不可避免的问题,对煤矿生产和安全造成了很大的影响。

因此,研究煤矿地表移动与覆岩破坏规律及其应用具有重要的理论和实践意义。

一、煤矿地表移动规律煤矿地表移动是指在煤矿开采过程中,由于煤层采空引起的地表下沉和变形。

煤矿地表移动的规律主要受到以下因素的影响:1. 煤层厚度和倾角:煤层厚度和倾角越大,地表移动越明显。

2. 采煤方法:不同的采煤方法对地表移动的影响也不同。

如采用长壁采煤法,地表移动范围较大;采用短壁采煤法,地表移动范围较小。

3. 采煤深度:采煤深度越深,地表移动越大。

4. 煤层岩性:煤层岩性越硬,地表移动越小。

二、煤矿覆岩破坏规律煤矿覆岩破坏是指在煤矿开采过程中,由于煤层采空引起的覆岩破坏。

煤矿覆岩破坏的规律主要受到以下因素的影响:1. 覆岩厚度和倾角:覆岩厚度和倾角越大,覆岩破坏越明显。

2. 采煤方法:不同的采煤方法对覆岩破坏的影响也不同。

如采用长壁采煤法,覆岩破坏范围较大;采用短壁采煤法,覆岩破坏范围较小。

3. 采煤深度:采煤深度越深,覆岩破坏越大。

4. 覆岩岩性:覆岩岩性越软,覆岩破坏越大。

三、煤矿地表移动与覆岩破坏的应用煤矿地表移动与覆岩破坏的研究不仅有助于了解煤矿开采过程中的地质灾害,还可以为煤矿生产提供科学依据。

具体应用如下:1. 煤矿规划:在煤矿规划中,需要考虑地表移动和覆岩破坏的影响,以避免对周围环境造成不良影响。

2. 煤矿安全:煤矿地表移动和覆岩破坏会对煤矿安全造成威胁,因此需要采取相应的安全措施。

3. 煤矿开采:在煤矿开采过程中,需要根据地表移动和覆岩破坏的规律,选择合适的采煤方法和采煤深度,以减少地质灾害的发生。

总之,煤矿地表移动与覆岩破坏规律及其应用是煤矿开采过程中的重要问题,需要加强研究,以保障煤矿生产和安全。

采煤工作面上覆岩层移动规律

采煤工作面上覆岩层移动规律

第三章采煤工作面上覆岩层移动规律第一节概述一、煤层顶底板岩层的构成煤层处于各种岩层的包围之中。

处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。

依据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为:(l)伪顶。

紧贴在煤层之上,极易垮落的薄岩层称为伪顶。

通常由炭质页岩等脆弱岩层组成,厚度一般小于0.5m,随采随冒。

(2)直接顶。

位于伪顶或煤层之上,具有肯定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。

通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。

直接顶的厚度一般相当于冒落带内的岩层的厚度。

(3)老顶。

位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。

常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。

(4)直接底。

直接位于煤层下面的岩层。

如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。

二、采煤工作面上覆岩层移动及其破坏在承受长壁采煤法时,随着采工作面的不断向前推动,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。

依据破坏状态不同,上覆岩层可划分为三个带(图3-l)。

冒落带。

指承受全部垮落法治理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。

该局部岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、裂开。

在采煤工作面内这局部岩层由支架临时支撑。

裂隙带。

指位于冒落带之上、弯曲带之下的岩层。

这局部岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。

弯曲下沉带。

一般是指位于裂隙带之上的岩层,向上可进展到地表。

此带内的岩层将保持其整体性和层状构造(图3-l,Ⅲ)。

生产实践和争论说明,采煤工作面支架上受到的力远远小于其上覆岩层的重量。

只有接近煤层的一局部岩层的运动才会对工作面四周的支承压力和工作面支架产生明显的影响。

所谓采煤工作面矿山压力掌握,也就是对这局部岩层的掌握。

一 、岩层与地表移动的基本规律

一 、岩层与地表移动的基本规律

柴里矿301工作面地表裂缝实测图
开采急倾斜煤层时地表移动特征
3. 塌陷坑
煤层开采时(尤其是急倾斜),煤层露头 处附近地表呈现出严重的非连续性破坏,往 往会出现漏斗状塌陷坑,北票矿区地表塌陷 漏斗如图。
地表塌陷漏斗
在缓倾斜或中倾斜煤层浅部开采条件下,地 表出现非连续性破坏时,也可能出现塌陷坑。 鹤岗富力矿浅部开采引起的地表漏斗状塌陷 坑如图。
垮落带及断裂带高度计算
• 1、影响因素:顶板岩性、煤层倾角、采厚、 采煤方法、采空区尺寸、采空区处理 • 2、统计回归公式(重点) • 3、其他方法(类比、实测) • 4、近距离煤层
垮落带高度 (P7)
• a.若煤层顶板覆岩内有极坚硬岩层,开采后能形成悬 顶,垮落带最大高度Hk按(1-1)式计算。
图1-17 近水平煤层非充分采动时的地表移动盆地示意图
图1-15 槽形盆地示意图
3. 地表移动盆地特征
• 为了研究方便,常选取地表移动盆地主断 面进行研究,主断面是指通过盆地内最大下沉 点沿煤层倾向或走向的垂直剖面,地表移动盆 地在主断面内表现为通过最大下沉点的地表下 沉曲线。主断面具有以下特点:(1)主断面上 地表移动盆地范围最大;(2)主断面上地表移 动值最大。 • 地表移动盆地的范围总是比采空区的面积 大,它的形状取决于采空区的形状及煤层倾角 大小。当采空区为长方形时,移动盆地大致呈 椭圆形,它与采空区的相对位置取决于煤层倾
• 式中Mz—上下煤层综合开采厚度,m; M2—下煤层厚度, m; M1—上煤层厚度,m; h—上下煤层层间距,m; y2—下煤层的垮落带高度与采厚之比。 • 当上下煤层的层间距很小时,综合开采厚度取上下煤层厚 度之和,即 M Z M 1 M 2 (1-4) • 求出综合开采厚度后,可按单一煤层开采的条件计算垮落 带和断裂带的高度。

地表与岩层移动简介

地表与岩层移动简介

3、日常观测工作 日常观测工作是指在地表移动的初始期和衰退期之间 适当增加的水准测量工作。测量时可采用单程附合水准路 线或往返支水准路线,按四等水准测量的要求进行。 还应测量地表产生裂缝的位置和塌陷要素,注明发现 日期;在每次观测时,还应实测回采工作面的位置、煤层 厚度、采高,并记录采矿、地质和水文地质情况。
14-2 地表移动的观测 14研究地表与岩层移动的方法主要有实地观测法、理论 研究法和相似材料模型法。目前最主要的方法仍是实地观 测法。 一、 地表移动观测站的设计 1、需要收集的资料 2、观测站的设计方法 (1) 倾斜观测线位置及其长度的确定 倾斜观测线一般设置在移动盆地的倾斜主断面上。 倾斜观测线的长度,应保证线的两端在不受开采影响 的范围内。倾斜观测线的长度是在移动盆地的倾斜主断面 上确定的。
3、片帮 煤层采出后,采空区顶板岩层内出现悬空,其压力便 转移到煤壁上,形成增压区,煤壁在附加载荷的作用下, 一部分被压碎并垮向采空区,这种现象称为片帮。 4、岩石沿层面的滑动 当煤层倾斜时,岩石的自重力方向与岩层的层理面不 垂直,岩石除产生沿其法向的弯曲外,还将产生沿层理面 方向的滑动。岩层倾角越大,沿层理面的滑移越明显。 5、垮落岩石的下滑 底板岩层的隆起(又称底鼓) 6、底板岩层的隆起(又称底鼓) 如果煤层底板岩石很软且倾角较大,在煤层采出后, 底板在垂直方向减压,水平方向受压,造成底板向采空区 方向隆起的现象,称为底鼓。
所谓充分采动是指地 下煤层采出后,地表下沉 值达到该地质采矿条件下 应有的最大值。一般情况 下,当采空区的长度和宽 度均达到或超过采深的 1.2-1.4 倍 时 , 地 表 可 达 到充分采动。 凡是采空区的尺寸没 有达到充分采动的临界值, 地表下沉也未达到该地质 采矿条件下应有的最大下 沉值时,这种采动称为非 充分采动。

第十二章、岩层与地表移动

第十二章、岩层与地表移动

第一节 岩层与地表移动概念
一、踩空区上覆岩层分带 地下煤炭采出后,破坏了地层内部原有的应力平衡状态,采空区顶板岩 层在重力作用下,向下弯曲下沉,乃至断裂而充填采空区。当采空区的面积 达到一定范围时,这种移动和变形便波及到地表,导致地表出现下沉、裂缝 甚至塌陷,严重威胁着地面建筑物的安全。因此,在建筑物下、铁路下、水 体下(简称“三下”)采煤时,需要认真研究和掌握岩层与地表移动规律, 确保地面和井下的安全 当采用全部垮落法管理顶板时,顶板岩石破碎、垮落充填采空区。顶板垮 落的范围称为垮落带,如图中Ⅰ所示。垮落带的高度取决于采出煤层的厚度 和岩石的碎胀系数,它通常为采出煤层厚度的3~5倍。垮落带的碎石块充满采 空区,使上部岩层不再冒落,而只出现弯曲、层离、裂缝,这部分通常称为 断裂带,如图中Ⅱ所示。垮落带和断裂带合起来一般称为导水断裂带。导水 断裂带的高度约为采空区高度的15~25倍,个别矿区也有小于12倍的。岩层移 动再向上发展则出现平缓弯曲知直到地表,称为弯曲带。如图中Ⅲ所示。弯 曲带中岩层不再断裂,而是产生法向弯曲,保持了层状结构,移动过程连续 而有规律。实际上,上述三个带的界限并不明显。对于不同采区,可能只出 现其中的两个带。 影响岩层与地表移动的因素很多,主要有岩石的物理、力学性质、煤层 的倾角,开采厚度及开采深度,采空区的形状、大小及采煤方法,地表的地 形条件以及地质结构、水文地质条件等
(1)用水准测量仪测定各点的高程。 (2)用钢尺(测距仪)测量各点之间的距离。 (3)测量各点偏离测线的距离(即支距测量) (4)对地表原有破坏状态(如地面、建筑物的裂缝等)进 行丈量素描,必要时应摄影存查。 地表移动去昂过程通常分为初期、活跃期与衰减期三个阶段。 当采动影响使地表下沉值达10mm时,即进入初期阶段,此阶段每 隔一个月至三个月观测一次。当开采缓倾斜和倾斜煤层时,每月 下沉大于50mm;开采急倾斜煤层时,每月下沉值大于30mm,即进 入活跃期。活跃期每半个月至一个月观测一次,但整个活跃期内 的观测次数不得少于四次。此后,每月下沉值小于50mm时,即进 入衰减期,衰减期内每隔一个月至三个月观测一次。六个月内地 表下沉的累计值不超过30mm时,即认为移动终止。 外业测量工作中的有关规定可参照《煤矿测量试行规程》

开采沉陷学

开采沉陷学
2)根据连通性的好坏,裂缝带一般导水、但不利于砂、 泥土通过。
3)冒落带和裂缝带合称为两带,又称为冒落裂缝带或 导水裂缝带。
4)导水裂缝带高度与岩性有关。 5)裂缝带随着工作面推进距离的增加,当采空区扩大
到一定范围时,裂缝带的高度达到最大。
1.1 开采引起的岩层移动和破坏
弯曲带指的是裂缝带之上直至地表的整个岩 系。其岩层移动和破坏特征:
(一)对地表移动盆地形态的影响
• 在水平和近水平矿层开采条件下,地表移动盆地是 以采空区中心对称的椭圆。在倾斜矿层开采条件下, 地表移动盆地为偏向下山方向的非对称椭圆,形状 为碗形或盘形。随着倾角的增大,这种非对称性增 大,当矿层倾角接近90°时,又成为对称的椭圆, 地表移动盆地为碗形或兜形。
1.4岩层与地表移动与地质采矿 条件的关系
影响开采沉陷分布规律的地质和采矿因素
1.4岩层与地表移动与地质采矿 条件的关系
覆岩力学性质、岩层层位的影响
• 组成岩层的岩石可分为坚硬(f>6)、中硬(f=3~6)和软弱 (f<3)三种类型。
• 1.在覆岩坚硬的条件下,岩层及地表移动具有如下特征: • 采空区悬顶面积大、地表易产生非连续性变形。 • 岩层及地表下沉量小,拐点平移距大。 • 急倾斜矿层开采条件下,地表易出现塌陷坑或塌陷漏斗。 • 移动角较大。 • 导水裂缝带高度较大。 • 在覆岩较弱的情况下,有与以上相反的特征。
第1章 地表移动和变形的规律
1.1 开采引起的岩层移动和破坏
岩层移动和破坏过程
采空区上覆岩层移动和破坏示意图 采空区影响范围内影响带的划分示意图
1.1 开采引起的岩层移动和破坏
岩层移动和破坏的形式 1.弯曲 2.垮落,又称冒落 3.矿体的挤出,又称片帮 4.岩石沿层面的滑移 5.岩石的下滑 6.底板的隆起

第二章采煤工作面上覆岩层移动及其矿压显现规律

第二章采煤工作面上覆岩层移动及其矿压显现规律

p
1 2
q
H 2(L 6l 2 (L
l) l)
Rt
第一节 采煤任务面上覆岩层移动规律
四、裂隙带岩层的结构方式〔矿压假说〕 〔四〕压力拱结构
关于无基本顶的
坚实岩层顶板,
任务面上方多组
裂隙把顶板联系
成碎块。由于岩
层自然平衡的结 果将构成一个压
图2-6 压力拱结构模型
力拱拱。的一个支点在任务面前方的煤壁上,另一支点在采
有关岩体结构的方式的假说称为采场矿压实际。 结构方式:砌体梁、传递岩梁、悬梁〔板〕结构、
压力拱
第一节 采煤任务面上覆岩层移动规律
四、裂隙带岩层的结构方式〔矿压假说〕 〔一〕砌体梁结构
图2-3 砌体梁 结构模型
中国矿大钱鸣高院士提出。裂隙带岩层为稳固岩层,断 裂后的岩块象砌体一样挤压成一个可以承载的结构,其 间的坚实岩层可视为作用在岩梁上的载荷。
第二节 采煤任务面矿山压力显现规律
四、支承压力及其显现
〔二〕支承压力在底板中的传 达散布规律
〔1〕随深度添加,支承压力逐渐减小,影响范围扩 展;影响角φ与岩性和煤层倾角有关;沿走向 φ=15°~35°,倾斜方向φ=25~55°
〔2〕煤柱下为增压 区、采空区下为减 压区; 〔3〕底板稳固,影 响深度小但扩展角 大;岩层坚实,影 响深度大。
第二节 采煤任务面矿山压力显现规律
四、支承压力及其显现
〔三〕支承压力的影响要素
〔1〕开采深度 随深度添加,原岩应力添加,支承压力也添加,这是
深部开采巷道变形严重的主要缘由。 〔2〕围岩性质
稳固岩层应力传递的范围广,支承压力散布范围广, 应力集中系数小。 〔3〕煤质软硬
煤质愈硬,强度愈高,支承压力散布范围愈小,而应 力集中系数愈高,峰值点位置距煤壁愈近。 〔4〕与煤层的相对位置 远离煤层支承压力变小;接近采空区,支承压力变小。

第1章覆岩与地表移动规律

第1章覆岩与地表移动规律

第1篇覆岩与地表移动规律第1章覆岩与地表移动规律1.1 概述各种有用的矿物赋存在地下岩体中的一定位置,与周围的岩体相接触,并保持其应力平衡状态。

地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。

这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及到地表,引起地表下沉,形成所谓的下沉盆地(Subsidence basin)。

采动覆岩与地表移动变形的过程是开采破坏了原岩应力状态形成新的平衡的必然过程。

开采引起矿层及围岩的移动和破坏在时间及空间上是一个复杂的运动破坏过程,其特点如下:(1)从采空区至地表,覆岩破坏范围逐渐扩大、破坏强度逐渐减弱,根据覆岩破坏特征一般将其划分为冒落带、裂隙带和弯曲下沉带,即所谓的“三带”如图1—1所示;图1—1 采动覆岩移动破坏三带分布图a-冒落带;b-裂隙带;c-弯曲下沉带(2)覆岩移动状态可划分为5个区,如图1-2所示。

其中:①垂直下移区。

该区域的岩层在重力作用下作垂直于矿层的运动。

②垂直上移区。

该区域的岩层在侧向及底板应力的作用下向上移动。

③垂直与水平移动区。

该区域的岩层在覆岩自重及水平应力的作用下,作向采空区中心方向的移动。

④底板下移区。

该区域的岩层在支撑压力的作用下,向底板卸压区移动。

⑤开采支撑压力区。

该区域的岩层要承受采空区上覆岩体重力的转移,形成开采支撑压力区,开采支撑压力区的应力值一般高达原岩应力的1.5~3.0倍。

第1章 覆岩与地表移动规律第 页2图1-2覆岩内部移动状态分布图1.2 覆岩移动破坏规律1.2.1 “三带”的形成矿层开采后,其覆岩要发生移动和破坏。

经长期的观测证实,覆岩移动和破坏具有明显的分带性,它的特征与地质、采矿等因素有关。

在采用走向长壁全部冒落法开采缓倾斜中厚矿层的条件下,只要采深达到一定深度(采深与采高之比H/m >40),覆岩的破坏和移动会出现三个代表性的部分,自下而上分别称为:冒落带(Caved zone)、裂隙带(Fractured zone)和弯曲下沉带(Continuous deformation zone)(见图1-1)。

多煤层开采覆岩移动及地表变形规律的相似模拟实验研究

多煤层开采覆岩移动及地表变形规律的相似模拟实验研究

多煤层开采覆岩移动及地表变形规律的相似模拟实验研究张志祥;张永波;赵志怀;张利民【摘要】以离石-军渡高速公路下伏康家沟煤矿采矿地质条件为原型,采用相似材料模拟实验方法,对多煤层开采引起的覆岩移动及地表变形规律进行了研究.相似模拟实验结果表明:多煤层开采条件下,随着煤层累计采厚的增加,采空区"三带"覆岩下沉量和采空区地表沉降量、地表倾斜变形、地表水平位移及地表曲率变形都呈增大趋势,采空区上覆岩体更加破碎,地表变形更加强烈.研究成果可为高速公路下伏多煤层采空区的治理设计提供依据.%Taking geological conditions of Kangjiagou coal mine under Lishi-Jundu freeway as a prototype, similar material simulation was carried out for examining the behavior of overlying rock movement and surface deformation with multi-coal seam mining. The results show that under the condition of multi-coal seam mining, with the increase of total thickness of coal seam, the overlying rock subsidence of three zones of gob and surface subsidence, surface lean deformation, surface level movement, surface curvature deformation all show an increasing tendency, the overlying rock of gob is more broken, the surface deformation is more intense. The results provide the basis for the treatment design of gob with multi-coal seam under freeway.【期刊名称】《水文地质工程地质》【年(卷),期】2011(038)004【总页数】5页(P130-134)【关键词】多煤层开采;覆岩;相似模拟;采空区;变形【作者】张志祥;张永波;赵志怀;张利民【作者单位】太原理工大学水利科学与工程学院,太原,030024;太原理工大学水利科学与工程学院,太原,030024;太原理工大学水利科学与工程学院,太原,030024;山西省交通设计研究院,太原,030012【正文语种】中文【中图分类】TD325.+2煤炭开采过程中产生的一系列覆岩移动及地表变形规律,受到了学者们的高度重视,如刘秀英等[1]采用相似模拟实验研究了辛置煤矿2204工作面采空区覆岩的移动规律;刘瑾等[2]进行了采深和松散层厚度对开采沉陷地表移动变形影响的数值模拟研究;孙光中等[3]采用数值模拟和相似材料模拟对巨厚煤层开采覆岩运动规律进行了研究。

采场上覆岩层运动规律

采场上覆岩层运动规律

采场上覆岩层运动规律1.采场上覆岩层破坏的基本形式理论与实践的研究结果表明,采场上覆岩层悬露后发展到破坏有二种运动形式:弯拉破坏和剪切破坏。

弯拉破坏的发展过程是:随采场推进,上覆岩层悬露→在重力作用下弯曲→岩层悬露达一定跨度,弯曲沉降发展到一定限度后,在伸入煤壁的端部开裂→中部开裂形成“假塑性岩梁”→当其沉降值超过“假塑性岩梁”允许沉降值时,悬露岩层即自行冒落。

岩层运动由弯曲沉降发展至破坏的力学条件是岩层中的最大弯曲拉应力达到其抗拉强度。

悬露岩层中部拉开后,是否发展至冒落,则由其下部允许运动的空间高度决定。

只有其下部允许运动的空间高度超过运动岩层的允许沉降值,岩层运动才会由弯曲沉降发展至冒落。

否则,将保持“假塑性岩梁”状态。

由此,煤层上方第n个岩层弯曲破坏发展至冒落的条件为:岩层剪(切)断破坏的发展过程是:岩层悬露后只产生不大的弯曲,悬露岩层端部开裂→在岩层中部未开裂(或开裂很小)的情况下,整体切断塌垮。

2 .采场上覆岩层在纵向上的运动发展规律2.1岩层离层发生的位置和条件采场上方悬露的岩层,可视为在均布载荷作用下的多层嵌固梁。

该岩梁弯曲沉降过程中,必然在平行于轴向的各层面(或接触面)上出现剪应力。

随采场推进,剪应力随岩梁悬跨度和外载的增加而增加,当剪应力值超过层面上(或软弱夹层的接触面上)粘结力和摩擦阻力所允许的限度时,层面或软弱夹层的接触面被剪坏。

岩层的离层随即发生。

因此,离层发生和力学条件为:式中:τ——层面(或软弱夹层接触面)的剪应力;C——层面或接触面上的粘结力;φ——层面或接触面上的磨擦角;σn——层面或接触面上的压应力。

大量理论研究和工程实践表明:(1)离层一般发生于岩层的接触面或软弱夹层上;(2)接触面的破坏,只有在相应接触面上的剪应力超限时才会发生,即悬露岩层的跨度达到极限时,离层才会发生。

(3)离层出现的位置取决于组合岩梁中各岩层的弯曲刚度和各夹层的强度。

当下部岩层弯曲刚度小,夹层(或接触面)强度低时,离层在下部发生;反之,离层可能在上部夹层中出现。

采场上覆岩层移动规律

采场上覆岩层移动规律

三、直接顶的初次垮落 初次垮落——直接顶第一次垮落(初次放顶)
(标志:垮落高度>1~1.5m,长度>1/2 面长)
初次垮落步距——第一次垮落时,直接顶的跨距。
直接顶垮落距受直接顶强度、厚度、节理裂隙影响,是 描述直接顶稳定性的综合指标。
直接顶垮落前,顶板完整性一般较好,支架载荷小,稳 定性差,初次垮落易发生大面积顶板事故。
第三节 老顶的移动规律
一、老顶梁式结构分析:
1、冒落区老顶支撑条件:
1)全部充填满回采空间
0 h M
Kp 1
2)不能充填满回采空间 (老顶悬露,成梁式结构)
0
h M h KP M hKP 1
h M Kp 1
2、老顶梁式结构力学分析: (按固支)
1)支座反力:(对称)
R1
R2
二、上覆岩层运动的两种基本形式
(一) 弯拉破坏的运动形式
1、运动过程
采场推进→重力作用弯曲→一定跨度、沉降、弯曲、 端部开裂→中部开裂→冒落。
2、力学条件
岩层运动呈现弯曲沉降发展到破坏的运动形式,其力学 条件是岩层中的最大弯曲拉应力达到其抗拉强度。
t max [t]
3、显现特点 运动由于是逐渐发展,冲击不大,相对(剪切运动) 其矿压显现比较缓和。 4、控制要求 为保证岩层运动时的采场安全,支架必须承担控顶区 上方冒落岩层的全部岩重,并且把“假塑性岩梁”的 运动控制在要求的位置上。
当不需要对“假塑性岩梁”沉降进行控制时,支撑 这部分岩层的支架阻力可以为零,最大不必要超过岩 梁跨度四分之一的岩重。
A PT A mEEL0
4LK
(二)剪(切)断破坏的运动形式
1、发展过程
悬露→产生不大弯曲,端部开裂→中部未开裂(或开裂 很少) ,情况下切断塌垮。

综采工作面覆岩移动和破坏规律研究

综采工作面覆岩移动和破坏规律研究
技术研发
! " # $ % & ' & ( )* % +,* . " !
: + ; !# !< + % !!"#$

综采工作面覆岩移动和破坏规律研究
高&宏
大同煤业集团有限责任公司 煤峪口矿 山西 大同 ")>"$#
摘&要为了研究试验矿井综采工作面上覆岩层的移动和破坏规律通过现场钻孔全厚覆岩层取样方法进行覆岩力学性 质室内测试在试验矿井工作面上方地表布置岩移观测站基岩中布置钻孔深基点 并通过钻孔冲洗液法 理论分析等方 法分析了试验矿井特定地层条件下的地表岩移规律确定了覆岩性质运动发育特征及分带特征 关键词 岩层移动 破坏规律 钻孔取样 理论分析 分带特征 *+ , #")%'% . / , 0 0 1#""' 2 3(($!"#$"%"#% &煤层现状及研究意义 某煤矿某工作面所开采煤层赋存稳定! 煤层层理较发育! 整体性较好!但强度低! 加上局部裂隙发育! 易于垮落! 煤层结 ! 构简单!煤层的变化不大!倾角较小!工作面走向长度 ! ")3 4 倾向长度 )"" 4 !平均采高 $>4 !平均埋深约 ##! 4属于浅埋 深大采厚煤层" 为了系统了解和总结该煤矿在综采快速推进 条件下的上覆岩层运动和破坏特征!采用现场钻孔全厚覆岩层 取样方法!进行了覆岩力学性质室内测试! 了解了岩层基本力 学参数!通过对该煤矿某工作面上方地表布置岩移观测站! 实 测开采过程中地表岩移数据! 经理论分析# 掌握该煤矿所在矿 区特定地层条件下地表岩移规律" 通过钻孔深基点观测及钻 孔冲洗液的方法确定覆岩性质# 运动发育特征及分带特征! 其 研究成果可以为矿井所在地区同类型矿井的开采设计及 + 三 下, 开采等提供理论依据!具有重要的指导意义" 从理论上分析!本研究对象属于快速推进综采工作面覆岩 移动和破坏变形研究!工作面开采一定程度后! 顶板垮落! 上方 地表将达到超充分采动状态! 产生很大的地表变形! 由于该采 煤地区对覆岩移动和变形规律研究较少!导致矿方对该地区覆 岩移动和变形规律的认识极度缺乏! 生产过程中经常出现冒 顶#偏帮#围岩变形严重等难题! 为了掌握该地区覆岩性质! 以 及由采矿活动引起的覆岩移动和破坏规律! 本研究选择该地区 某煤矿某综采工作面进行实测研究! 通过实测结果! 系统分析 并掌握该地区覆岩移动和破坏规律!掌握该矿快速推进条件下 综采工作面上方地表移动情况!为该煤矿科学生产提供重要的 理论依据" &测定方法 通过对该煤矿某工作面上方地表布置岩移观测站! 实测开 采过程中地表岩移数据! 经理论分析# 掌握该煤矿所在矿区特 定地层条件下地表岩移规律$通过钻孔深基点观测及钻孔冲洗 液的方法确定覆岩性质#运动发育特征及分带特征" 主要研究 内容如下" # ) 采用现场钻孔全厚覆岩层取样方法!进行覆岩力学性质 室内测试!了解岩层基本力学参数" ! ) 通过对该煤矿某工作面上方地表布置岩移观测站! 实测 开采过程中地表岩移数据! 经理论分析# 掌握该煤矿所在矿区 特定地层条件下地表岩移规律" ) ) 通过钻孔深基点观测及钻孔冲洗液的方法确定覆岩性 质#运动发育特征及分带特征" 该煤矿所采煤层赋存稳定!煤层层理较发育! 整体性较好! 但强度低!加上局部裂隙发育! 易于垮落! 煤层结构简单! 煤层 的变化 不 大! 倾 角 较 小" 本 论 文 所 研 究 的 工 作 面 走 向 长 度 ! ")3 4 !倾向长度 )"" 4 ! 平均采高 $> 4 ! 平均埋深约 ##! 4 属于浅埋深大采厚煤层!基岩厚度 >" 6 #!" 4 ! 松散层厚度 "( 6 !( 4 !变化较大" 该矿地面高程为 # )3' 6 # $!! 4 !煤层底板 # !3> 4 !比较稳定" 煤层顶部为中细粒砂岩" 工 高程 # !3# 6 作面采煤工艺为综采工艺!顶板管理方式采取全部垮落法" !9 #&现场钻孔取样 采取现场钻孔取样的方法!对本论文所研究煤矿工作面上 方覆岩岩层岩石进行了单轴压缩等试验!获得了各岩层的单轴 压缩强度#弹性模量#泊松比等参数" # ) 在自然状态下试验研究工作面覆岩单轴抗压强度 !3 6 (%%I V T !最大平均抗压强度为 (%% I V T ! 最小平均抗压强 !I V T !总体平均抗压强度为 #'%I V T " 属典型的强度 度为 )较小的岩层!强度较大的岩石为细砂岩!粗砂岩! 粉砂岩和钙质 (%%I V T " 细砂岩!强度 )' 6 ! ) 上 覆 岩 层 岩 样 弹 性 模 量 )$$ A#") I V T 6#> A #"$ I V T !内摩擦角 )$Y 6 $"Y ! 覆岩抗拉强度 "!# 6 $(# I V T ! 平均抗拉强度 #)( I V T " ) ) 煤层强度为 %(# 6 !!#% . #'!% I V T ! 冒落顶板为灰色 粉砂岩和 细 砂岩! 强 度 #>"3 6 !()' . !#)% I V T !底板强度 #%%# 6 !!(! . !#)% I V " !9 !&地表移动观测 !!#&地表移动观测的方法 地表移动观测的基本内容%在采动过程中! 定期地# 重复地 测定观测线上各测点在不同时期内空间位置变化" 地表移动 观测工作可分为%观测站地连接测量!全面观测! 单独进行水准 测量!地表破坏的测定和编录" 对试验研究工作面的岩移观测站进行布设! 利用实际数据 处理和理论分析相结合的研究方法对试验研究工作面地表岩 移进行量化!主要内容如下" # ) 地表岩移观测共布置测线 ! 条! 其中走向线 # 条! 倾向 线 # 条!走向观测线布置的长度为 ! ("" 4 !倾向观测线布置长

岩层与地表移动

岩层与地表移动
理论研究法主要有:①用连续介质力学的理论计算法,近期也采用有限元法,但必须选用相适应的岩石力学 指标。②用随机介质理论。应用概率论,建立数学模型,所用参数来自实测。在中国煤矿以随机介质理论使用较 广。
模拟试验法一般用相似材料模型、砂子模型和明胶模型等试验方法。研究周期短、形象化,可按需要条件重 复试验。本法主要用做定性研究,有助于理论的探讨,与以上两法结合,可得较好效果。
研究规律方法
岩层与地表移动实地观测法建立由一系列测点组成的观测线或观测。在开采前、开采过程中和移动稳定后观 测测点的位移,计算出地表在垂直和水平方向上的位移和变形,找出其变化规律,建立地表下沉和变形最大值的 经验公式,主断面内移动和变形分布的典型曲线或剖面函数,以及移动盆地内任意点移动与变形的计算方法。此 法实用、可靠,并能为其他方法提供依据和检验手段,但工作量大,研究周期长,应用也有局限性。
下沉盆地的移动分布特点与采空区宽度有关。当采空区宽度为开采深度的1.2~1.4倍时,称临界开采,地表 达到充分采动,下沉盆地中央出现应有的最大下沉值。当采空区宽度小于开采深度1.2~1.4倍时,称次临界开采, 地表为非充分采动,下沉盆地中央的最大值小于应有的最大值。当采空区宽度远大于开采深度的1.2~1.4倍时, 称超临界开采,地表为超充分采动,下沉盆地中央出现平坦的无变形区。一般以下降10mm的点作为地表下沉盆地 的边缘点。在主断面内地表下沉盆地边缘点至相应采空区边界点的连线与水平线的夹角称边缘角。用δ0表示走向、 用β0和α0分别表示下山和上山方向的边缘角。边缘角大小与岩性有关。由软岩到硬岩,边缘角逐渐变大。
影响因素
岩层与地表移动有采矿方法和顶板管理方法、岩性、采深、采厚、采空区大小及形状、矿层倾角、重复开采 次数、地质构造、地层结构、水文地质条件及地形等。充填采矿法与条带法开采可使岩层与地表移动缓和并减小。 工作面匀速推进,可减小地表的动态变形。最终回采边界是造成地表永久性静态变形的原因。岩性包括岩块和岩 体的物理力学性质。目前按岩块抗压强度将岩层简化为软弱、中硬、坚硬三类。软弱岩层中移动过程的发展快于 坚硬岩层。岩性对冒落带、断裂带的发展高度有明显影响。塑性软弱岩层中冒落带和断裂带高度小于脆性坚硬岩 层。

开采损害学

开采损害学

开采损害学第一章1.下沉盆地:地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。

这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及地表,引起地表下沉,形成所谓的下沉盆地,2.覆岩破坏特征划分为:垮落带、裂隙带、弯曲下沉带,被称为“三带”3.只要采深达到一定深度(采深与采高之比H(埋深)/m(采高)>40),覆岩的破坏和移动就会自下而上出现三个代表性部分(就是三带)4.覆岩移动状态可划分为5个区:1)垂直下移区2)垂直上移区3)垂直与水平移动区4)底板下移区5)开采支撑压力区5.采动上覆岩层移动破坏的形式可概括为六种:弯曲、垮落、煤的挤出(片帮)、岩石延层面滑移、垮落岩石的下滑(或滚动)、底板岩层隆起6.地表移动破坏规律:地下开采引起的地表移动和变形大小、空间分布形态及其与地质采矿条件的关系。

从时间和空间的概念出发,一般将地表移动变形分为连续移动变形和非连续移动变形两类7.地表连续移动变形:采动在地表的反映为连续的下沉盆地。

8.地表非连续移动变形:开采后在地表出现大的裂缝、台阶下沉、塌陷坑及漏斗等形式的破坏。

9.实践观测表明,通常在采空区的长度和宽度均达到1.2H0~1.4H0的时候,地表可达到充分采动。

因而,开采工作面沿一个方向(走向或倾向)达到临界开采尺寸;而另一个方向未达到临界开采尺寸;而另一个方向未达到临界开采尺寸,这种情况也属于非充分采动。

10.充分采动的范围用充分采动角Ψ来确定。

Ψ指充分采动下沉盆地主断面上平底的边缘点与开采边界线和矿层间的夹角。

11.地表下沉盆地范围可用各种角度参数来确定:(1)边界角(2)移动角(3)裂缝角(4)最大下沉角开采达到或接近充分采动时,将移动盆地主断面上的盆地边界点和采空区边界点的连线与在采空区外侧水平线的夹角称为边界角。

在达到或接近充分采动时的移动盆地主断面上,临界变形点和采空区边界点的连线与水平线在采空区外侧的夹角称为移动角。

采场上覆岩层运动和发展的基本规律概述(PPT 59页)

采场上覆岩层运动和发展的基本规律概述(PPT 59页)

4 岩层的厚度较之岩性对岩层的离层和运动组合的影响重要的多。
《矿山压力与岩层控制》精品课程
P33
➢3.2.2 直接顶和基本顶 直接顶——所谓直接顶是指在老塘(采空区)内已跨落,在采 场内由支架暂时支撑的悬臂梁,其结构特点是在采场推进方向 上不能始终保持水平力的传递。如图3.11(a)所示。
(a)
(a)直接顶
2Em2
《矿山压力与岩层控制》精品课程
P29
两岩层在外载(上部岩重)作用下的运动组合分析
E下m下2> E上m上2
上下两岩层同时运动
L上=L下=L
E下m下2< E上m上2
上下两岩层分开运动 且下部岩层先运动
《矿山压力与岩层控制》精品课程
P30
两岩层在自重作用下弯曲沉降分析
L下= 1.25L上
由E下m下2=(1.25)4 E上m上2判断
深入煤壁的两端部断裂
弯坏的力学过程,就是其支承条件由双嵌固梁向简支梁发展的过
程。如图3.4(a)(b)
《矿山压力与岩层控制》精品课程
P10
图3.5 岩梁的支承 条件与弯距 a-嵌固状态; b-简支状态
m h
q L 2 o 1 2
A
1O
L o
B
( a )
q L 2 o
2 4
n
q 2 =m ir 1
i= 1
t
(3.12)
6
《矿山压力与岩层控制》精品课程
P12
当悬露岩层上部无比其软弱岩层时,该岩层只受本身重力的作用, 其端部裂断时的拉应力可按下式计算
L2
0
A 2m
t
(3.13)
当悬露岩层上部存在较为软弱的岩层时,则形成由不同岩性的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1篇覆岩与地表移动规律第1章覆岩与地表移动规律1.1 概述各种有用的矿物赋存在地下岩体中的一定位置,与周围的岩体相接触,并保持其应力平衡状态。

地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。

这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及到地表,引起地表下沉,形成所谓的下沉盆地(Subsidence basin)。

采动覆岩与地表移动变形的过程是开采破坏了原岩应力状态形成新的平衡的必然过程。

开采引起矿层及围岩的移动和破坏在时间及空间上是一个复杂的运动破坏过程,其特点如下:(1)从采空区至地表,覆岩破坏范围逐渐扩大、破坏强度逐渐减弱,根据覆岩破坏特征一般将其划分为冒落带、裂隙带和弯曲下沉带,即所谓的“三带”如图1—1所示;图1—1 采动覆岩移动破坏三带分布图a-冒落带;b-裂隙带;c-弯曲下沉带(2)覆岩移动状态可划分为5个区,如图1-2所示。

其中:①垂直下移区。

该区域的岩层在重力作用下作垂直于矿层的运动。

②垂直上移区。

该区域的岩层在侧向及底板应力的作用下向上移动。

③垂直与水平移动区。

该区域的岩层在覆岩自重及水平应力的作用下,作向采空区中心方向的移动。

④底板下移区。

该区域的岩层在支撑压力的作用下,向底板卸压区移动。

⑤开采支撑压力区。

该区域的岩层要承受采空区上覆岩体重力的转移,形成开采支撑压力区,开采支撑压力区的应力值一般高达原岩应力的1.5~3.0倍。

第1章 覆岩与地表移动规律第 页2图1-2覆岩内部移动状态分布图1.2 覆岩移动破坏规律1.2.1 “三带”的形成矿层开采后,其覆岩要发生移动和破坏。

经长期的观测证实,覆岩移动和破坏具有明显的分带性,它的特征与地质、采矿等因素有关。

在采用走向长壁全部冒落法开采缓倾斜中厚矿层的条件下,只要采深达到一定深度(采深与采高之比H/m >40),覆岩的破坏和移动会出现三个代表性的部分,自下而上分别称为:冒落带(Caved zone)、裂隙带(Fractured zone)和弯曲下沉带(Continuous deformation zone)(见图1-1)。

1.冒落带冒落带也称垮落带,是指岩层母体失去连续性,呈不规则岩块或似层状巨块向采空区冒落的那部分岩层。

冒落带位于覆岩的最下部,紧贴矿层。

矿层采空后,上覆岩层失去平衡,由直接顶岩层开始冒落,并逐渐向上发展,直到开采空间被冒落岩块充满为止。

冒落岩块由于碎胀,体积较冒落前增大,增大比率可用碎胀系数表示,碎胀系数大小与岩性及采厚有关。

硬岩及采厚较大时,其值大,反之较小,平均约在1.2~1.6范围。

在自由堆积状态下,由于冒落岩块碎胀性而逐渐充填开采空间,导致冒落带发展到一定高度而自行停止。

表1-1给出了常见岩石的碎胀系数。

表1-1 常见岩石的碎胀系数 岩石名称碎 胀 系 数 初始碎胀系数K p 残余碎胀系数K s 砂1.06~1.15. 1.01~1.03 粘土<1.20 1.03~1.07 碎煤<1.20 1.05 粘土页岩1.40 1.10 砂质页岩1.60~1.80 1.10~1.15 硬砂岩 1.50~1.80冒落带碎落岩块在上覆岩层沉降压力下可逐渐压实,甚至部分形成再生顶板。

厚矿层分层开采时,冒落岩块受重复采动的多次破坏,岩体碎度增大,碎胀系数减小。

冒落带内岩块之间空隙多,连通性强,是水体和泥沙溃入井下的通道,也是瓦斯逸出或开采损害与环境保护第 页3 聚集的场所。

若开采控顶面积和冒落面积都大时,矿山压力呈集中显现,这是采矿工作面生产的主要威胁。

2.裂隙带裂隙带又称裂缝带。

裂隙带位于冒落带之上,具有与采空区相通的导水裂隙,但连续性未受破坏的那一部分岩层。

裂隙带的裂隙主要有两种:一种是垂直或斜交于岩层的新生张裂隙,主要是岩层向下弯曲受拉而产生,它可部分或全部穿过岩石分层,但其两侧岩体基本无相对位移而保持层状连续性;另一种是沿层面的离层裂隙,主要是因岩层间力学性质差异较大,岩层向下异步弯曲移动所致,离层裂隙要占据一定空间,致使上部覆岩地表下沉量减小。

地表下沉总量小于开采矿层厚度,除冒落岩块碎胀外,裂隙带的离层也是其中主要原因。

离层裂隙是储水和导水的通道。

裂隙带之上也有裂隙,可以间接导水和积水,但因垂直裂隙不发育,故不与下部裂隙沟通。

裂隙带的下部,垂向裂隙逐渐发育增强,离层裂隙和垂向裂隙连通,导水性明显增加,并能向下渗流至采空区,故裂隙带又称为导水裂隙带。

导水裂隙带若波及水体,可将水导入井下。

但由于裂隙宽度及途径转折限制,一般不透泥沙,特别是其上部透泥沙的可能性很小,裂隙带随开采区扩大而向上发展,当开采区扩大到一定范围时,裂隙带高度达到最大。

此时,开采区继续扩大,裂隙带高度基本上不再发展,并随着时间的推移,岩层移动趋于稳定,裂隙带上部裂缝逐渐闭合,裂隙带高度也随之降低。

一般在采空区形成两个月左右后,裂隙带发育最高。

厚矿层分层开采时,裂隙带总高度比开采一个分层大,但比一次采全高(如采用放顶煤开采)形成的裂隙带高度要小的多。

3.弯曲下沉带弯曲带又叫整体移动带,是指裂隙带顶部到地表的那部分岩层。

弯曲带基本呈整体移动,特别是带内为软弱岩层及松散土层时。

在垂直剖面上,弯曲带上下各部分下沉量差值很小。

弯曲带上部一般很少出现离层,但其下部可能出现离层。

弯曲带中的离层裂隙仅局部充水,不与导水裂隙带连通。

弯曲带上方地表一般要形成下沉盆地,盆地边缘往往出现张裂隙,其深度为3m ~5m ,一般不超过10 m ,其宽度向下渐窄,直至一定深度便闭合消失。

因此,弯曲带具有隔水保护层的作用。

以上“三带”虽各自特征明显不同,但其界面是逐渐过渡的,因而具体划分时应合理掌握。

不是在所有的开采条件下都会形成“三带”,如采用水砂充填管理顶板开采时,在覆岩中将不存在冒落带;在浅部厚矿层开采条件下,开采覆岩冒落破坏可能直达地表,此时将不存在弯曲下沉带。

1.2.2 覆岩移动破坏形式采动上覆岩层移动破坏形式,可概括为以下六种:1.弯曲这是岩层的主要移动形式。

当地下矿物采出后,上覆岩层中的各分层即开始沿岩层层面的第1章 覆岩与地表移动规律第 页4 法线方向,向采空区依次弯曲。

如果岩层在弯曲过程中所产生的拉伸变形超过了该种岩石的抗拉强度极限,则岩层内将出现裂隙乃至断裂。

因而使岩层失去连续性,但岩层仍保持其层状形式。

2.垮(冒)落矿层采出后,直接顶板岩层弯曲而产生拉伸变形。

当其拉伸变形超过岩石的允许抗拉强度时,直接顶板及其上部的部分岩层便与整体分开,碎成块度不同的岩块,无规律地充填采空区。

此时,岩层不再保持原来的层状结构。

这是岩层移动过程中最剧烈的一种形式,通常只发生在采空区直接顶板岩层中。

直接顶板岩层垮落并充填采空区后,由于破碎使其体积增大,致使其上部的岩层移动逐渐减弱。

3.煤的挤出(片帮)矿层采出后,采空区顶板岩层内出现悬空,其压力便转移到煤壁(或煤柱)上,煤壁承受的压力增加,形成增压区,煤壁在附加荷载的作用下,一部分煤被压碎,并挤向采空区,这种现象称为片帮。

由于增压区的存在,使采空区边界以外的上覆岩层和地表产生移动。

4.岩石沿层面滑移在倾斜矿层条件下,岩层的自重力方向与岩层面不垂直。

因此,岩石在自重力的作用下,除产生沿层面法线方向的弯曲外,还会发生沿层面方向的移动,称为滑移。

如果把岩石的自重力分解为平行和垂直于岩层层面的两个分量,就可明显地看出:随着矿层倾角的增大,垂直于岩层层面的分量将逐渐减小,而平行于层面的分量将逐渐增大。

因此,岩层倾角越大,岩石沿层面的滑移越明显。

沿层面滑移的结果,使采空区上山方向的部分岩石受拉伸,甚至被剪断,而下山方向的部分岩层受压缩。

5.垮落岩石的下滑(或滚动)矿层采出后,采空区被冒落岩块所充填。

当矿层倾角较大为下行开采时,下山部分矿层继续开采而形成新的采空区时,采空区上部垮落的岩石可能下滑(或滚动),充填新的采空区。

下滑使采空区上部的空间增大,下部的空间减小,使位于采空区上山部分的岩层和地表移动加剧,而下山部分的岩层与地表移动减小。

6.底板岩层隆起如果矿层底板岩石很软且倾角大,在矿层采出后,底板在垂直方向上减压,水平方向增压,造成底板向采空区方向隆起。

松散层的移动形式是垂直弯曲,不受矿层倾角影响。

应该指出,在某一个具体的移动过程中以上六种移动形式不一定同时出现。

1.2.3 岩层移动的典型图式根据矿层的赋存条件,可将岩层移动的形态划分为三种典型图式。

开采损害与环境保护第页5图1-3 水平矿层开采岩层移动形态图1-4 倾斜矿层开采岩层移动形态1.水平或缓倾斜矿层在水平或缓倾斜矿层条件下,岩层移动形态(图1-3)。

矿层采出后矿层上覆岩层以层状弯曲的形式移动。

这种移动一般不会因岩石的自重分力导致沿层面滑动,其条件为:'ϕα≤式中α—矿层的倾角;ϕ'—岩层中最软弱层面上的磨擦角。

2.倾斜矿层在倾斜矿层条件下的岩层移动形态(图1-4),当矿层采出后,其上覆岩层在层状弯曲的同时,伴随微小的沿层面方向的相对移动。

这种沿层面移动,将导致在采空区上山方向的岩层和地表移动范围扩大。

产生这种移动的条件为'ϕα>。

θα90-αO AB图1-5 急倾斜条件下岩层的下盘移动图1-6 急倾斜矿层开采时岩层以悬臂梁形式移动3.急倾斜矿层在急倾斜矿层条件下,岩层移动形态如图1-5、图1-6。

图1-5表明,矿层下盘(底板)发生移动,其发生的条件可近视表示为245ϕα+>︒。

式中ϕ—岩石的内摩擦角。

对于沉积岩来说,ϕ角的变化在26︒~36︒范围。

一般在矿层倾角为50︒~60︒时,矿层下第1章 覆岩与地表移动规律第 页6 盘才产生移动。

矿层下盘岩层的上部移动是沿层面的移动,而下部是沿245ϕα+> 的角度移动。

这种移动范围的大小,不但与煤岩倾角有关,而且与矿层底板各岩层的强度有关。

图1-6表明,开采急倾斜矿层时,位于移动盆地的上盘岩层是以悬臂梁弯曲形式移动。

当各分层岩层产生弯曲移动时,各分层岩层将沿弱面产生错动,由于这种错动的结果,在岩层露头处将出现台阶状移动。

1.3 地表移动破坏规律1.3.1 地表移动破坏类型地表移动破坏规律是指:地下开采引起的地表移动和变形的大小、空间分布形态及其与地质采矿条件的关系。

从时间和空间概念出发,一般将地表移动变形分为连续移动变形和非连续移动变形两大类型。

地表连续移动变形是指采动损害反映在地表为连续的下沉盆地。

在缓斜、倾斜矿床开采的条件下,当采深与采高比大于40~80,开采中采用长壁式全部垮落法管理顶板开采时;大面积矿柱式支撑法(支撑矿柱具有足够的强度和长期的稳定性);全部或部分充填法时,采动引起地表的移动变形一般为连续分布下沉盆地。

地表非连续移动变形是指:采动损害反映在地表为地表出现大的裂缝、台阶下沉、塌陷坑及漏斗等形式的破坏。

相关文档
最新文档