广东省揭阳市普宁市2018-2019学年七年级(下)期末数学试卷
2018—2019学年度第二学期期末考试七年级数学试卷
2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。
2018-2019学年新人教版七年级下册期末数学试卷含答案
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1. 下列调查,比较适合全面调查方式的是( )A. 乘坐地铁的安检B. 长江流域水污染情况C. 某品牌圆珠笔笔芯的使用寿命D. 端午节期间市场上的粽子质量情况 2. 下列命题中,假命题是( )A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两条直线被第三条直线所截,同旁内角互补D. 两直线平行,内错角相等3. 下列四组值中,是二元一次方程x −2y =1的解的是( )A. {y =1x=0B. {y =−1x=1C. {y =1x=1D. {y =0x=14. 如图图形中,由∠1=∠2能得到AB//CD 的是( )A. B.C. D.5. 下列说法不正确的是( )A. 4是16的算术平方根B. 53是259的一个平方根 C. (−6)2的平方根−6 D. (−3)3的立方根−36. 已知a <b ,则下列不等式一定成立的是( )A. 12a <12bB. −2a <−2bC. a −3>b −3D. a +4>b +47. 某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A. 得分在70~80分的人数最多B. 该班的总人数为40C. 得分及格(≥60分)的有12人D. 人数最少的得分段的频数为28. 亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x −45≥300 B. 30x +45≥300 C. 30x −45≤300D. 30x +45≤300 9. 某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余.若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A. {12x −10y =0x+y=22B. {6x −10y =0x+y=22C.{24x −10y =0x+y=22D. {12x −20y =0x+y=2210. 已知点M(2m −1,1−m)在第四象限,则m 的取值范围在数轴上表示正确的是( )A.B.C.D.二、填空题(本大题共5小题,共15.0分) 11. √16的平方根是______.12. 如图,直线a//b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55∘,则∠2的度数为______.13. 点P(−5,1)到x 轴距离为______.14. 不等式3(x −1)≤5−x 的非负整数解有______个.15. 算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x +10y =26.请你根据图2列出方程组______.三、解答题(本大题共8小题,共64.0分)16.计算:(1)3(√3+√2)−2(√3−√2)(2)|√2−3|+√(−3)2−(−1)2019+√−27317.用适当的方法解下列方程组:(1){x−2y=2y=5−x(2){3x−2y=72x−3y=318.解不等式组:{4x>2x−6x+13≥x−1,并把解集表示在数轴上.19.已知:如图的网格中,△ABC的顶点A(0,5)、B(−2,2).(1)根据A、B坐标在网格中建立平面直角坐标系并写出点C的坐标:(______,______);(2)平移三角形ABC,使点C移动到点F(7,−4),画出平移后的三角形DEF,其中点D与点A对应,点E与点B对应.(3)画出AB边上中线CD和高线CE;(利用网格点和直尺画图)(4)△ABC的面积为______.20.如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(1)请你补全图形(不要求尺规作图);(2)求证:∠BDH=∠CEF.21.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.(1)统计表中,a=______,b=______,c=______;(2)扇形统计图中,m的值为______,“C”所对应的圆心角的度数是______;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?22.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1//l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=______.(2)如图2,若AC//BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE//AC.∴∠A=______∴______//______∴∠B=______∵∠BPA=∠BPE−∠EPA∴______.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180∘.【答案】 1. A 2. C 3. D 4. B 5. C 6. A 7. C8. B 9. A 10. B11. ±2 12. 35∘ 13. 1 14. 315. {x +y =18x+2y=2216. 解:(1)原式=3√3+3√2−2√3+2√2 =√3+5√2;(2)原式=3−√2+3+1−3 =4−√2. 17. 解:(1){x −2y =2 ②y=5−x ①把①代入②得 x −2(5−x)=2, 解得x =4把x =4代入得①,y =5−4=1, ∴原方程组的解为{y =1x=4;(2){3x −2y =7 ②2x−3y=3 ①解:由①得 6x −9y =9 ③ 由②得 6x −4y =14 ④ ③−④得−5y =−5, 解得 y =1,把y =1代入①得 2x −3=3, 解得x =1∴原方程组的解为{y =1x=3.18. 解:解不等式4x >2x −6,得:x >−3, 解不等式x+13≥x −1,得:x ≤2,∴不等式组的解集为:−3<x ≤2, 将不等式组解集表示在数轴上如图:19. 2;3;11220. 解:(1)如图所示,EF ,DH 即为所求;(2)∵DH//BC , ∴∠BDH =∠DBC , ∵BD ⊥AC ,EF ⊥AC , ∴BD//EF ,∴∠CEF =∠DBC , ∴∠BDH =∠CEF .21. 225;500;0.3;45;108∘22. 解:(1)设篮球每个x 元,排球每个y 元,依题意,得 {3x =5y 2x+3y=190, 解得,{y =30x=50,答:篮球每个50元,排球每个30元;(2)设购买篮球m 个,则购买排球(20−m)个,依题意,得 50m +30(20−m)≤800. 解得m ≤10, 又∵m ≥8, ∴8≤m ≤10.∵篮球的个数必须为整数, ∴m 只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个; ②购买篮球9,排球11个; ③购买篮球10个,排球10个, 以上三个方案中,方案①最省钱.23. ∠A +∠B ;∠1;PE ;BD ;∠EPB ;∠APB =∠B −∠1 【解析】1. 解:A 、乘坐地铁的安检,适合全面调查,故A 选项正确; B 、长江流域水污染情况,适合抽样调查,故B 选项错误;C 、某品牌圆珠笔笔芯的使用寿命,适合抽样调查,故C 选项错误;D 、端午节期间市场上的粽子质量情况,适于抽样调查,故D 选项错误. 故选:A .根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2. 解:∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行, ∴选项A 是真命题;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,∴选项B 是真命题;∵两条直线被第三条直线所截,同旁内角不一定互补, ∴选项C 是假命题;∵两直线平行,内错角相等, ∴选项D 是真命题. 故选:C .分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 3. 解:{y =0x=1是二元一次方程x −2y =1的解,故选:D .把x 与y 的值代入方程检验即可.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4. 解:A 、∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; B 、∠1、∠2是内错角,由∠1=∠2能判定AB//CD ;C 、∠1、∠2是内错角,由∠1=∠2能判定AC//BD ,不能判定AB//CD ; D ,∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; 故选:B .在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.5. 解:4是16的算术平方根,故A 正确,不符合要求;53是259的一个平方根,故B 正确,不符合要求; (−6)2的平方根是±6,故C 错误,符合要求; (−3)3的立方根−3故D 正确,不符合要求. 故选:C .依据平方根、算术平方根、立方根的性质解答即可.本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键. 6. 解:∵a <b ,∴A 、12a <12b ,此选项正确;B 、−2a >−2b ,此选项错误;C 、a −3<b −3,此选项错误;D 、a +4<a +4,此选项错误; 故选:A .根据不等式的性质求解即可.本题考查了不等式的性质,利用不等式的性质是解题关键. 7. 解:A 、得分在70~80分的人数最多,正确; B 、该班的总人数为4+12+14+8+2=40,正确;C 、得分及格(≥60分)的有12+14+8+2=36人,错误;D 、人数最少的得分段的频数为2,正确; 故选:C .根据直方图即可得到每个分数段的人数,据此即可直接作出判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8. 解:x 个月可以节省30x 元,根据题意,得 30x +45≥300. 故选:B .此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 9. 解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得{4×3x −10y =0x+y=22,即{12x −10y =0x+y=22.故选:A .设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可.本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子. 10. 解:∵点M(2m −1,1−m)在第四象限, ∴{1−m <0 ②2m−1>0 ①,由①得,m >0.5; 由②得,m >1, 在数轴上表示为:故选:B .根据第四象限内点的坐标特点列出关于m 的不等式组,求出m 的取值范围,并在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键. 11. 解:√16的平方根是±2.故答案为:±2根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 12. 解:∵AB ⊥BC ,∠1=55∘, ∴∠2=90∘−55∘=35∘. ∵a//b ,∴∠2=∠3=35∘. 故答案为:35∘.先根据∠1=55∘,AB ⊥BC 求出∠3的度数,再由平行线的性质即可得出结论. 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13. 解:点P(−5,1)到x 轴距离为1.故答案为1.根据点P(x,y)到x 轴距离为|y|求解.本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点. 14. 解:去括号,得:3x −3≤5−x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式的非负整数解有0、1、2这3个,故答案为:3.根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15. 解:根据题意,图2可得方程组:{x +y =18x+2y=22,故答案为{x +y =18x+2y=22.由图1可得从左向右的算筹中,前两个算筹分别代表未知数x ,y 的系数,第三个算筹表示的两位数是方程右边的常数项:前面的表示十位,后面的表示个位,由此可得图2的表达式.本题考查了由实际问题抽象出二元一次方程组,主要培养学生的观察能力,关键是能够根据对应位置的算筹理解算筹表示的实际意义.16. (1)直接利用二次根式混合运算法则计算得出答案;(2)利用二次根式以及立方根、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 根据代入消元法或加减消元法,可得答案.本题考查了及二元一次方程组,利用代入消元法或加减消元法是解题关键. 18. 分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 解:(1)平面直角坐标系如图所示,C(2,3),故答案为2,3.(2)平移后的△DEF如图所示.(3)AB边上中线CD和高线CE如图所示;(4)S△ABC=3×4−12×2×3−12×2×2−12×1×3=112.故答案为112.(1)根据点C的位置写出坐标即可;(2)根据点C的平移规律,画出对应点D、E即可;(3)根据中线、高的定义画出中线,高即可;(4)利用分割法求三角形面积即可;本题考查作图−平移变换,作图−基本作图等知识,解题的关键是理解题意,学会用分割法求三角形的面积,属于中考常考题型.20. (1)过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(2)利用DH//BC,可得∠BDH=∠DBC,依据BD⊥AC,EF⊥AC,即可得到BD//EF,进而得出∠CEF=∠DBC,即可得到∠BDH=∠CEF.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21. 解:(1)b=50÷0.1=500,a=500−(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=225500×100%=45%,∴m=45,“C”所对应的圆心角的度数是360∘×0.3=108∘,故答案为:45,108∘;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360∘乘C组的频率可得;(3)总人数乘以样本中D组频率可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22. (1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.23. 解:(1)如图,过P作PE//l1,∵l1//l2,∴PE//l1//l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE//AC.∴∠A=∠1,∵AC//BD,∴PE//BD,∴∠B=∠EPB,∵∠APB=∠BPE−∠EPA,∴∠APB=∠B−∠1;故答案为:∠1,PE,BD,∠EPB,∠APB=∠B−∠1;(3)证明:如图3,过点A作MN//BC,∴∠B=∠1,∠C=∠2,∵∠BAC+∠1+∠2=180∘,∴∠BAC+∠B+∠C=180∘.(1)过P作PE//l1,根据平行线的性质得到∠APE=∠A,∠BPE=∠B,据此可得∠APB=∠APE+∠BPE=∠A+∠B;(2)过点P作PE//AC,根据平行线的性质得出∠A=∠1,∠B=∠EPB,进而得出∠APB=∠B−∠1;(3)过点A作MN//BC,根据平行线的性质进行推导即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线构造内错角.。
广东揭阳产业园区2018-2019学年七年级下学期期末数学试题(解析版)
【解析】
【分析】
只要证明Rt△APR≌Rt△APS(HL),推出AR=AS,即可判断①;由∠PAQ=∠APQ,推出∠BAP=∠APQ,以及 ,可得QP∥AB,即可判断②.根据在 与 中,只有∠BRP=∠QSP,以及 ,即可判断③.
【详解】解:∵ 于点 , 于点
∴在Rt△APR和Rt△APS中,
【详解】解:∵MN垂直平分AB,
∴DA=DB.
∴△DBC的周长=BC+BD+DC
=BC+DA+DC=BC+AC=10cm,
故答案为:10.
【点睛】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,解题的关键是熟悉线段垂直平分线的性质.
16.如图, 是 的边 上的中线,点 在 上, ,若 的面积是4,则 的面积是__________.
4.如图, ,若 ,则还需添加的一个条件有()
A. B. C. D.
【答案】D
【解析】
【分析】
利用全等三角形的判定方法进行分析即可得解.
【详解】解:∵
∴①若添加边等即 ,则满足 定理,可以证得
②若添加角等即 ,则满足 定理,可以证得
③若添加角等即 ,则满足 定理,可以证得
④若添加边等即 ,过点 、 分别作 、 ,垂足分别是点 、 ,如图:
【答案】
【解析】
∵“形如 的式子叫完全平方式”,而“ ”,
∴若 是完全平方式,则 ,
∴ .
15.如图, 中 , 的垂直平分线 交 于点 .若 ,则 的周长为__________ .
【答案】10
【解析】
【分析】
根据线段垂直平分线性质知,DA=DB.△DBC的周长=BC+BD+DC=BC+DA+DC=BC+AC.
2018-2019学人教版七年级下册期末数学考试试题(含答案)
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题有10个小题在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共30分)1.﹣的立方根是()A.﹣B.C.D.﹣2.已知是二元一次方程组的解,则b﹣a的值是()A.1B.2C.3D.43.如果a<b,那么下列各式一定正确的是()A.a2<b2B.>C.﹣2a>﹣2b D.a﹣1>b﹣14.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.下列各数中,是无理数的是()A.B.3.14C.D.6.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.47.下列调查中,适合采用全面调查(普查)方式的是()A.对北江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名学生视力情况的调查D.节能灯厂家对一批节能灯管使用寿命的调查8.若点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),则m,n的值为()A.m=﹣6,n=﹣4B.m=0,n=4C.m=﹣6,n=4D.m=﹣6,n=09.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,则∠AOF等于()A.140°B.130°C.120°D.110°10.如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°二、填空题(把各题的正确答案填在题后的横线上,每小题3分,共18分)11.若m,n为实数,且|m+3|+=0,则()2018的值为.12.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.13.不等式2x+5>4x﹣1的正整数解是.14.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于度.15.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是.16.若关于x的不等式组无解,则a的取值范围是.三、解答题(本题有9个小题,共72分)17.(6分)解方程组:.18.(7分)如图,△ABC在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出△ABC各点的坐标;(2)求出△ABC的面积;(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A'B'C′,请在图中画出△A'B′C′,并写出点A′,B′,C′的坐标.19.(7分)解不等式x﹣<,并把解集在数轴上表示出来.20.(7分)为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.21.(6分)如图,某工程队从A点出发,沿北偏西67度方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23度的方向继续修建BC段,到达C点又改变方向,使所修路段CE∥AB,此时∠ECB有多少度?试说明理由.22.(7分)如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.23.(10分)在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分.(1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?24.(11分)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b 满足(a﹣3)2+|b﹣6|=0,现同时将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,AB .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABCD ;(2)在y 轴上是否存在一点M ,连接MC ,MD ,使S △MCD =S 四边形ABCD ?若存在这样一点,求出点M 的坐标,若不存在,试说明理由;(3)点P 是直线BD 上的一个动点,连接PA ,PO ,当点P 在BD 上移动时(不与B ,D 重合),直接写出∠BAP ,∠DOP ,∠APO 之间满足的数量关系.25.(11分)4月的某天小欣在“A 超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A 、B 两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A 超市累计购物超过50元后,超过50元的部分打九折;在B 超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B 超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?参考答案与试题解析一、选择题(本大题有10个小题在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共30分)1.﹣的立方根是()A.﹣B.C.D.﹣【分析】根据立方根的定义即可解决问题.【解答】解:﹣的立方根是﹣.故选:A.【点评】本题考查立方根的定义,记住1~10的数的立方,可以帮助我们解决类似的立方根的题目,属于中考常考题型.2.已知是二元一次方程组的解,则b﹣a的值是()A.1B.2C.3D.4【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】解:把代入方程组得:,解得:,则b﹣a=3+1=4,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.如果a<b,那么下列各式一定正确的是()A.a2<b2B.>C.﹣2a>﹣2b D.a﹣1>b﹣1【分析】利用反例对A进行判断;利用不等式的性质对B、C、D进行判断.【解答】解:若a=﹣1,b=0,则a2>b2,若a<b,则a<b,﹣2a>﹣2b,a﹣1<b﹣1.故选:C.【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后将解集在数轴上表示即可.【解答】解:解不等式3x+1>﹣2,得:x>﹣1,解不等式x+3≤4,得:x≤1,所以不等式组的解集为:﹣1<x≤1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了不等式组解集在数轴上的表示方法.5.下列各数中,是无理数的是()A.B.3.14C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=4,是整数,是有理数,选项错误;B、是有限小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、正确.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.4【分析】根据x与y互为相反数得到x+y=0,即y=﹣x,代入方程组即可求出m的值.【解答】解:由题意得:x+y=0,即y=﹣x,代入方程组得:,解得:m=x=2,故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.下列调查中,适合采用全面调查(普查)方式的是()A.对北江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名学生视力情况的调查D.节能灯厂家对一批节能灯管使用寿命的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对北江河水质情况的调查适合抽样调查;B、对端午节期间市场上粽子质量情况的调查适合抽样调查;C、对某班50名学生视力情况的调查适合全面调查;D、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.若点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),则m,n的值为()A.m=﹣6,n=﹣4B.m=0,n=4C.m=﹣6,n=4D.m=﹣6,n=0【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得3+m+3=0,n﹣2=2,再解即可.【解答】解:∵点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),∴3+m+3=0,n﹣2=2,解得:m=﹣6,n=4,故选:C.【点评】此题主要考查了关于y轴的对称点的坐标特点,关键是掌握点的坐标的变化规律.9.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,则∠AOF等于()A.140°B.130°C.120°D.110°【分析】先设出∠BOE=2α,再表示出∠DOE=α,∠AOD=5α,建立方程求出α,最用利用对顶角,角之间的和差即可.【解答】解:设∠BOE=2α,∵∠AOD:∠BOE=5:2,∴∠AOD=5α,∵OE平分∠BOD,∴∠DOE=∠BOE=2α∴∠AOD+∠DOE+∠BOE=180°,∴5α+2α+2α=180°,∴α=20°,∴∠AOD=5α=100°,∴∠BOC=∠AOD=100°,∵OF平分∠COB,∴∠COF=∠BOC=50°,∵∠AOC=∠BOD=4α=80°,∴∠AOF=∠AOC+∠COF=130°,故选:B.【点评】本题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.10.如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°【分析】先根据对顶角的定义得出∠3的度数,再由三角形内角和定理求出∠4的度数,根据平行线的性质求出∠ACD的度数,进而可得出结论.【解答】解:如图,∵∠2=24°,∴∠3=∠2=24°.∵∠A=45°,∴∠4=180°﹣45°﹣24°=111°.∵直线l∥m,∴∠ACD=111°,∴∠1=111°﹣90°=21°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等是解答此题的关键.二、填空题(把各题的正确答案填在题后的横线上,每小题3分,共18分)11.若m,n为实数,且|m+3|+=0,则()2018的值为1.【分析】直接利用算术平方根以及绝对值的性质得出m,n的值,进而得出答案.【解答】解:∵|m+3|+=0,∴m+3=0,n﹣3=0,∴m=﹣3,n=3,∴()2018=1.故答案为:1.【点评】此题主要考查了算术平方根以及绝对值的性质,正确得出m,n的值是解题关键.12.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为,.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:,【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.13.不等式2x+5>4x﹣1的正整数解是1,2.【分析】首先移项、然后合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数即可.【解答】解:移项,得:2x﹣4x>﹣1﹣5,合并同类项,得:﹣2x>﹣6,系数化成1得:x<3.则正整数解是:1,2.故答案是:1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于48度.【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【解答】解:∵∠EFB=66°,∴∠EFC=180°﹣66°=114°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°﹣∠EFC=180°﹣114°=66°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°﹣66°﹣66°=48°,故答案为:48.【点评】本题考查了折叠性质,矩形性质,平行线的性质的应用,解题时注意:两直线平行,同旁内角互补.15.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是垂线段最短.【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故答案为:垂线段最短.【点评】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.16.若关于x的不等式组无解,则a的取值范围是a≥﹣2.【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.三、解答题(本题有9个小题,共72分)17.(6分)解方程组:.【分析】②×2﹣①能求出x=5,把x=5代入②求出y即可.【解答】解:,②×2﹣①得:x=5,把x=5代入②得:10﹣y=2,解得:y=8,所以方程组的解是:.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.18.(7分)如图,△ABC在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出△ABC各点的坐标;(2)求出△ABC的面积;(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A'B'C′,请在图中画出△A'B′C′,并写出点A′,B′,C′的坐标.【分析】(1)由图可得点的坐标;(2)利用割补法求解可得;(3)根据平移的定义分别作出平移后的对应点,再顺次连接可得.【解答】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3);=4×5﹣×2×4﹣×1×3﹣×3×5(2)S△ABC=20﹣4﹣﹣=7;(3)如图,△A′B′C′即为所求,A′(1,1),B′(6,4),C′(3,5).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.19.(7分)解不等式x﹣<,并把解集在数轴上表示出来.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母,得6x﹣3(x+2)<2(2﹣x),去括号,得6x﹣3x﹣6<4﹣2x,移项,合并得5x<10,系数化为1,得x<2.不等式的解集在数轴上表示如下:【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.(7分)为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.【分析】(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的人数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;(4)利用样本估计总体,即可求出全年级对奥运知识“了解较多”的学生.【解答】解:(1)20÷50%=40,∴该班共有40名学生;(2)表示“一般了解”的人数为40×20%=8人,补全条形图如下:(3)“了解较多”部分所对应的圆心角的度数为360°×=108°;(4)1000×=300(人),答:估算全年级对奥运知识“了解较多”的学生人数为300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.21.(6分)如图,某工程队从A点出发,沿北偏西67度方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23度的方向继续修建BC段,到达C点又改变方向,使所修路段CE∥AB,此时∠ECB有多少度?试说明理由.【分析】先根据平行线的性质求出∠2的度数,再由平角的定义求出○CBA的度数,根据CE∥AB 即可得出结论.【解答】解:∠ECB=90°.理由:∵∠1=67°,∴∠2=67°.∵∠3=23°,∴∠CBA=180°﹣67°﹣23°=90°.∵CE∥AB,∴∠ECB=∠CBA=90°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.22.(7分)如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.【分析】(1)根据平行线的判定得出AB∥EF,根据平行线的性质得出∠ADE=∠3,求出∠ADE =∠B,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.【解答】解:(1)DE∥BC,理由是:∵∠1+∠2=180°,∴AB∥EF,∴∠ADE=∠3,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC;(2)∵DE∥BC,∴∠C+∠DEC=180°,∵∠C=65°,∴∠DEC=115°.【点评】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.23.(10分)在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分.(1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?【分析】(1)根据甲答对了8个题,得分为64分;乙答对了9个题,得分为78分;列方程组求解;(2)设甲在剩下的比赛中答对x 个题,根据总分数不低于120分,列不等式,求出x 的最小整数解.【解答】解:(1)根据题意,得,解得:. 答:a 的值为10,b 的值为4.(2)设甲在剩下的比赛中答对x 个题,根据题意,得64+10x ﹣4(20﹣12﹣x )≥120,解得:x ≥6.∵x ≥6,且x 为整数,∴x 最小取7.而7<20﹣12,符合题意.答:甲在剩下的比赛中至少还要答对7个题才能顺利晋级.【点评】本题考查了一元一次不等式的应用、二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的不等关系和等量关系,列不等式和方程组求解.24.(11分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (0,a ),B (b ,a ),且a ,b 满足(a ﹣3)2+|b ﹣6|=0,现同时将点A ,B 分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,AB .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABCD ;(2)在y 轴上是否存在一点M ,连接MC ,MD ,使S △MCD =S 四边形ABCD ?若存在这样一点,求出点M 的坐标,若不存在,试说明理由;(3)点P 是直线BD 上的一个动点,连接PA ,PO ,当点P 在BD 上移动时(不与B ,D 重合),直接写出∠BAP ,∠DOP ,∠APO 之间满足的数量关系.【分析】(1)根据非负数的性质分别求出a 、b ,根据平移规律得到点C ,D 的坐标,根据坐标与图形的性质求出S 四边形ABCD ;(2)设M 坐标为(0,m ),根据三角形的面积公式列出方程,解方程求出m ,得到点M 的坐标; (3)分点P 在线段BD 上、点P 在DB 的延长线上、点P 在BD 的延长线上三种情况,根据平行线的性质解答.【解答】解:(1)∵(a ﹣3)2+|b ﹣6|=0,∴a ﹣3=0,b ﹣6=0,,解得,a =3,b =6.∴A (0,3),B (6,3),∵将点A ,B 分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D , ∴C (﹣2,0),D (4,0),∴S 四边形ABDC =AB ×OA =6×3=18;(2)在y 轴上存在一点M ,使S △MCD =S 四边形ABCD ,设M 坐标为(0,m ).∵S △MCD =S 四边形ABDC ,∴×6|m |=×18,解得m =±2,∴M (0,2)或(0,﹣2);(3)①当点P 在线段BD 上移动时,∠APO =∠DOP +∠BAP ,理由如下:如图1,过点P 作PE ∥AB ,∵CD 由AB 平移得到,则CD ∥AB ,∴PE ∥CD ,∴∠BAP =∠APE ,∠DOP =∠OPE ,∴∠BAP +∠DOP =∠APE +∠OPE =∠APO ;②当点P 在DB 的延长线上时,同①的方法得,∠DOP =∠BAP +∠APO ;③当点P 在BD 的延长线上时,同①的方法得,∠BAP =∠DOP +∠APO .【点评】本题考查的是非负数的性质、平移的性质、平行线的性质,掌握平移的性质、灵活运用分情况讨论思想是解题的关键.25.(11分)4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【分析】(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据买了“雀巢巧克力”和“趣多多小饼干”共10包,“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元,列出方程组,求解即可;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,求出购物金额,若在B 超市购物花费少,也求出购物金额,从而得出去哪家超市购物更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据在B超市累计购物超过100元后,超过100元的部分打八折,列出不等式,再进行求解,即可得出答案.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m﹣50)<100+0.8(m﹣100),解得:m<150,若在B超市购物花费少,则50+0.9(m﹣50)>100+0.8(m﹣100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n﹣100)×0.8≤20n,解得:n≥8,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元.【点评】此题考查了二元一次方程组的应用和一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
2018-2019学年人教版七年级下册期末检测数学试题(含答案)
2018-2019学年七年级下学期期末检测数学试题一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. 2a2+3a2=5a6D. (a+2b)(a−2b)=a2−4b22.下列图形中,不是轴对称图形的是()A. B. C. D.3.如图,已知AB∥CD,CE、AE分别平分∠ACD、∠CAB,则∠1+∠2=()A. 45∘B. 90∘C. 60∘D. 75∘4.能判断两个三个角形全等的条件是()A. 已知两角及一边相等B. 已知两边及一角对应相等C. 已知三条边对应相等D. 已知三个角对应相等5.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A. SASB. ASAC. AASD. SSS6.小明有两根长度分别为5cm和8cm的木棒,他想钉一个三角形的木框.现在有5根木棒供他选择,其长度分别为3cm、5cm、10cm、13cm、14cm.小明随手拿了一根,恰好能够组成一个三角形的概率为()A. 25B. 12C. 35D. 17.如果a=355,b=444,c=533,那么a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a8.如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图a中的阴影部分拼成了一个如图b所示的矩形,这一过程可以验证()A. a2+b2−2ab=(a−b)2B. a2+b2+2ab=(a+b)2C. 2a2−3ab+b2=(2a−b)(a−b)D. a2−b2=(a+b)(a−b)9.下列说法正确的是()①同角或等角的余角相等;②角是轴对称图形,角平分线是它的对称轴;③等腰三角形顶角的平分线、底边上的中线、底边上的高重合,即“三线合一”;④必然事件发生的概率为1,不可能事件发生的概率为0.A. ①②③④B. ①②③C. ①③④D. ②③④10.如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A. 2∠A=∠1−∠2B. 3∠A=2(∠1−∠2)C. 3∠A=2∠1−∠2D. ∠A=∠1−∠2二、填空题(本大题共6小题,共18.0分)11.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是______.12.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽AB为______m.13.如果9a2-ka+4是完全平方式,那么k的值是______.14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件是______.(填写序号)15.设a、b、c是△ABC的三边,化简:|a+b-c|-|c-a-b|=______.16.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有101个点时,此时有______个小三角形.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x、y满足:x2+y2-4x+6y+13=018.如图,用一段长为60m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为xm,菜园的面积为ym2.(1)试写出y与x之间的关系式;(2)当AB的长为10m,菜园的面积是多少?四、解答题(本大题共7小题,共56.0分)19.计算:|-3|+(-1)2013×(π-3)0-(-1)-3220.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.21.如图,AD、BC相交于点O,AD=BC,∠1=∠2,求证:AC=BD.22.一天,王亮同学从家里跑步到体育馆,在那里锻炼了一阵后又走到某书店去买书,然后散步走回家如图反映的是在这一过程中,王亮同学离家的距离s(千米)与离家的时间t(分钟)之间的关系,请根据图象解答下列问题:(1)体育馆离家的距离为______千米,书店离家的距离为______千米;王亮同学在书店待了______分钟.(2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速度.23.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.24.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2-1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=______.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=______.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D 三点不重合),请直接写出∠APC与α、β之间的数量关系.答案和解析1.【答案】D【解析】【分析】本题考查了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方.根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断D.【解答】解:A.底数不变指数相加,故A错误;B.底数不变指数相乘,故B错误;C.系数相加字母部分不变,故C错误;D.两数和乘以这两个数的差等于这两个数的平方差,故D正确.故选D.2.【答案】A【解析】【分析】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.3.【答案】B【解析】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵CE、AE分别平分∠ACD、∠CAB,∴∠1=∠BAC,∠2=∠ACD,∴∠1+∠2=∠BAC+∠ACD=(∠BAC+∠ACD)=×180°=90°.故选:B.由AB∥CD,根据两直线平行,同旁内角互补,可得∠BAC+∠ACD=180°,又由CE、AE分别平分∠ACD、∠CAB,可得∠1=∠BAC,∠2=∠ACD,则可求得∠1+∠2的度数.此题考查了平行线与角平分线的性质.题目比较简单,注意数形结合思想的应用.4.【答案】C【解析】解:A、已知两角及一边相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;B、已知两边及一角对应相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;C、已知三条边对应相等,可用SSS判定两个三个角形全等,故选项正确;D、已知三个角对应相等,AAA不能判定两个三个角形全等,故选项错误.故选:C.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要根据已知条件结合判定方法逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.【答案】D【解析】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;在△OCD与△O′C′D′,O′C′=OC,O′D′=OD,C′D′=CD,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:D.我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.【答案】A【解析】解:小明随手拿了一根,有五种情况,由于三角形中任意两边之和要大于第三边,任意两边之差小于第三边,故只有这根是5cm或10cm,∴小明随手拿了一根,恰好能够组成一个三角形的概率=.故选:A.根据构成三角形的条件,确定出第三边长,再由概率求解.用到的知识点为:概率=所求情况数与总情况数之比;三角形两条较小的边的边长之和应大于最长的边的边长.7.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握.根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.【解答】解:,,,∵,∴.故选C.8.【答案】D【解析】解:由题可知a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知阴影部分面积为a2-b2,根据矩形面积公式可知阴影部分面积为(a+b)(a-b),二者相等,即可解答.此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.【答案】C【解析】解:①同角或等角的余角相等,正确;②角是轴对称图形,角平分线所在直线是它的对称轴,错误;③等腰三角形顶角的平分线、底边上的中线、底边上的高重合,即“三线合一”,正确;④必然事件发生的概率为1,不可能事件发生的概率为0,正确.故选:C.根据余角性质、轴对称定义、等腰三角形的性质及确定性事件的定义逐一判断可得.本题主要考查余角与补角、等腰三角形,解题的关键是掌握余角性质、轴对称定义、等腰三角形的性质及确定性事件的定义.10.【答案】A【解析】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∴∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.∴∠A=(∠1-∠2),即2∠A=∠1-∠2.故选:A.根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.本题考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.11.【答案】2【解析】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=2(角平分线性质),故答案为:2.过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质求出CD=ED,代入求出即可.本题考查了对角平分线性质的应用,关键是作辅助线DE,本题比较典型,难度适中.12.【答案】10【解析】解:在△APB和△DPC中,∴△APB≌△DPC(SAS);∴AB=CD=10米(全等三角形的对应边相等).答:池塘两端的距离是10米.故答案为:10这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.13.【答案】±12【解析】解:∵9a2-ka+4是完全平方式,∴k=±12,故答案为:±12利用完全平方公式的结构特征判断就确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】①③④【解析】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④;故答案为①③④.∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.15.【答案】0【解析】解:根据三角形的三边关系,两边之和大于第三边,得a+b-c>0,c-a-b<0,故|a+b-c|-|c-a-b|=a+b-c+c-a-b=0.故答案为:0.根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.此题考查三角形三边关系,注意三角形的三边关系和绝对值的性质的综合运用.16.【答案】203【解析】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),当n=101时,y=3+2(101-1)=203,故答案为:203;观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.此题考查规律型中的图形变化问题,解题关键是结合图形,从特殊推广到一般,建立函数关系式.17.【答案】解:原式=(x 2-4y 2-x 2-8xy -16y 2)÷3y =-2x -5y , 已知等式x 2+y 2-4x +6y +13=0,变形得:(x -2)2+(y +3)2=0,可得x -2=0且y +3=0,解得:x =2,y =-3,则原式=-4+15=11.【解析】原式中括号中利用平方差公式,完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把已知等式变形求出x 与y 的值,代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 18.【答案】解:(1)因为与墙平行的篱笆AB 的长为xm ,所以与墙垂直的篱笆AD 的长为60−x 2m , 则长方形的面积y =x •60−x 2=-12x 2+30x ;(2)当x =10时,y =-12×102+30×10=250,答:当AB的长为10m,菜园的面积是250m2.【解析】(1)根据矩形的面积公式,可得函数解析式;(2)根据自变量与函数值得对应关系,可得答案.本题考查了二次函数的应用,矩形的面积公式得出函数解析式是解题关键.19.【答案】解:原式=3-1+8=10.【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)∵3a=5,3b=10,∴3a+b=3a×3b=5×10=50;(2)∵a+b=3,a2+b2=5,∴ab=12[(a+b)2-(a2+b2)]=12(32-5)=2.【解析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)利用完全平方公式将原式变形得出答案.此题主要考查了同底数幂的乘法运算以及完全平方公式,正确将原式变形是解题关键.21.【答案】证明:在△ABC与△BAD中,{AD=BC ∠1=∠2 BA=AB,所以△ABC≌△BAD(SAS),所以AC=BD.【解析】由全等三角形的判定定理SAS证得△ABC≌△BAD,则该全等三角形的对应边相等,得证.考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.【答案】2.5 1.5 30【解析】解:(1)体育馆离家的距离为2.5千米,书店离家的距离为1.5千米;王亮同学在书店待了80-50=30分钟;(2)从体育馆到书店的平均速度v=千米/分钟,从书店散步到家的平均速度v=千米/分钟.故答案为:2.5;1.5;30.(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;根据观察函数图象的横坐标,可得体育馆与书店的距离,观察函数图象的横坐标,可得在书店停留的时间;(2)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23.【答案】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=12AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中{AE=DE∠EAB=∠EDC AB=DC,∴△EAB ≌△EDC (SAS ),∴EB =EC ,且∠AEB =∠DEC ,∴∠BEC =∠DEC +∠BED =∠AEB +∠BED =90°,∴BE ⊥EC .【解析】数量关系为:BE=EC ,位置关系是:BE ⊥EC ;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB ≌△EDC 即可证明.本题主要考查了全等三角形的判定与应用,证明线段相等的问题一般的解决方法是转化为证明三角形全等.24.【答案】(1)232-1;(2)332−12 ;(3)(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).当m ≠n 时,原式=1m−n (m -n )(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=m 32−n 32m−n ; 当m =n 时,原式=2m •2m 2•2m 4•2m 8•2m 16=32m 31.【解析】解:(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;故答案为:232-1;(2)原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=; 故答案为:;(3)见答案.(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n 与m≠n 两种情况,化简得到结果即可.此题考查了平方差公式,弄清题中的规律是解本题的关键.25.【答案】一(1)110(2)∠APC =α+β,理由:如图2,过P 作PE ∥AB 交AC 于E ,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α-β;如图所示,当P在DB延长线上时,∠CPA=β-α.【解析】(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α-β;如图所示,当P在DB延长线上时,∠CPA=β-α.(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
2018-2019学年人教版初一数学下册期末测试卷(含答案)
2018-2019学年七年级(下)期末数学试卷一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.2.计算:=.3.由x﹣3y=6可以得到用x表示y的式子是.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫件.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.98.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×1099.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.17.(7分)解不等式组,并把它的解集在数轴上表示出来.18.(7分)解方程组19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).参考答案与试题解析一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.计算:=﹣.【分析】根据立方根计算即可.【解答】解:=,故答案为:﹣【点评】此题考查立方根,关键是根据立方根计算.3.由x﹣3y=6可以得到用x表示y的式子是y=.【分析】把x看做已知数求出y即可.【解答】解:由x﹣3y=6可以得到用x表示y的式子是y=,故答案为:y=,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=9.【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣2|+(3﹣b)2=0,∴a=2,b=3,∴b a=32=9.故答案为:9.【点评】此题主要考查了偶次方的性质以及绝对值的性质,得出a,b的值是解题关键.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫46件.【分析】设这时已售出T恤衫x件,根据总价=单价×数量结合一个月后T恤衫的销售款已经超过这批T恤衫的进货款,即可得出关于x的一元一次不等式,解之取其中的最小正整数即可得出结论.【解答】解:设这时已售出T恤衫x件,根据题意得:240x>180×60,解得:x>45,∴这时至少已售出T恤衫46件.故答案为:46.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【分析】根据“坐标,右移加,左移减;纵坐标,上移加,下移减”求解可得.【解答】解:因为点A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),所以向右平移3个单位长度,再向上平移2个单位长度平移后的对应点的坐标为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1),故答案为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【点评】本题主要考查坐标与图形的变化,解题的关键是掌握点的坐标的平移规律:坐标,右移加,左移减;纵坐标,上移加,下移减.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.9【分析】根据平方根的性质,正数a有两个平方根,它们互为相反数即可解答.【解答】解:∵(±9)2=81,∴±=±9.故选:B.【点评】此题考查算术平方根的定义,关键是根据算术平方根的定义,熟记概念与性质是解题的关键.8.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.3亿=4.3×108,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【解答】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行,内错角相等、同旁内角互补.11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处【分析】根据方向角的定义作出判断.【解答】解:灯塔在轮船的北偏东25°,120 n mile处.故选:B.【点评】考查了方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣【分析】利用不等式的基本性质判断即可.【解答】解:由a>b,得到7+a>7+b,a﹣7>b﹣7,7a>7b,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、要了解一批节能灯的使用寿命,采用抽样调查,故A错误;B、调查你所在班级的同学的身高,采用普查,故B错误;C、环保部门调查嘉陵江某段水域的水质情况,采用抽样调查,故C正确;D、调查全市中学生每天的就寝时间,采用抽样调查,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36【分析】易得第1个图形中三角形的个数,进而得到其余图形中三角形的个数在第1个图形中三角形的个数的基础上增加了几个4即可.【解答】解:第1个图形中有3个三角形;第2个图形中有3+4=7个三角形;第3个图形中有3+2×4=11个三角形;…第n个图形中有3+(n﹣1)×4=4n﹣1,当n=12时,4×12﹣1=47,故选:A.【点评】考查图形的规律性问题;得到不变的量及变化的量与n的关系是解决本题的关键.三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣【分析】根据算术平方根的概念计算此题.【解答】解:(﹣5)3÷(﹣)﹣=﹣125×(﹣)﹣7=168【点评】本题主要考查了算术平方根的概念,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=5x3﹣6x2+(3x2+4)+4x3=5x3﹣6x2+3x2+4+4x3=9x3﹣3x2+4,当x=﹣3时,原式=9×(﹣3)3﹣3×(﹣3)2+4=﹣243﹣27+4=﹣266.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x>2,∴不等式组的解集为x>2,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.18.(7分)解方程组【分析】利用加减法解二元一次方程组,即可解答.【解答】解:把①×3得:a+3b=15 ③,②+③得:a=11,解得:a=,把a=代入①得:+b=5解得:b=,∴方程组的解为:.【点评】本题考查了解二元一次方程组,解决本题的关键是熟记加减法解二元一次方程组.19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?【分析】设甲每小时做x个零件,乙每小时做y个零件,根据“上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,根据题意:,解得:.答:甲每小时做360个零件,乙每小时做228个零件.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.【分析】根据要求画出图形,根据相等的角、互补的角、互余的角的定义举例说明即可;(答案不唯一)【解答】解:如图所示,相等的角有:∠PEO=∠PFO=90°,互补的角有:∠EOF+∠EPF=180°.互余的角有:∠POE+∠OPE=90°.【点评】本题考查作图,互补的角、互余的角的定义等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.【分析】由AB与DE平行,利用两直线平行内错角相等得到一对角相等,由已知两个角互补,等量代换得到一对同旁内角互补,利用同旁内角互补两直线平行得到BC与EF平行.【解答】证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有50人,a+b=36,m=52;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.【分析】(1)根据A组的频数是4,对应的百分比是8%,据此求得调查的总人数,利用百分比的意义求得a,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1200乘以对应的比例即可求解.【解答】解:(1)∵被调查的同学共有4÷8%=50人,∴a=50×20%=10,b=50﹣(4+10+8+2)=26,则a+b=36,m%=×100%=52%,即m=52,故答案为:50、36、52;(2)扇形统计图中扇形B的圆心角的度数为360°×20%=72°;(3)估计每月零花钱的数额在60≤x<90范围的人数为1200×=864人.【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).【分析】(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】本题考查了角的计算,熟练掌握角平分线定义是解本题的关键.。
最新-广东省普宁市马栅学校2018学年七年级数学下学期
广东省普宁市马栅学校2018-2018学年七年级下学期期末考试数学试题(无答案)说明:将答案写在答题卷上,写在试卷上一律不得分,试卷总分100分,时间90分钟一、选择题(每小题3分,共30分)1.如下书写的四个汉字,其中为轴对称图形的是 ( )2.如图,1∠与2∠是对顶角的是( )3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①和②去4.两条直线被第三条直线所截,则( )A .同位角一定相等B .内错角一定相等C .同旁内角一定互补D .以上结论都不对5.计算23x x -⋅的结果是 ( )A .5xB .5x -C .6xD .6x -6.计算:(-2a 2)3÷(2a 2),结果是( )A .4a 4B .-3a 4C .3a 7D .-4a 47.据法新社3月20日报道,全球管理咨询公司麦肯锡预计中国网络销售额将达到4200亿美元(约合2.6万人民币),中国将因此成为世界最大的网络零售市场,其中数据4200亿用科学记数法表示,错误的是( )A.4.2×118亿B.4.2×1011C. 4.2×118亿D. 4.2×118万8.如图,AE BD ∥,1120240∠=∠=°,°,则C ∠的度数是( ) A.10° B.20° C.30° D.40°9.下列运算中,正确的是A 、4222a a a =+B 、632a a a =⋅ C 、239)3()3(x x x =-÷- D 、()4222b a ab -=-10.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后 展开得到( )二、填空题(每小题3分,共24分)1、如图,已知CD 平分∠ACB ,DE ∥AC ,∠1=30°,则∠2= °.2、如上图是一把剪刀,其中︒=∠401,则=∠2 度,其理由是 .3、科学记数法表示:0.0000001801=___________________4、端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽, 粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是 .5、如图,是尺规法作∠AOB 的平分线OC 时保留的痕迹,这样作可使ΔOMC ≌ΔONC ,全等的 根据是 。
2018-2019学年度初一年级第二学期数学期末复习试卷含参考答案
第15题2018-2019学年度初一年级第二学期数学期末复习试卷一.选择题 (每题2分,共16分)1.某球形流感病毒的直径约为0.000 000 085 m ,用科学记数法表示该数据为( )A. 8.5-8B. 85 × 10-9C. 0.85 ×10-7D. 8.5 ×10-8 2.下列各式中,不能用平方差公式计算的是( )A .(2x ﹣y )(2x + y )B .(x ﹣y )(﹣y ﹣x )C .(b ﹣a )(b + a )D .(﹣x + y )(x ﹣y ) 3.下列从左到右的变形,属于分解因式的是( )A .(a + 3)(a ﹣3)=a 2﹣9B .x 2 + x ﹣5= x (x ﹣1)﹣5C .a 2 + a =a (a + 1)D .x 3 y =x ·x 2·y 4.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列 不等式成立的是( )A .ac>bcB .ab>cbC .a + c>b + cD .a + b>c + b5.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( )A .7B .3C .1D .﹣76.在ABC ∆中,23A B C ∠=∠=∠,则ABC ∆是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能 7.一个多边形的内角和大于1100°,小于1400°这个多边形的边数是( )A .6B .7C .8D .98.若关于x 的不等式组{0521x a x -≤-<.的整数解只有1个,则a 的取值范围是( )A .2<a <3B .3≤a <4C .2<a ≤3D .3<a ≤4 二.填空题 (每题2分,共16分)9. x 5÷x 3= . 10.分解因式:2x-4y = . 11.已知m + n =5,m n =3,则m 2 n + m n 2= .12.二元一次方程x -y =l 中,若x 的值大于0,则y 的取值范围是 . 13.写出命题“对顶角相等”的逆命题: 14.若x —2y —3=0,则2x ÷4y = .15. 如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则 ∠DGB 的度数为 .B 、C 分别是线段1A B A 1B 1C 1的面积是a ,那么△ABC 的16.如图,A 、面积是 .(用a 的代数式表示)B 1三.解答题17. 计算(每题3分,共6分)(1) (π-1)0-112-⎛⎫ ⎪⎝⎭-22 (2) (-3a )2﹒a 4 +(-2a 2)318.将下列各式分解因式:(每题3分,共9分)(1) 224x xy - (2) 3244y y y -+ (3) 222(1)(1)x y y -+-19. 解下列方程组或不等式(组)(每题3分,共9分)(1){23431y x x y =--= (2)22523x x x +--≤ (3)253(2),1.23x x x x +≤+⎧⎪-⎨<⎪⎩, 并写出其整数解20.(6分)先化简,再求值:(2a + b )(2a ﹣b )+3(2a ﹣b )2+(﹣3a )(4a ﹣3b ),其中a =-1, b =-221.(6分)如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =27°,求∠BED 的度数.22.(8分)己知方程组5214x y ax y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相反. 求a 的取值范围;23.(8分)如图1,△ABC 中,∠C=900,BC=3,AC=4,AB=5,将△ABC 绕着点B 旋转一定的角度,得到 △DEB(1)、若点F 为AB 边上中点,连接EF ,则线段EF 的范围为(2)、如图2当△DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程24.(8分)小明同学有关租车问题的对话:45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到苏州博物馆参观,一天的租G金共计5100元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满.”根据以上对话,解答下列问题:(1)参加此次活动的七年级师生共有________人;(2)客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车最省钱?25.(8分)已知如图1梯形ADEB中,AD⊥MN,BE⊥MN,垂足分别为点D、点E,点C在MN上,CD=BE,∠ACB=90°.(1)求证:∠ACD=∠CBE(2)若DE=8,求梯形ADEB的面积(3)如图2,设梯形ADEB的周长为....,沿着O→A→D→E...m.,AB边中点O处有两个动点P、Q同时出发→B→O的方向移动,点P的速度是点Q的3.倍.,当点Q第一次到达....移动......B.点.时,两点同时停止①两点同时停止时,点P移动的路程与点Q移动的路程之差2m(填“<”,“>”或“=”)②移动过程中,点P能否和点Q相遇?如果能,则用直线错误!未找到引用源。
2018-2019(下)期末七年级数学考试试卷(含参考答案)
2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
2018-2019学年度七年级下期末数学试卷及答案
12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。
2018-2019学年七年级下期末考试数学试卷(含答案)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
广东省普宁市2018-2019学年七年级下学期期末考试数学试题(扫描版)
2018-2019学年度学生素质监测七年级数学试题参考答案及评分意见一、选择题(每小题3分,共30分。
)11.1, 12., 13.-15,14.5, 15.6 cm , 16.0.5秒或3.5秒三、解答题(一)(每小题6分,共18分。
)17. 解:(8 a 4b4-4b2)÷2b2-(2 a 2b)2+(a-2)( a +2)=4 a 4b2﹣2﹣4 a 4b2+a 2-4 ………3分=a 2-6………6分18. 解:(x﹣y)4÷(x﹣y)2﹣x(x﹣3y)=(x﹣y)2﹣x2+3xy=x2﹣2xy+y2﹣x2+3xy=xy+y2………4分当x=,y=5时,原式=×5+52=26.………6分19. 解:(1)由表格,得:x=5时,y=334则334=5k+331 解得k=0.6(注:选取表中其他数据,且运算正确均可得分)………3分(2)由(1)知k=0.6,则y=0.6x+331 ………4分当x=22时,y=0.6×22+331=344.2(m/s)………5分∴气温为22℃时,声音传播速度为344.2 m/s。
………6分四、解答题(二)(每小题7分,共21分)20. 解:(1)如图所示:AE为所求。
(作图正确得3分,结论1分)(2)由∠CDB=110°可得∠ADB=70°,………5分因为三角形的内角和为180°所以∠CAB=180°﹣∠ADB﹣∠ABD=180°﹣70°﹣30°=80°,………6分由(1)得AE 平分∠CAB , 所以∠DAE =CAB ∠21=40°,………7分21. 解:(1)∵AB∥DE,∴∠B=∠DEF, ………1分 ∵BE=CF,∴BE+EC=CF+EC,即BC=EF , ………2分 在△ABC 和△DEF 中,∴△ABC≌△DEF(AAS ) ………4分 (2)由(1)知:△ABC≌△DEF,∴∠ACB=∠F. ………6分 ∴AC ∥D F ………7分22. 解:(1)依题意,得:CD=9- x ………1分∵S △BCD=CD ×CB=(9- x)×6=27-3 x∴y 与 x 的关系式: y=27-3 x ………3分(2)表格依次填15、12、9 ………6分 (3)由表格看出当x 每增加1cm 时,y 减少3 cm 2………7分五、解答题(三)(每小题9分,共27分)23.(1)否 ………2分(2)球的个数有1+2+3+8=14(个),而红球有1个所以小明抽到一等奖的概率是141………5分 (3)因为黑球的个数有8个,所以没有中奖的概率是74148= ………6分 则中奖的概率是73741=- ………7分7374≠ 所以中奖和没中奖的机会不相等 ………8分可以减少2个黑球使中奖和没中奖的机会相等。
2018-2019学年七年级下期末考试数学试卷(含答案)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年七年级下期末考试数学试卷及答案
2018-2019学年七年级下期末考试数学试卷及答案2018--2019学年第⼆学期期末考试初⼀数学试卷⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的 1.9的平⽅根为 A .±3 B .﹣3 C .3D .2.下列实数中的⽆理数是A .1.414B . 0C .13D .3.如图,为估计池塘岸边A ,B 的距离,⼩明在池塘的⼀侧选取⼀点O ,测得OA =15⽶,OB =10⽶,A ,B 间的距离可能是 A .30⽶B .25⽶C .20⽶D .5⽶4.下列调查⽅式,你认为最合适的是 A .了解北京市每天的流动⼈⼝数,采⽤抽样调查⽅式B .旅客上飞机前的安检,采⽤抽样调查⽅式C .了解北京市居民”⼀带⼀路”期间的出⾏⽅式,采⽤全⾯调查⽅式D .⽇光灯管⼚要检测⼀批灯管的使⽤寿命,采⽤全⾯调查⽅式5. 如图,已知直线a//b ,∠1=100°,则∠2等于 A .60° B . 80° C .100° D .70°6.象棋在中国有着三千多年的历史,由于⽤具简单,趣味性强,成为流⾏极为⼴泛的益智游戏.如图,是⼀局象棋残局,已知表⽰棋⼦“⾺”和“⾞”的点的坐标分别为(4,3),(-2,1),则表⽰棋⼦“炮”的点的坐标为A .(-3,3)B .(0,3)C .(3,2)D .(1,3)7.若⼀个多边形的内⾓和等于外⾓和的2倍,则这个多边形的边数是 A .4B .5C .6D .88.若m >n ,则下列不等式中⼀定成⽴的是 A .m+2<n+3 B .2m <3n C .a ﹣m <a ﹣n D . ma 2>na 29. 在⼤课间活动中,同学们积极参加体育锻炼.⼩丽在全校随机抽取⼀部分同学就“⼀分钟跳绳”进⾏测试,并以测试数据为样本绘制如图所⽰的部分频数分布直⽅图(从左到右依次分为六个⼩组,每⼩组含最⼩值,不含最⼤值)和扇形统计图,若“⼀分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学⽣,根据图中提供的信息,下列说法不.正确..的是A .第四⼩组有10⼈B .第五⼩组对应圆⼼⾓的度数为45°C .本次抽样调查的样本容量为50D .该校“⼀分钟跳绳”成绩优秀的⼈数约为480⼈10. 如图所⽰,下列各三⾓形中的三个数之间均具有相同的规律,根据此规律,最后⼀个三⾓形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1⼆、填空题:(本题共16分,每⼩题2分,将答案填在题中横线上)11.如图,盖房⼦时,在窗框未安装好之前,⽊⼯师傅常常先在窗框上斜钉⼀根⽊条,这种做法的依据是12.⽤不等式表⽰:a 与2的差⼤于-113.在这四个⽆理数中,被墨迹(如图所⽰)覆盖住的⽆理数是.14.若2-30=(),则=+a a b 15. 如图,将⼀副三⾓板叠放在⼀起,使直⾓的顶点重合于点O ,AB//OC,DC 与OB 交于点E ,则∠DEO 的度数为.16. 在平⾯直⾓坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是_______________. 17.如图,ABC 中,点D 在BC 上且BD=2DC ,点E 是AC 中点,已知CDE ⾯积为1,那么ABC 的⾯积为18.在数学课上,⽼师提出如下问题:⼩军同学的作法如下:①连接AB ;②过点A 作AC ⊥直线l 于点C ;则折线段B-A-C 为所求.D lCBAlCBA⽼师说:⼩军同学的⽅案是正确的. 请回答:该⽅案最节省材料的依据是.三、解答题(本题共10个⼩题,共54分,解答应写出⽂字说明,证明过程或演算步骤) 19.(53-2( 20.(5分)解不等式组()38,41710.x x x x <++≤+?? 并把它的解集在数轴上表⽰出来。
2018-2019学年人教版七年级下册期末数学试卷含答案
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。
2018—2019学年度第二学期期末七年级数学试卷
2018—2019学年度第二学期期末教学质量检测试卷七年级 数学(总分:100分 作答时间:100分钟)一、单项选择题.(本大题共10小题,每小题3分,共30分) 1.1的算术平方根是( ) A .0B .1C . 1D .±12.下列是二元一次方程的是( )A .x +8y =0B .2x 2=y C .y +=2 D .3x =10 3.下列各式中,正确的是( ) A .=±4 B .C .D .4.如图,不能推出a ∥b 的条件是( )A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠2+∠3=180° 5.以下问题,适合用全面调查的是( )A .调查某一电视节目的收视率B .调查一批冷饮的质量是否合格C .调查你们班同学是否喜欢科普类书籍D .调查我国中学生的节水意识 6.如图,要把小河里的水引到田地A 处,则作AB ⊥l ,垂足为点B ,沿AB 挖水沟,水沟最短,理由是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .过一点可以作无数条直线 7.下列不等式变形中,错误的是( ) A .若 a<b ,则 a +c<b +c B .若 a +c<b +c ,则 a<b C .若 a<b ,则 ac 2<bc 2D .若 ac 2<bc 2,则 a<b8.不等式3x ﹣1>5的解集在数轴上表示正确的是( ) A . B . C .D .9.在平面直角坐标中,点M (﹣2,3)到y 轴的距离为( ) A .3B .2C .﹣3D .﹣210.如图,把图中以点A 为圆心的圆经过平移得到以点O 为圆心的圆,如果左图中圆A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( ) A .(m +2,n +1) B .(m ﹣2,n ﹣1) C .(m ﹣2,n +1) D .(m +2,n ﹣1)二、填空题(每小题3分,共24分)11.如图,△ABC 平移得到△A ′B ′C ′,已知∠B =45°, ∠C ′=70°,∠A = . 12.若,则a +b = .13.已知点M 在第四象限,其坐标是(x ,y ),且x +y =0.试写出2个满足这些条件的点: . 14.若a <<b ,且a 、b 是两个连续的整数,则a b= .15.将某班女生的身高分成三组,情况如表所示,则表中a 的值是 .16.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,果甲得到乙所有钱的一半,那么甲共有钱50文.如果乙得到甲所有钱的三分之二,那么乙也共有钱50文.甲、乙各带了多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组为.17.若关于x 的一元一次不等式组有解,则a 的取值范围是 .18.如图,将一块含45°的直角三角板的直角顶点放在直尺的一边上,当∠1=35°时,则∠2的度数是 .三、解答题(本题共7小题,共46分;解答时应写出必要的解题过程或演算步骤)19.(本题满分6分)(1)计算+﹣.(2)解方程组.20.(本题满分6分)解不等式组并写出它的整数解.21.(本题满分6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么AC与DF平行吗?说明你的理由.22.(本题满分6分)已知点A(﹣3,0),点C(0,3)且点B的坐标为(﹣1,4),计算△ABC的面积.23.(本题满分7分)某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如表:在现有条件下,这15位村民全部参与种植,问:应承包多少公顷土地使资金正好够用?24.(本题满分7分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解“,“C.了解一些”三个等级,并根据调查结果绘制了如下两幅不完整的统计图:(1)这次调查的市民人数为人,m=,n=.(2)请根据以上信息直接在答题卡中补全条形统计图;(3)若该市共有20万人,请估算该市对“社会主义核心价值观”知晓程度为“A.非常了解”的有多少万人。
【精选3份合集】2018-2019年广东省名校七年级下学期期末经典数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,直线a 、b 被直线c 所截,下列条件不能使//a b 的是( )A .25∠=∠B .17∠=∠C .37∠=∠D .18180∠+∠=︒【答案】A 【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】解:A 、24∠∠=,4∠与5∠是同旁内角,同旁内角相等不能说明//a b ;故A 符合题意; B 、57∠=∠,1∠与5∠是同位角,同位角相等能说明//a b ;故B 不符合题意;C 、37∠=∠,同位角相等能说明//a b ,故C 不符合题意;D 、1∠=5∠,8∠与5∠是邻补角,则18180∠+∠=︒能说明//a b ;故D 不符合题意;故选:A .【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 2.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x > B .15x <- C .15x >- D .15x < 【答案】C 【解析】根据不等式10x a b +>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0 【详解】解不等式10x a b+>, 移项得:1-x a b > ∵解集为x<15∴1-5a b = ,且a<0∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15 故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键3.已知21x y -⎧⎨⎩==是关于x ,y 的二元一次方程2x+my=7的解,则m 的值为( ) A .3B .-3C .92D .-11 【答案】B【解析】把21x y ⎧⎨-⎩==代入二元一次方程2x+my=7,求解即可. 【详解】解:把21x y ⎧⎨-⎩==代入二元一次方程2x+my=7,得4-m=7,解得m=-3, 故选:B .【点睛】本题考查二元一次方程,熟练掌握运算法则是解题关键.4.今天我们全区约1500名初二学生参加数学考试,拟从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是( )A .300名考生的数学成绩B .300C .1500名考生的数学成绩D .300名考生【答案】A【解析】试题分析:全区约1500名初二学生参加数学考试是总体,300名考生的数学成绩是总体的一个样本.故选A .考点:总体、个体、样本、样本容量.5.不等式732122x x --+<的负整数解有( )A .0个B .1个C .2个D .4个【答案】B 【解析】先求出不等式的解集,在取值范围内可以找到非负整数解. 【详解】解:732122x x --+< 去分母,得:7232x x -+<-,移项、合并,得:23x -<,系数化为1,得:32x >-, ∴不等式的负整数解只有-1这1个,故选:B .【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.6.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS【答案】D 【解析】解:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,即OC=OD ;以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,即CP=DP ;再有公共边OP ,根据“SSS”即得△OCP ≌△ODP .故选D .7.下列事件中,是必然事件的是( )A .掷一枚质地均匀的骰子,掷出的点数不超过6;B .一个射击运动员每次射击的命中环数;C .任意买一张电影票,座位号是2的倍数;D .早上的太阳从西方升起【答案】A【解析】利用“在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生的事件是必然事件”这一定义直接判断即可【详解】A 掷一枚质地均匀的骰子,掷出的点数可能为1、2、3、4、5、6,不可能超过6,所以掷一枚质地均匀的骰子,掷出的点数不超过6是必然事件,所以A 正确B 一个射击运动员每次射击的命中环数是随机事件,所以B 不正确C 任意买一张电影票,座位号是2的倍数是随机事件,所以C 不正确D 早上的太阳从东方升起,不可能从西方升起,所以早上的太阳从西方升起是不可能事件,所以D 不正确 故选A【点睛】本题主要考查随机事件、必然事件、不可能事件的定义,属于简单题8.方程2x -2=4的解是( )A .x =2B .x =3C .x =4D .x =5【答案】B【解析】分析:方程移项合并,把x 系数化为1,即可求出解.详解:方程移项得:2x =4+2,合并得:2x =6,解得:x =3,故选:B .点睛:此题考查了解一元一次方程,解方程移项注意要变号.9.下列实数: 223.14,,, 1.010*******π-⋅⋅⋅中,无理数有( ) A .1个B .2个C .3个D .4个 【答案】C【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.故有理数有:3.14,227;无理数有:, 1.010010001π-⋅⋅⋅,共3个 故选C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.已知a ,b .c 均为实数,a <b ,那么下列不等式一定成立的是( )A .a b 0->B .3a 3b -<-C .a c b c <D .()()22a c 1b c 1+<+ 【答案】D 【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A 、∵a <b ,∴a-b <0,故本选项错误;B 、∵a <b ,∴-3a >-3b ,故本选项错误;C 、当c=0时,a|c|=b|c|,故本选项错误;D 、∵a <b ,c 2+1>0,∴a (c 2+1)<b (c 2+1),故本选项正确.故选D .点睛:本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.二、填空题题11.如图,已知//,136a b ∠=︒,则2∠=____________________.【答案】36°【解析】根据对顶角相等可得∠3=∠1,再根据两直线平行,同位角相等解答.【详解】解:由对顶角相等可得,∠3=∠1=36°,∵a ∥b ,∴∠2=∠3=36°.故答案为:36°.【点睛】本题考查了两直线平行,同位角相等的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.12.127的立方根是_____. 【答案】13 【解析】根据立方根的定义解答.【详解】∵(13)3=127, ∴127的立方根是13.故答案为:13. 【点睛】 本题考查了立方根的定义,是基础题,熟记概念是解题的关键.13.已知2P m m =-,1Q m =-(m 为任意实数),则P 、Q 的大小关系为________.【答案】P≥Q【解析】用求差比较法比较大小:若P -Q >0,则P >Q ;若P -Q =0,则P =Q ;若P -Q <0,则P <Q .【详解】∵P -Q = m 2-m -(m -1)=m 2-2m+1=2m 1-(), ∵2m 1-()≥0, 故答案为P≥Q.【点睛】本题主要考查的是比较大小的常用方法,掌熟练握比较大小的常用方法是本题的解题的关键. 14.在平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,m )、(3,m +2),若线段AB 与x 轴有交点,则m 的取值范围是_____.【答案】﹣2≤m ≤1【解析】由点的坐标特征得出线段AB ∥y 轴,当直线y =1经过点A 时,得出m =1;当直线y =1经过点B 时,得出m =﹣2;即可得出答案.【详解】解:∵点A 、B 的坐标分别为(3,m )、(3,m+2),∴线段AB ∥y 轴,当直线y =1经过点A 时,则m =1,当直线y =1经过点B 时,m+2=1,则m =﹣2;∴直线y =1与线段AB 有交点,则m 的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.15.|2﹣|=_____. 【答案】【解析】先判断1-的正负值,再根据“正数的绝对值是它本身,负数的绝对值是其相反数”即可求解.【详解】解: |1-|=-1.故答案-1.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.16.如图所示,把一张对面互相平行的纸条折成如图所示,EF 是折痕,若32FEG ∠=︒,则FGC ∠=______.【答案】64度【解析】先根据图形折叠的性质求出∠C′EF=∠FEG,再根据平行线的性质得出∠EFG 的度数,由三角形外角的性质即可得出结论.【详解】解:∵∠FEG 由∠C′EF 折叠而成,∴∠FEG=∠C′EF,∵AD′∥BC′,∠FEG=32°,∴∠C′EF=∠EFG=32°,∴∠FGC=∠EFG +∠FEG =32°+32°=64°.故答案为:64度.【点睛】本题考查了平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角和.17.等腰三角形的腰长为13cm ,底边长为10cm ,则其面积为________;【答案】60cm 1【解析】根据题意画出图形,过点A 作AD ⊥BC 于点D ,根据BC=10cm 可知BD=5cm .由勾股定理求出AD 的长,再由三角形的面积公式即可得出结论.【详解】如图所示,过点A 作AD ⊥BC 于点D ,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴2222135AB AD -=-,∴S△ABC=12BC•AD=12×10×11=60(cm1),故答案为60cm1.【点睛】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题18.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解.....【答案】不等式组的解集是-3<x≤2,正整数解是1、2【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后从解集中找出所有的正整数即可.【详解】解:() 517811062x xxx⎧-<-⎪⎨--≤⎪⎩①②,解①得,x>-3,解②得,x≤2,∴原不等式组的解是-3<x≤2.∴原不等式组的正整数解有:1,2.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.19.如图,方格纸中每个小正方形的边长为1cm,平移图中的△ABC,使点B移到点B1的位置.(1)利用方格和直尺画图①画出平移后的△A1B1C1②画出AB边上的中线CD;③画出BC边上的高AH;(1)线段A1C1与线段AC的位置关系与数量关系为;(3)△A1B1C1的面积为cm1;△BCD的面积为cm1.【答案】(1)①见解析;②见解析;③见解析;(1)平行且相等;(3)8,2.【解析】(1)①利用网格特点,根据B点和B1点的位置确定平移的方向和距离,画出点A1、C1的位置即可;②利用网格特点和三角形中线的定义画图;③利用网格特点和三角形高的定义画图;(1)利用平移的性质求解;(3)通过三角形面积公式,计算△ABC的面积得到△A1B1C1的面积,然后根据三角形的中线把三角形面积分成相等的两部分得到△BCD的面积.【详解】解:(1)①如图,△A1B1C1为所作;②如图,CD为所作;③如图,AH为所作;(1)由平移的性质可知,线段A1C1与线段AC平行且相等;(3)△A1B1C1的面积=△ABC的面积=×BC×AH=×2×2=8(cm1),△BCD的面积=S△ABC=×8=2(cm1).【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.解不等式213132x x---≥1,并把它的解集表示在数轴上.【答案】x≤﹣1【解析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【详解】解:去分母,得:2(2x﹣1)﹣3(3x﹣1)≥6,去括号,得:4x﹣2﹣9x+3≥6,移项,得:4x﹣9x≥6+2﹣3,合并同类项,得:﹣5x≥5,系数化为1,得:x≤﹣1,将不等式的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.21.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).【答案】(1)13(2)16(3)1390(4)1930【解析】分析:根据题意,由相应房间的面积比上总面积90进行计算即可. 详解:由题意可得:(1)P(在客厅捉到小猫)=301= 903;(2)P(在小卧室捉到小猫)=151= 906;(3)P(在卫生间捉到小猫)=9+413= 9090;(4)P(不在卧室捉到小猫)=9018155719909030--==.点睛:知道:“在某个房间捉到小猫的概率=该房间的面积:米奇家住宅的总面积”是解答本题的关键. 22.如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=90°,求这块草地的面积.【答案】14m 1.【解析】连接AC ,利用勾股定理可以得出三角形ACD 和ABC 是直角三角形,△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】连接AC ,∵∠ADC=90°,AD=4m ,CD=3 m ,∴AC 1=AD 1+CD 1=41+31=15 ,又∵AC >0,∴AC=5 m ,又∵BC=13m ,AB=11m ,∴AC 1+AB 1=51+111=169,又∵BC 1=169,∴AC 1+AB 1=BC 1,∴∠ACB=90°,∴S △ABC =2115123022AC AB m ⨯⨯=⨯⨯= ∴S 四边形ABCD =S △ABC -S △ADC =30-6=14m 1.【点睛】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握定理及逆定理是解本题的关键.23.年是我市“创建国家卫生城市”第一年,为了了解本班50名学生对“创卫”的知晓率,某同学采取随机抽样的方法进行问卷调查,调查分为四个选项:A 非常了解,B 比较了解,C 基本了解,D 不甚了解.数据整理如下:DBCBC AACBA ABCBD ABBCB CABCBABABB CBBCB CCBBC CABCD CDABD请画出条形图和扇形图来描述以上统计数据.【答案】见解析【解析】先依次数出A,B,C,D 出现的次数,即可做出条形统计图,再求出A,B,C,D 四个选项各自的占比即可做出扇形统计图.【详解】根据数据个数得到A 出现10次,B 出现20次,C 出现15次,D 出现5次,故作出条形统计图如下:∵A 选项占比为10÷50=20%;B 选项占比为20÷50=40%;C 选项占比为15÷50=30%;D 选项占比为5÷50=10%;故作扇形统计图如下:【点睛】此题主要考查统计图的作法,解题的关键是根据题意求出各选项的占比即可作图.24.如图,已知点D 为ABC △的边BC 的中点,,⊥⊥DE AC DF AB ,垂足分别为,E F ,且BF CE =. 求证:()()12B C AD ∠=∠平分BAC ∠【答案】(1)详见解析;(2)详见解析.【解析】(1)由中点的定义得出BD =CD ,由HL 证明Rt △BDF ≌Rt △CDE ,得出对应角相等即可; (2)根据全等三角形的性质得到DF DE =,利用角平分线的判定定理即可得出结论.【详解】证明:(1)D 是BC 的中点,BD CD ∴=,DE AC DF AB ⊥⊥,,BDF ∴与CDE △为直角三角形,在Rt BDF 和Rt CDE △中,BF CE BD CD =⎧⎨=⎩, Rt BDF Rt CDE HL ∴≌(),B C ∴∠=∠;(2)Rt BDF Rt CDE ≌,DF DE ∴=,AD ∴平分BAC ∠.【点睛】本题考查全等三角形的判定和性质、角平分线的判定定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.观察下面给出的等式,回答下列问题: ①112⨯=1﹣12②123⨯=12﹣13③134⨯=1341- (1)猜想:第n 个等式是(2)计算:112⨯ +123⨯+134⨯+……+1910⨯;(3)若11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++,求x 的值. 【答案】(1)111n n -+;(2)910;(3)x =1 【解析】(1)根据已知算式得出答案即可;(2)根据已知得出的规律进行变形,再求出即可;(3)根据已知得出的规律进行变形,再求出即可.【详解】(1)第n 个等式是111(1)1n n n n =-++, 故答案为: 111(1)1n n n n =-++; (2)1111122334910+++⋯⋯+⨯⨯⨯⨯ =11111111,122334910-+--+⋯+- =1﹣110 =910; (3)11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++, 11111111223192020x x x x x x x -+-+⋯+-=+++++++, 11112020x x x -=+++, 12120x x =++, 方程两边都乘以(x+1)(x+20)得:x+20=2(x+1),解得:x =1,经检验x =1是原方程的解,所以x =1.【点睛】本题考查了有理数的混合运算、解分式方程和数字的变化类,能根据已知算式得出规律是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省揭阳市普宁市2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)将0.00000918用科学记数法表示为()A.0.918×10﹣5B.9.18×10﹣5C.9.18×10﹣6D.91.8×10﹣73.(3分)有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.4、6、10C.1、1、3D.4、6、94.(3分)下列事件中属于必然事件的是()A.早上的太阳从西边升起B.掷一枚质地均匀的骰子,掷出的点数不超过6C.经过有交通信号灯的路口,遇到红灯D.打开电视任选一频道,正在播放普宁新闻5.(3分)下列计算正确的是()A.(2a3)4=8a12B.(a+b)2=a2+b2C.a4•a3=a7D.a4÷a3=16.(3分)如图,直线AB,CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=35°,则∠DOT=()A.35°B.45°C.55°D.65°7.(3分)如图,已知∠B=∠D,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.∠BAC=∠DAC B.AC=AC C.AB=AD D.CB=CD8.(3分)如图,给出下列几个条件:①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2=∠4,能判断直线a∥b的有()个.A.1B.2C.3D.49.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°10.(3分)如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.)11.(4分)﹣1﹣(π﹣2019)0=.12.(4分)随着信息技术的发展,人们去商场购物的支付方式更加多样、便捷.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为.13.(4分)若(x+2)(x﹣a)=x2+bx﹣10,则ab的值为.14.(4分)如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.15.(4分)如图,在△ABC中,点D为BC边上一点,点D关于AB,AC对称的点分别为E、F,连接EF分别交AB、AC于M、N,分别连接DM、DN,已知△DMN的周长是6cm,那么EF=.16.(4分)已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.三、解答题(一)(本大题3小题,每小题6分,共18分.)17.(6分)化简:(8a4b4﹣4b2)÷2b2﹣(2a2b)2+(a﹣2)(a+2)18.(6分)先化简,再求值:(x﹣y)4÷(x﹣y)2﹣x(x﹣3y),其中x=,y=5.19.(6分)根据某物理实验室测算,声音在空气中传播的速度y(m/s)与气温x(℃)之间有如下关系:y=kx+331(1)该实验室测得声音在空气中传播的速度y与气温x的一些数据如下表:气温x(℃)…051015…音速y(m/s)…331334337340…根据上表数据,求k值.(2)根据上面所得结果,当气温为22℃时,问声音在空气中传播的速度是多少?四、解答题(二)(本大题3小题,每小题7分,共21分.)20.(7分)如图,在△ABC中,已知∠CDB=110°,∠ABD=30°.(1)请用直尺和圆规在图中直接作出∠A的平分线AE交BD于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,求出∠AED的度数.21.(7分)如图,已知AB∥DE,∠A=∠D,且BE=CF,(1)说明:△ABC≌△DEF;(2)说明:AC∥DF.22.(7分)如图,在△ABC中,∠C=90°,AC=9cm,BC=6cm,点D在AC上运动,设AD长为xcm,△BCD的面积为ycm2.当x从小到大变化时,y也随之变化.(1)求出y与x之间的关系式.(2)完成下面的表格x(cm)4567y(cm2)6(3)由表格看出当x每增加1cm时,y如何变化?五、解答题(三)(本大题3小题,每小题9分,共27分.)23.(9分)“五一”期间,某商场推出“购物满额即可抽奖”活动.商场在抽奖箱中装有1个红球、2个黄球、3个白球、8个黑球,每个球除颜色外都相同,红球、黄球、白球分别代表一、二、三等奖,黑球代表谢谢参与.获得抽奖杋会的顾客每次从箱子中摸出一个球,按相应颜色对应等级兑换奖品,每次所摸得球再放回抽奖箱,摇匀后由下一位顾客抽奖.已知小明获得1次抽奖机会.(1)小明是否一定能中奖:;(填是、否)(2)求出小明抽到一等奖的概率;(3)在这个活动中,中奖和没中奖的机会相等吗?为什么?如果不相等,可以如何改变球的个数,使中奖和没中奖的机会相等?(只写一种即可)24.(9分)阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=;(2)根据(1)的结论若(m+n)2=9,(m﹣n)2=1,求出下列各式的值:①mn;②m2+n2;(3)观察图4,请写出图4所表示的代数恒等式:.25.(9分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE,设∠BAC=α,∠DCE=β.(1)如图1,点D在线段BC上移动时,试说明△ABD≌△ACE(2)如图2,点D在线段BC的延长线上移动时,探索角α与β之间的数量关系并证明;(3)当点D在线段BC的反向延长线上移动时,请在备用图上根据题意画出图形,并猜想角α与β之间的数量关系是,线段BC、DC、CE之间的数量关系是.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.解:0.00000918=9.18×10﹣6.故选:C.3.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.4.解:A、早上的太阳从西边升起是不可能事件,故A不合题意;B、掷一枚质地均匀的骰子,掷出的点数不超过6是必然事件,故B符合题意;C、经过有交通信号灯的路口,遇到红灯是随机事件,故C不合题意;D、打开电视任选一频道,正在播放普宁新闻是随机事件,故C不合题意;故选:B.5.解:(A)原式=16a12,故A错误;(B)原式=a2+2ab+b2,故B错误;(D)原式=a,故D错误;故选:C.6.解:∵CE∥AB,∴∠BOD=∠ECO=35°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=90°﹣35°=55°.故选:C.7.解:A、添加∠BAC=∠DAC,根据AAS,能判定△ABC≌△ADC,故A选项符合题意;B、AC是公共边,属于已知条件,不能判定△ABC≌△ADC,故B选项不符合题意;C、添加AB=AD,根据SSA,不能判定△ABC≌△ADC,故C选项不符合题意;D、添加CB=CD时,根据SSA,不能判定△ABC≌△ADC,故D选项不符合题意;故选:A.8.解:①当∠1=∠4时,a∥b(内错角相等,两直线平行);②当∠3=∠5时,a∥b(同位角相等,两直线平行);③当∠2+∠5=180°时,a∥b(同旁内角互补,两直线平行);④当∠2=∠4时,不能判定a∥b;故选:C.9.解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.10.解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.二、填空题(本大题共6小题,每小题4分,共24分.)11.解:原式=2﹣1=1.故答案为:1.12.解:∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.13.解:已知等式整理得:x2+(2﹣a)x﹣2a=x2+bx﹣10,可得2﹣a=b,﹣2a=﹣10,解得:a=5,b=﹣3,则ab=﹣15,故答案为:﹣1514.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.15.解:由轴对称的性质知,EM=DM,FN=DN,∴EF=EM+MN+FN=DM+MN+DN=△DMN的周长=6cm.∴△DMN的周长=EF=6 cm.故答案是:6 cm.16.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.三、解答题(一)(本大题3小题,每小题6分,共18分.)17.解:(8a4b4﹣4b2)÷2b2﹣(2a2b)2+(a﹣2)(a+2)=4a4b2﹣2﹣4a4b2+a2﹣4=a2﹣6.18.解:(x﹣y)4÷(x﹣y)2﹣x(x﹣3y)=(x﹣y)2﹣x2+3xy=x2﹣2xy+y2﹣x2+3xy=xy+y2,当x=,y=5时,原式=×5+52=26.19.解:(1)由表格,得:x=5时,y=334则334=5k+331解得k=0.6;(2)由(1)知k=0.6,则y=0.6x+331.当x=22时,y=0.6×22+331=344.2(m/s)∴气温为22℃时,声音传播速度为344.2 m/s.四、解答题(二)(本大题3小题,每小题7分,共21分.)20.解:(1)如图所示:(2)∵∠CDB=110°,∠ABD=30°.∴∠CAB=110°﹣30°=80°,∵AE平分∠CAB,∴∠DAE=40°,∴∠DEA=110°﹣40°=70°.21.证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)由(1)知:△ABC≌△DEF,∴∠ACB=∠F,∴AC∥DF.22.解:(1)依题意,得:CD=9﹣x∵y=CD×CB=(9﹣x)×6=27﹣3x∴y与x的关系式为:y=27﹣3x;(2)当x=4时,y=15;当x=5时,y=12;当x=6时,y=9;故答案为:15,12,9;(3)由表格看出当x每增加1cm时,y减少3 cm2.五、解答题(三)(本大题3小题,每小题9分,共27分.)23.解:(1)小明不一定能中奖,故答案为:否;(2)球的个数有1+2+3+8=14(个),而红球有1个所以小明抽到一等奖的概率是.(3)因为黑球的个数有8个,所以没有中奖的概率是=,则中奖的概率是1﹣=,因为≠,所以中奖和没中奖的机会不相等,可以减少2个黑球使中奖和没中奖的机会相等(答案不唯一).24.解:(1)由图3得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a+b)2﹣4ab;(2)解:①根据(1)的结论,可得(m﹣n)2=(m+n)2﹣4mn,∵(m+n)2=9,(m﹣n)2=1,即1=9﹣4mn,解得mn=2;②由(m+n)2=m2+2mn+n2,可得,9=m2+2×2+n2,所以m2+n2=9﹣4=5;(3)由图4得:(2a+b)(a+b)=2a2+3ab+b2.故答案为:(2a+b)(a+b)=2a2+3ab+b2.(注:等式2a2+3ab+b2=(2a+b)(a+b)也可得分)25.解:(1)∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,即∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)α=β;理由如下∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=180°﹣∠ACB=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β;(3)根据题意画出图形如图3所示:α=β,BC+CE=DC;∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ADB=∠AEC,BD=CE,由三角形内角和定理得:∠ADB+α=∠AEC+β,∴α=β,∵BC+BD=DC,∴BC+CE=DC,故答案为:α=β;BC+CE=DC.。