人教版七年级数学下册第六章61平方根(第1课时)
6.1 平方根 第1课时 (教学课件)- 人教版七年级数学下册
解: (1)因为302=900, 所以900的算术平方根是30,即 900 30 ;
(2)因为12=1, 所以1的算术平方根是1,即 1 1 ;
(3)因为
7 8
2
=
49 64
,所以
49 64
的算术平方根是 7
8
,即
49 = 7 64 8
;
(4)14的算术平方根是 14 .
四、典型例题
例2:已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求 a 2b 的值? 解:由题意可知:2a-1=9,3a+b-1=16, 解得:a=5,b=2, ∴ a 2b = 9 =3
【当堂检测】
1.求下列各数的算术平方根:
36 ,9 , 17, 0.81 , 10-4 16
解: 因为62=36, 所以36的算术平方根是6,即 36 6 ;
因为
3 4
2
=
9 16
,所以
9 16
的算术平方根是
3 4
,即
9 =3 ;
16 4
17的算术平方根是 17 ;
因为0.92=0.81, 所以0.81的算术平方根是0.9,即 0.81 0.9 ;
叫做 a 的算术平方根,a 的算术平方根记作“ a ”,读作“根号 a ”,a
叫做被开方数.
特别地,我们规定:0的算术平方根是0,即 0 0 .
三、概念剖析
(二)算术平方根的估算
思考:你能计算出 2 的值吗?
夹值法:即两边无限 逼近,逐渐确定真值
方法一:
因为12=1,22=4,所以1< 2 <2,
5 dm 因为52=25
三、概念剖析
(一)算术平方根
人教版七年级数学下册(教案):6.1-平方根(1)概念教学
在接下来的教学中,我还应注意以下几点:
1.加强对学生的个别辅导,针对他们在平方根学习中遇到的问题进行针对性的指导。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)通过对比、练习等形式,让学生区分平方根和算术平方根,加深对概念的理解。
(3)设计估算平方根的练习题,引导学生逐步掌握估算方法,提高计算能力。
(4)结合实际情境,如几何图形、生活问题等,让学生运用平方根知识解决问题,强化应用能力。
四、教学流程
(一)导入新课(Biblioteka 时5分钟)同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。
其次,在教学过程中,我注意到学生在区分平方根和算术平方根方面存在误区。为了帮助学生更好地理解这两个概念,我应该在讲解时增加对比和练习,让学生通过实际操作和练习来加深印象。
人教版七年级数学下册教学课件《平方根》(第1课时)
求下列各式的值:
(1)
1
;
(2)
9 25
;
(3) 42 ;
(4) 0
.
解:(1) 1 1 ;
(2)
9 25
3 5
;
(3) 42 4 ;
(4) 0 0 .
探究新知 知识点 2 算术平方根的双重非负性
6.1 平方根
1. 负数有算术平方根吗? 2. a 是什么数? 3. a 中的a可以取任何数吗?
探究新知
6.1 平方根
一般地,如果一个正数 x 的平方等于a,即x2=a,那么这
个正数x叫做a的算术平方根. a的算术平方根记为 a ,读作
“ 根号 a” .
规定:0的算术平方根是0,即 0 0 .
探究新知
6.1 平方根
怎么用符号来表示一个数的算术平方根? 平方根号
x2 a 互为 x a (x≥0) 逆运算
6.1 平方根
求下列各数的算术平方根:
(1)100 ;
(2)49 ; 64
(3)0.0001.
解:(1)因为 102=100 , 所以100的算术平方根是10 . 即 100=10 .
探究新知
6.1 平方根
(2) 49 ; 64
解:(2)因为 (7)2 49 , 8 64
所以 49 的算术平方根是 7 .
3
66
x
3
y
4z
7 3
3
7 6
4
35 6
175 6
.
课堂小结
算术平方根的概念
6.1 平方根
算术平 方根
算术平方根的双重非负性
算术平方根的应用
课后作业
作业 内容
人教版七年级数学下册《6.1 平方根 第一课时》课件ppt
a ≥0,即算术平方根及它的被开方数都
为非负数. 2.对于所有的算术平方根,被开方数越大,对
应的算术平方根也越大;反之亦然.
同学们, 下节课见!
总结
算术平方根具有双重非负性:这个数是非负数,它的算术平方 根也是非负数.
1 9的算术平方根为( A )
A. 3
B.-3 C.±3
D. 3
2 下列说法正确的是( A )
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
C.因为(±6)2=36,所以6和-6都是36的算术平方根
例2 求下列各数的算术平方根:
(1) 100;
(2) 49 ; 64
(3) 0.0001.
解:(1)因为102 = 100,所以100的算术平方根是10,
即 100 10;
(2)因为( 7 )2 = 49 ,所以 49 的算术平方根是 7 ,
8
64
64
8
即 49 7 ; 64 8
(3)因为0.012 =0.0001,所以0.0001的算术平方
例1 下列说法正确的是( A ) A.3是9的算术平方根 B.-2是4的算术平方根 C. (-2)2的算术平方根是-2 D.-9的算术平方根是3
导引:要正确把握算术平方根的定义.因为3的平方等于9,所以3 是9的算术平方根;因为-2不是正数,所以-2不是4的算 术平方根;因为(-2)2 =4,而22=4,所以2是(-2)2的算 术平方根; 负数没有算术平方根.
解:(2)由数轴可知a<0,b>0,a-b<0,a+b<0, 所以|a|=-a,|b|=b,|a-b|=-(a-b),|a+b|= -(a+b).所以原式=|a|-|b|-|a-b|+|a+b|= -a-b+(a-b)-(a+b)=-a-b+a-b-a-b =-a-3b.
七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例
2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。
【优课件】6.1 平方根(第1课时)-2021-2022学年七年级数学下册同步备课系列(人教版)
9
⑵
25
⑶ 2
⑷
3
9 3
(2)
= .
25 5
解: (1) 1=1.
(4) (-3)=-3.
2
2
(3) 2 =2.
2
2
2
(5) 13 -12 =5.
2
⑸ 132 122
4. 自由下落物体的高度(单位:m)与下落时间(单位:s)的关系
是 = . . 如图,有一个物体从490m高的建筑物上自由落下,
那么乘方与谁互为逆运算呢?
引入新课
学校要举行美术作品比赛,小红想裁出一块面积为25 dm2的
正方形画布,画上自己的得意之作参加比赛,这块正方形画
布的边长应取多少?你能帮小红算一算吗?
面积
=
边长
1
1
1.96
1. 4
2.25
1.5
9
3
16
4
36
6
这个问题,实际上是已知一个正数的平方,求这个正数.
人教版 七年级数学下册
第6章 实数
6.1 平方根
第1课时
引入新课
学习目标
1. 了解算术平方根的概念,会用根号表示一个数的算术平方根.
2. 会求非负数的算术平方根,掌握算术平方根的非负性.
回顾旧知
我们已学过了有理数的加法、减法、乘法、除法、乘方这五种运算.
在这五种运算中:
加法与减法互为逆运算;
乘法与除法互为逆运算;
如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在
一起,就得到一个面积为2的大正方形. 你知道这个大正方形的边长
是多少吗?
解:设大正方形的边长为,则 =2.
人教版初一数学 6.6.1 平方根 第一课时PPT课件
实数
6.1 平方根
第1课时 算术平方根
单元内容结构图
学习目标
1.了解算术平方根的意义和求法以及实际应用.
2.会求某些正数(完全平方数)的算术平方根,并会用符号
表示,提高抽象能力.
3.通过独立思考、合作交流,经历从平方运算到求算术平
方根的演变过程,感悟二者的互逆关系,并会用算术平方
根解决实际问题,发展应用意识.
= ;
8
64
64
8
64 8
探究新知
(3)0.000 1.
解:因为0.012=0.000 1,所以0.000 1的算术平方根是
0.01,即 . =0.01.
拓展应用
下列说法正确的是 ( D )
A. -1的算术平方根是-1
B. 0没有算术平方根
C.-1的相反数没有算术平方根
D. (-1)2的算术平方根是1
问题2:0的算术平方根是多少?怎么表示?
解:0的算术平方根是0.表示为 =0.
探究新知
学生活动三【典例精讲】
例 求下列各数的算术平方根:
(1)100;
解:因为102=100,所以100的算术平方根是10,
即 =10;
探究新知
49
(2) ;
64
7 2 49
49
7
49 7
解:因为
= ,所以 的算术平方根是 ,即
25;
0.81;
11
1 .
25
解:它们分别表示25的算术平方根,0.81的算术平方根,
11
6
1 的算术平方根,它们的值分别是5,0.9, .
25
5
课后作业
1.教材第41页练习第1,2题,第47页习
人教版教材七年级数学第6章第一节《算术平方根》教学设计
重点:算术平方根概念的理解。
难点:根据算术平方根的概念正确求出非负数的算术平方根。
七、教具安排PPT、视频八、课件使用说明本课件采用微软件幻灯片制作软件Microsoft Office PowerPoint 2007制作,安装Microsoft Office PowerPoint 2007或该软件更高版本可以正常运行。
双击PPT文件即可进入本课件进行授课。
九、教学过程1.明确目标课前导学出示学习目标(课标要求);围绕学习目标,课前学生自主阅读教材P40-41。
设计意图:明确本节所学的内容,让学生对本节课知识有个大体认识,产生疑惑课堂答疑。
2.提出问题引入新课提出问题:能否用两个面积为1dm2的正方形拼成一个面积为2dm2的大正方形?边长为多少?(设边长为xdm,可列方程x2=2,引出概念)设计意图:从现实生活中提出数学几何问题,能够使学生积极主动地投入到数学活动中去,动手操作,师生共探,培养学生动手能力和学习兴趣,发散学生思维,同时为学习算术平方根提供实际背景和生活素材。
3.解决问题学会算法解决问题:实际问题(正方形画布已知面积求边长)填入表格PPT展示对比;提问:加法、减法、乘法、除法、乘方这五种运算中那些是互逆运算呢?得出平方与开平方互为逆运算,配套练习教师点拨思考方法及书写。
设计意图:通过填表活动,从数学几何问题抽象为代数问题,总结归纳规律,解决生活实际问题,并在归纳中加深学生对平方与开平方互逆运算的认识,理解算术平方根的算法。
4.生成问题提炼性质符号表示:强调a的算术平方根符号表示,配套三个练习巩固。
生成新问题:负数有算术平方根吗?中的a可以取任何数吗?总结性质(双非负性-PPT展示)。
初步了解无理数:√a是什么数?(视频播放有多大)得出结论,两种情况考虑。
2配套习题,归纳性质。
设计意图:巩固练习,强化符号和文字的转换,加强符号意识。
通过三个新问题的提出和解决,总结性质;通过数学故事的视频播放,初步了解无理数,感受无理数的发展史;最后通过配套的习题,师生凝练性质,记忆符号表达。
人教版数学七年级下册第六章第1课时《算术平方根》说课稿
课后作业布置如下:
1.完成教材上的练习题,巩固平方根的计算方法和应用。
2.探究平方根与算术平方根的关系,提高学生的探究能力。
3.解决生活中的实际问题,培养学生的应用意识。
作业的目的是巩固所学知识,提高学生的计算能力和解决问题的能力,同时培养学生的自主学习意识和探究精神。
五、板书设计与教学反思
为应对这些问题,我将:
1.加强对平方根概念的解释和实例演示,确保学生理解;
2.及时发现并纠正学生在计算过程中的错误,进行有针对性的指导;
3.设计互动环节时,注意调动每个学生的积极性,确保全员参与。
课后,我将通过以下方式评估教学效果:
1.课后作业的完成情况;
2.学生课堂表现的观察;
3.学生对知识点的掌握程度。
3.合作学习:依据社会建构主义理论,通过小组合作交流,促进学生之间的互动与沟通,培养学生的团队协作能力和共同解决问题的能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具辅助教学:
1.教具:平方根计算器、图形计算器等,用于直观展示平方根的计算过程,便于学生理解和掌握。
2.多媒体资源:PPT课件、教学视频等,通过丰富的视觉和听觉刺激,提高学生的学习兴趣,增强教学效果。
本节课的教学内容与整个课程体系紧密相连,既是对之前所学知识的巩固,也为后续学习勾股定理、二次方程等内容打下基础。
(二)教学目标
知识与技能目标:使学生理解平方根的概念,掌握算术平方根的计算方法,并能够解决实际问题。
过程与方法目标:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观目标:激发学生的学习兴趣,增强学生的自信心和自主学习意识,使学生体会数学在生活中的实际应用。
6.1平方根-人教版七年级数学下册课件
=18
了解算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性.
面积 1 如果一个正数x的平方等于a,即 x 2 =a ,那么这个
解:设每块地板砖的边长为x m. 判断题:下列各式是否有意义?为什么?
9
16 36
16 25
a
★那么乘方与谁互为逆运算呢?
(4)
(5)3
边长 判断题:下列各式是否有意义?为什么?
二 算术平方根的双重非负性
一个正数的算术平方根有几个?
求下列各数的算术平方根: 我们已学过了有理数的加法、减法、乘法、除法、乘方这五种运算。
非负数 a 0
6米高的建筑物上自由下落,到达地面需要多长时间?
因为22=4 ,所以4的算术平方根是__;
★加法与减法互为逆运算;
了解算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性.
得
,
1
表示的意义是什么?它的值是多少?用等式怎样表示?
346
4
5?
了解算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性.
所以100的算术平方根为10,
上面的问题,实际上是已知一个正数的平 ∵192=
∴
=19
∵202= 400 ∴
=20
⑴100 ⑵
⑶0.
方,求 这个正数 的问题.
第六章 实 数
6.1 平方根
第1课时 算术平方根
学习目标
了解算术平方根的概念,会用根号表 1 示一个正数的算术平方根,并了解算
术平方根的非负性.
2 了解开方与乘方互为逆运算,会用平 方运算求某些非负数的算术平方根.
我们已学过了有理数的加法、减法、乘法、 除法、乘方这五种运算。
七年级数学下册第六章实数6.1平方根第1课时算数平方根课件新新人教
6.1 平方根
第六章 实数
第1课时 算术平方根
A知识要点分类练 B规律方法综合练 C拓广探究创新练
第1课时 算术平方根
A知识要点分类练
知识点 1 算术平方根的定义
1.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对
第1课时 算术平方根
9.下列式子有意义的是( C )
A. -3
B.(- -3)2
C.- (-3)2 D. -(-3)2
第1课时 算术平方根
B规律方法综合练
10.算术平方根等于它的相反数的数是( A ) A.0 B.1 C.0 或 1 D.0 或±1 11.已知有理数 x,y 满足 x-1+|y+3|=0,则 x+y 的值为( A ) A.-2 B.2 C.4 D.-4第1Fra bibliotek时 算术平方根
知识点 3 算术平方根的非负性
7.(1) a中,被开方数 a 是非负数,即 a___≥_____0; (2) a是非负数,即 a___≥_____0; (3)负数没有平方根,即当 a___<_____0, a无意义.
8.设 a 是一个数的算术平方根,那么( A ) A.a≥0 B.a>0 C.a<0 D.a≤0
第1课时 算术平方根
5.求下列各数的算术平方根.
(1)0.64; (2)196; (3)(-3)2;
1 (4)24.
解:(1)0.8. (2)34. (3)3. (4)32.
第1课时 算术平方根
6.求下列各式的值: (1) 25; (2) 196; (3) (-4)2.
人教版七年级数学下册6.1平方根(第1课时)教学设计
3.将实际问题抽象为数学模型,运用平方根知识解决问题。
(三)教学设想
1.创设生活情境,导入新课
以学生熟悉的实际情境为例,如正方形的面积、体积计算等,引导学生发现平方根的存在,激发他们的学习兴趣。
2.自主探究,合作交流
在学生初步了解平方根的概念后,组织他们进行自主探究和合作交流,发现平方根的性质,探讨求平方根的方法。
六、板书设计
1.标题:6.1平方根(第1课时)
2.主要内容:
(1)平方根的定义
(2)平方根的性质
(3)求平方根的方法
(4)平方根的应用
二、学情分析
七年级学生在前期的数学学习中,已经掌握了实数的初步概念,具备了基本的运算能力。在此基础上,他们对平方根的概念具备了一定的认知基础,但可能对平方根的性质和求法还不够熟悉。此外,学生在解决实际问题时,可能缺乏将问题抽象为数学模型的能力,需要教师在教学过程中给予引导和帮助。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平方根的定义、性质和求法。
2.强调平方根在实际问题中的应用,让学生认识到学习平方根的重要性。
3.鼓励学生提出疑问,解答他们在学习过程中遇到的问题。
4.布置课后作业,巩固所学知识。
五、作业布置
为了巩固学生对平方根知识的掌握,提高他们的运算能力和解决实际问题的能力,特布置以下作业:
1.基础知识巩固:
(1)请学生完成课本第92页的练习题1、2、3。
(2)根据平方根的定义和性质,求解以下正数的平方根:9、16、25、36。
(3)填空题:根据平方根的性质,判断以下各题的正误,并说明理由。
a.一个正数的平方根有两个,它们互为相反数。
人教版数学七年级下册6.1平方根第1课时算术平方根优秀教学案例
3.引导学生发现数学与现实生活的联系,提高学习兴趣。
在教学过程中,我注重启发式教学,让学生在探索中发现规律,培养他们的逻辑思维能力。同时,通过小组合作、讨论交流等方式,提高学生的合作精神和团队意识。
本节课结束后,我对教学效果进行了反思,认为学生在掌握算术平方根的概念和求法方面取得了较好的成果,但在解决实际问题时,部分学生仍存在困难。针对这一情况,我在课后进行了针对性的辅导,帮助学生巩固所学知识,提高解决问题的能力。
人教版数学七年级下册6.1平方根第1课时算术平方根优秀教学案例
一、案例背景
本案例背景基于人教版数学七年级下册6.1平方根第1课时算术平方根的内容。在教学前,我进行了学情分析,了解到学生已经掌握了有理数的乘方,但对平方根的概念和性质还不够熟悉。因此,我制定了以下教学目标:
1.让学生理解平方根的概念,掌握求一个数的平方根的方法。
二、教学目标
(一)知识与技能
1.理解平方根的概念,掌握求一个数的平方根的方法。
2.了解平方根的性质,能够运用平方根解决实际问题。
3.熟练运用平方根的定义和性质,求解各种形式的平方根问题。
4.能够运用平方根解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.通过实例引入平方根的概念,引导学生探究平方根的性质。
(二)问题导向
在教学过程中,我提出了与平方根相关的问题,引导学生进行思考和探究。例如,我提出了“什么是平方根?如何求解一个数的平方根?”等问题,激发学生的思考。同时,我还引导学生思考平方根的性质,如“一个数的平方根是正数还是负数?两个平方根是否相等?”等问题。通过问题导向,学生可以更深入地理解平方根的概念和性质。
(五)作业小结